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Abstract

In this paper, we describe our work for the Cli-
mateCheck shared task at the Scholarly Docu-
ment Processing (SDP) workshop, ACL 2025.
We focus on Subtask 1: Abstracts retrieval. The
task involves retrieving relevant abstracts from
a large corpus to verify claims made on social
media about climate change. We explore vari-
ous retrieval and reranking techniques, includ-
ing fine-tuning transformer-based dense retriev-
ers, sparse retrieval methods, and reranking
using cross-encoder models. Our final and best-
performing system utilizes a hybrid retrieval ap-
proach combining BM25 sparse retrieval with
a fine-tuned Stella model for dense retrieval,
followed by an MSMARCO-trained MiniLM
cross-encoder model for reranking. We adapt
an iterative graph-based reranking approach
that leverages a document similarity graph built
over the document corpus to update the candi-
date pool for reranking dynamically. Our sys-
tem achieved a score of 0.415 on the final test
set for Subtask 1, securing third place on the
final leaderboard.

Our code is available on GitHub1.

1 Introduction

Misinformation spreading on social media poses a
significant threat to public understanding of scien-
tific issues, particularly in domains such as climate
change, where accurate information is needed to
raise awareness and create evidence-based policies.

Social media platforms are often the first point of
exposure to climate-related content for the general
public, making it easy for misleading claims and
information to spread. Therefore, there is a need for
automated fact-checking systems that can assess
the veracity of such claims in real time.

Automated evidence-based fact-checking re-
mains a challenging task (Glockner et al., 2022).

1https://github.com/Mahmoud-Mohammed-Fathallah/
climatecheck-shared-task

Highly effective retrieval module that can retrieve
relevant evidence to support or refute a given claim
is a necessary component of the evidence-based
fact-checking system (Zheng et al., 2024).

This paper presents our approach for Subtask 1
of the ClimateCheck shared task (Abu Ahmad et al.,
2025b), held at the Scholarly Document Process-
ing (SDP) workshop at ACL 2025. The Subtask
focuses on retrieving relevant scientific abstracts
from a large corpus in response to climate-related
claims made on social media.

We experiment with dense and sparse retrieval
models and employ a retrieval-reranking pipeline.
We fine-tune models using supervised contrastive
learning and evaluate the effectiveness of hybrid
retrieval pipelines that combine sparse and dense
approaches. We adapt a graph-based reranking
approach inspired by prior work on corpus graph
expansion (MacAvaney et al., 2022), where the
reranking pool is iteratively enriched using neigh-
bors of top-ranked documents.

2 Related Work

Information retrieval (IR) pipelines generally rely
on sparse or dense retrieval techniques.

Sparse retrieval Sparse retrieval methods, such
as BM25 (Robertson and Zaragoza, 2009), repre-
sent queries and documents as high-dimensional
sparse vectors based on term frequency-inverse doc-
ument frequency statistics (TF-IDF). While effec-
tive in capturing lexical similarity, these models
often struggle to capture semantic similarity.

Dense Retrieval Dense retrieval models
(Karpukhin et al., 2020; Xiao et al., 2023; Zhang
et al., 2025) address the problem of semantic simi-
larity faced by sparse retrieval models. They embed
both queries and documents to obtain dense vector
representations that allow similarity-based search
through vector similarity.

Reranking Reranking is a critical step in IR
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Label Training
Supports 446
Refutes 241
Not enough info. 457
Total 1144

Table 1: Distribution of labels in the provided training
set.

Label Training Validation
Supports 360 86
Refutes 196 45
Not enough info. 361 96
Total 917 227

Table 2: Distribution of labels in our training and vali-
dation sets.

pipelines (Liu et al., 2025). Bi-encoder models
enable efficient and fast retrieval but require rerank-
ing to enhance performance by utilizing a cross-
encoder model to jointly encode query-document
pairs and output a similarity score (Nogueira and
Cho, 2020). This allows for deeper interaction be-
tween queries and documents, further enhancing
the performance.

Adaptive reranking Adaptive reranking tech-
niques that utilize similarity graphs (MacAvaney
et al., 2022; Rathee et al., 2025) have been de-
veloped to overcome the limitations of standard
retrieval-reranking pipelines, where the reranking
performance is limited by the set initially retrieved
by the retriever (MacAvaney et al., 2022). In the
adaptive reranking approach, a similarity graph is
used to retrieve documents related to the top-ranked
ones, enabling richer reranking candidates.

3 Data

The shared task provided a training set, a test set,
and a document corpus (Abu Ahmad et al., 2025a).
The training set included 1,144 claim–abstract pairs
labeled as supports, refutes, or not enough informa-
tion; the label distribution is shown in Table 1. The
retrieval corpus contained 394,269 paper abstracts.
The test set consisted of 176 unlabeled claims.

