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Abstract

We introduce RAVQA-VLM, a Retrieval-
Augmented Generation (RAG) architecture
with Vision Language Model for the SciVQA
challenge, which targets closed-ended visual
and non-visual questions over scientific fig-
ures drawn from ACL Anthology and arXiv
papers. Our system first encodes each input
figure and its accompanying metadata (caption,
figure ID, type) into dense embeddings, then
retrieves context passages from the full PDF of
the source paper via a Dense Passage Retriever.
The extracted contexts are concatenated with
the question and passed to a vision-capable
generative backbone (e.g., Qwen-2.5, Pixtral-
12B, Mistral-24B-small, InterVL-3-14B) fine-
tuned on the 15.1K SciVQA training examples.
We jointly optimize retrieval and generation
end-to-end to minimize answer loss and miti-
gate hallucinations. On the SciVQA test set,
RAVQA-VLM achieves significant improve-
ments over parametric only baselines, with rela-
tive gains of +5% ROUGE]! and +5% ROUGE-
L, demonstrating the efficacy of RAG for mul-
timodal scientific QA. In this shared task, our
RAVQA-VLM approach secured the top rank
in the leaderboard with an F1 score of 0.8049
(ROUGE-1), 0.8043 (ROUGE-L), and 0.9849
(BERTScore).

1 Introduction

Scientific literature often conveys core findings
through figures such as bar charts, line graphs, scat-
ter plots, and compound diagrams. Understanding
these figures requires interpreting both visual cues
(e.g., color, shape, and size) and associated textual
elements (e.g., captions, methodology descriptions,
result interpretations) (Karishma et al., 2023; Li
et al., 2024). This multimodal nature presents chal-
lenges for automated systems aiming to answer
questions about scientific figures.

Traditional vision-only architectures such as
standard convolutional neural networks (CNNs)
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and object detection models like Faster R-CNN
(Ren et al., 2015) are limited to spatial and visual
patterns and typically fail to reason over abstract
visual encodings used in scientific plots. On the
other hand, language-only models cannot perceive
visual structure or layout, making them unsuitable
for figure-centric reasoning tasks (Radford et al.,
2021).

Recent advances in large vision-language mod-
els (LVLMs), such as InterVL-3-14B (Zhu et al.,
2025), Qwen-2.5-VL (Bai et al., 2025), Phi-3.5
(Abdin et al., 2024), and Mistral-Small-24B (Mis-
tral Al, 2025), have enabled more robust multi-
modal understanding. However, these models of-
ten produce hallucinated answers when key con-
text is missing or ambiguous (Brown et al., 2020).
Retrieval-Augmented Generation (RAG) offers a
potential remedy by enriching model inputs with
contextually relevant external passages at inference
time (Lewis et al., 2020).

To accelerate research in this area, the SCiVQA
shared task (Borisova et al., 2025) provides a
benchmark dataset of 3,000 figures from scientific
documents, each accompanied by seven question-
answer pairs and includes metadata such as caption,
figure ID, figure type (e.g., compound, line graph,
bar chart, scatter plot), QA pair type. The task
emphasizes both visual and non-visual question
types, facilitating comprehensive evaluation across
multimodal reasoning skills (Borisova et al., 2025).

We build on these insights to propose Retrieval-
Augmented Generation architecture with Vision
Language Model (RAVQA-VLM), a unified frame-
work that:

1. retrieves paragraph-level context from the
source PDF,

fuses visual features with retrieved textual ev-
idence, and

. generates accurate, closed-ended answers.
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Our code and implementation details are publicly
available at GitHub! for reproducibility and further
research.

2 Related Work

Multimodal Scientific Figure Understanding.
Scientific visual question answering (VQA) and
captioning require models to interpret domain-
specific plots, charts, and diagrams that differ sig-
nificantly from natural images. Early datasets
such as ACL-Fig introduced a taxonomy for fig-
ure types from the ACL Anthology, enabling clas-
sification and captioning research on structured
scientific visual content (Karishma et al., 2023).
SciGraphQA (Shengzhi Li, 2023), a foundational
dataset for SciVQA, focused on QA over scientific
graphs by pairing structured visual content with
underlying textual and symbolic metadata. Sci-
Cap+ demonstrated that incorporating contextual
mention-paragraphs improves caption quality for
scientific figures (Yang et al., 2023), while Mul-
timodal ArXiv showed that domain-specific fine-
tuning on scientific plots closes the generalization
gap of large vision-language models (LVLMs) (Li
et al., 2024). SPIQA introduced one of the first QA
benchmarks over interleaved figures and texts from
scientific papers, emphasizing the importance of
cross-modal reasoning in retrieval-based QA sys-
tems (Pramanick et al., 2024).