Since the shared task initially provided only a
training set, we created our own validation set by
randomly sampling 50 unique claims and their as-
sociated data points from the original training set.
The remaining samples formed our training set.
Distributions for both sets are shown in Table 2.

4 Methodology

In this section, we outline our approach and the
final submitted system.

4.1 Retrieval models

We first explored different bi-encoder models for
dense retrieval, such as bge-large-en2 (Xiao et al.,
2023), stella-en-400M-v53 (Zhang et al., 2025),
and inf-retriever-v1-1.5b4 (Junhan Yang, 2025).
We fine-tuned the first two using contrastive learn-
ing (Qiu et al., 2021) utilizing Multiple Negatives
Ranking Loss to bring embeddings of related query-
abstract pairs closer together and separate unre-
lated ones. We also experimented with BM25
(Robertson and Zaragoza, 2009), a traditional lexi-
cal search algorithm used as a strong baseline and
in hybrid approaches.

4.2 Reranking models

We experimented with different cross-encoder mod-
els for reranking, comparing the powerful fine-
tuned model bge-reranker-v2-m35 (Chen et al.,
2024) to other models trained on the MS-MARCO
dataset (Nguyen et al., 2016), such as ms-marco-
MiniLM-L12-v26 (Wang et al., 2020), ms-marco-
electra-base7 (Clark et al., 2020), and reranker-
msmarco-ModernBERT-base-lambdaloss8 (Warner
et al., 2024).

4.3 Hybrid retrieval

To enhance retrieval performance, we integrated
dense retrieval with sparse retrieval, leveraging the
strong lexical matching capabilities of methods like
BM25(Robertson and Zaragoza, 2009) alongside
the powerful semantic search capabilities of dense
models such as Stella bi-encoder model (Zhang
et al., 2025) to enhance retrieval performance. The
top-k documents from both models were combined,
with duplicates removed.

2https://huggingface.co/BAAI/bge-large-en
3https://huggingface.co/NovaSearch/stella_en_

400M_v5
4https://huggingface.co/infly/

inf-retriever-v1-1.5b
5https://huggingface.co/BAAI/

bge-reranker-v2-m3
6https://huggingface.co/cross-encoder/

ms-marco-MiniLM-L12-v2
7https://huggingface.co/cross-encoder/

ms-marco-electra-base
8https://huggingface.co/tomaarsen/

reranker-msmarco-ModernBERT-base-lambdaloss
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4.4 Similarity graph-based reranking

To address the limitations of the initial retrieval
stage, where highly relevant documents may be
missing from the retrieved set, we implemented an
adaptive retrieval and reranking strategy.

We first constructed a similarity graph over the
entire corpus, connecting each document to its top-
k semantically similar neighbors. The adaptive
reranking strategy proceeds as follows: an initial
set of documents is retrieved using a retriever, and
the top-n candidates are ranked by a cross-encoder
reranker. The top-p documents (p < n) are selected
and expanded by including their neighbors from the
similarity graph. This augmented set is reranked,
and the process is repeated for a fixed number of
iterations.

4.5 Final system

Our final system used a graph built with all-
MiniLM-L6-v2 bi-encoder model9 with k=10 near-
est neighbors per document and n=20 iterations
for the adaptive reranking step. These values were
selected after experimenting with different parame-
ters to balance retrieval performance with computa-
tional efficiency, allowing the system to explore a
broader set of relevant documents through multiple
reranking iterations while keeping the runtime fea-
sible. For reranking, we used "ms-marco-MiniLM-
L12-v2" cross-encoder model. The initial retrieval
stage combined the top 50 documents retrieved by
BM25 sparse retrieval and the fine-tuned stella-en-
400M-v5 dense retriever. The value 50 is chosen as
a reasonable default, as we were unable to perform
extensive hyperparameter tuning due to time limi-
tations. The full system architecture is illustrated
in Figure 1.

5 Experiments and Results

Evaluation on the validation and test sets was per-
formed using the official shared task metrics: Re-
call@k (R@k for k=2, 5, 10), B-pref, and the over-
all SubtaskI-Score, defined as the average of the
other metrics.

5.1 Training details

All experiments were conducted on a single
NVIDIA V100 GPU. During training, we used
batch sizes of 8 and 16, and optimized the models

9https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

Figure 1: Our final system that utilizes hybrid retrieval
with adaptive reranking.

using the Adam optimizer with learning rates of
1e-5, 1e-6, and 4e-6.

5.2 Retrieval models
We compared BM25 (Robertson and Zaragoza,
2009), bge-large-en (Xiao et al., 2023), stella-en-
400M-v5 (Zhang et al., 2025) and inf-retriever-v1-
1.5b (Junhan Yang, 2025), both with and without
fine-tuning on the training set using Multiple Neg-
atives Ranking Loss. The fine-tuned stella model
outperformed the other retrieval models. Results
on the validation set are shown in Table 3.

5.3 Reranking models
To choose a reranking model, we compared several
cross-encoder models: bge-reranker-v2-m3 (Chen
et al., 2024), ms-marco-MiniLM-L12-v2 (Wang
et al., 2020), ms-marco-electra-base (Clark et al.,
2020), and reranker-msmarco-ModernBERT-base-
lambdaloss (Warner et al., 2024). The bge-reranker
model was fine-tuned on the training set using Mul-
tiple Negatives Ranking Loss, while the other mod-
els, trained on MS-MARCO dataset (Nguyen et al.,
2016), were used without fine-tuning. For a fair
comparison, we fixed BM25 as the initial retriever
and applied each reranker to the same retrieved set.
Results showed that the ms-marco-MiniLM-L12-
v2 model outperformed the other models. Valida-
tion set results are presented in Table 4.

5.4 Hybrid retrieval
For the hybrid retrieval experiment, we combined
the top 50 retrieved documents from BM25 and
our best dense retrieval model, the fine-tuned stella-
400M. We then rerank this initial set using our best
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Model R@2 R@5 R@10 B-pref score
BM25 0.0977 0.1407 0.2051 0.1363 0.1450
bge-large 0.0255 0.1122 0.1422 0.1515 0.1078
bge-large* 0.1351 0.1840 0.2414 0.2112 0.1930
inf-retriever 0.0633 0.1774 0.2670 0.2676 0.1938
inf-retriever* 0.0785 0.2044 0.2862 0.2441 0.2033
stella* 0.1218 0.1851 0.2911 0.2777 0.2189

Table 3: Comparing different retrieval models on the validation set. The * in the model name means that it is
fine-tuned on the training set. The best results are in bold.

Model R@2 R@5 R@10 B-pref Score
bge-reranker* 0.1440 0.2722 0.3570 0.2840 0.2643
ModernBERT 0.1807 0.2981 0.3918 0.3249 0.2989
electra-base 0.1381 0.3003 0.3644 0.2954 0.2746
MiniLM-L12 0.1918 0.4144 0.6281 0.4053 0.4099

Table 4: Comparing different Reranking models on the validation set. The * in the model name means that it is
fine-tuned on the training set. The best results are in bold.

Metric BM25 Stella* Hybrid
R@2 0.1918 0.2303 0.2344
R@5 0.4144 0.4059 0.3933
R@10 0.6281 0.5640 0.6466
B-pref 0.4053 0.4259 0.4297
score 0.4099 0.4065 0.4260

Table 5: Results of Hybrid retrieval (BM25 + fine-tuned
Stella) compared to each model alone with reranking
using MiniLM-L12 on the validation set.

reranking model, ms-marco-MiniLM-L12-v2. To
demonstrate the value of hybrid retrieval, we com-
pared its results to those of each individual model.
Results show that hybrid retrieval outperforms both
models. Validation set results are shown in Table 5.

5.5 Graph-based adaptive reranking

For the final submission, we used the graph-based
adaptive reranking approach, as illustrated in sec-
tion 4.5. Results on the validation set showed that
this adaptive reranking method improved the over-
all score by approximately 2.6% compared to the
hybrid retrieval approach alone. The system’s re-
sults on both the validation and test sets are shown
in Table 6.

6 Conclusion

In this paper, we presented a hybrid retrieval sys-
tem with adaptive reranking for evidence retrieval
for climate-related social media claims, developed
for Subtask 1 of the ClimateCheck shared task.

Metric Validation Test
R@2 0.2225 0.2099
R@5 0.4155 0.3962
R@10 0.6533 0.5911
B-pref 0.5162 0.4634
Score 0.4519 0.4152

Table 6: Results of our final system on the validation
and test sets.

Our system combined BM25-based sparse retrieval
with a fine-tuned dense retriever, followed by a
graph-based adaptive reranking approach utilizing
a document similarity graph. We demonstrated
that hybrid retrieval paired with iterative rerank-
ing significantly improved retrieval effectiveness,
achieving third place in the final leaderboard.

Our findings emphasize the importance of com-
bining hybrid retrieval with adaptive reranking to
enhance the performance of scientific evidence re-
trieval systems. The use of graph-based expan-
sion enabled the discovery of relevant abstracts
that were missed by standard top-k methods.

Limitations

Despite the competitive performance of our adap-
tive reranking approach, several limitations remain.
We did not explore careful tuning of hyperparame-
ters, such as the number of neighbors in the simi-
larity graph or the number of reranking iterations.
Additionally, we did not explore the use of different
models for constructing the similarity graph.
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