Retrieval-Augmented Generation in QA.
Retrieval-Augmented Generation (RAG) (Lewis
et al.,, 2020) combines dense retrieval with
sequence-to-sequence generation to improve
factual correctness and grounding in QA tasks.
While originally introduced for open-domain
QA, subsequent works have adapted RAG to
handle domain-specific documents, including
scientific literature, by embedding long-form
PDFs (Rujun Han and Castelli, 2024) and utilizing
contrastive retrieval strategies such as Dense
Passage Retrieval (DPR) (Karpukhin et al., 2020).
Recent multimodal QA studies have integrated
RAG with LVLMs to support visual reasoning over
complex figures and tables.

Large Vision-Language Models. Early LVLMs
like CLIP and ViLT excelled on natural image
benchmarks but struggled with abstract scientific
diagrams due to limited domain grounding (Rad-

"https://github.com/joydeb28/
ExpertNeurons-SciVQA_2025

ford et al., 2021; Kim et al., 2021). Recent ad-
vances, including InterVL3-14B and other 14B+
parameter models, demonstrate better cross-modal
understanding through pretraining on multimodal
documents and structured figures (Li et al., 2024).
However, these models still benefit significantly
from RAG pipelines, which inject external domain
knowledge and context—especially for nuanced
figure-based QA tasks, as explored in our work.

3 Dataset

The SciVQA dataset? comprises scientific figures
extracted from papers in the ACL Anthology and
arXiv, each annotated with question—answer (QA)
pairs and associated metadata. The dataset is orga-
nized into three splits: a training set with approx-
imately 15k instances, a validation set with 1.7k
instances, and a test set containing 4.2k instances.
An instance is one datapoint consisting of figure
and its respective question answer pair.

Each QA pair in SciVQA is categorized along
two key dimensions: answerability and visual
grounding. Based on answerability, QA pairs are
labeled as either closed-ended (answerable solely
from the image or image+caption), unanswerable
(not inferable from the given source), finite an-
swer set (with binary or multiple-choice answers),
or infinite answer set (requiring open-form an-
swers, such as numerical sums). Based on visual
grounding, QA pairs are classified as either vi-
sual—requiring interpretation of figure elements
like shape, size, position, height, direction, or
colour—or non-visual, which do not involve these
aspects.

The dataset also provides annotations for fig-
ure types, distinguishing between compound fig-
ures—those composed of multiple subfigures—and
non-compound figures, which depict a single visual
element. Figure types span common scientific visu-
alizations such as line charts, bar charts, box plots,
confusion matrices, and pie charts. We perform all
the evaluation on test set only.

Figure 1 presents a sample QA pair along with
its corresponding figure from the test set. In the
SciVQA dataset, each figure is accompanied by a
caption and is paired with seven distinct QA pairs,
each corresponding to a different QA pair type.
The example shown illustrates one such QA pair,
demonstrating the format of the image, caption, and

2https://huggingface.co/datasets/katebor/
SciVQA
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associated multiple-choice question and answer.

“Figure 6: Number of documents with an
‘attacking’ country per 3-month period,
and coreference posterior uncertainty for
that quantity. The dark line is the pos-
terior mean, and the shaded region is
the 95% posterior credible interval. See
appendix for more examples.”

and the associated figure, a representative ques-
tion is:

“Which line represents the quantity of
documents with an ‘attacking’ country
for Serbia/Yugoslavia?”

with answer choices such as: A. The blue line, B.
The red line, C. The gray line, D. All of the above.
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Figure 1: Example scientific figure from the SciVQA
dataset showing temporal trends for different countries.

We also do preprocessing of images in the later
step as mentioned in Setting C. Captions and ques-
tions are tokenized using the BERT tokenizer, with
a maximum sequence length of 512 subword to-
kens. This preprocessing ensures a consistent input
structure for our RAG-based architecture. The term
subword tokens refers to the output units produced
by the BERT tokenizer after applying WordPiece
tokenization to the input text.

4 Methodology

The overall flow of our proposed approach is il-
lustrated in Figure 2. We conducted experiments
across multiple distinct configurations, each incre-
mentally improving upon the last to evaluate model

capabilities comprehensively. Below are details of
input meta information across settings.
Setting A: For inference, the prompt includes
image_file, caption, and question.

Setting B: During fine-tuning, only image_file
is used. For inference, the prompt includes
image_file, caption, and question.

Setting C: Fine-tuning uses image_file and the
corresponding PDF. Inference is performed using
image_file, caption, and question.

Setting D (Final Approach): Identical to Set-
ting C, fine-tuning utilizes image_file and PDF,
and inference uses image_file, caption, and
question.

4.1 Setting A: Baseline Evaluation with
Image-Only Inputs

In this preliminary evaluation, we assessed sev-
eral state-of-the-art multimodal models based on
Open VLM leaderboard (opencompass) to establish
baseline performance on the SciVQA chart image
question-answering task without additional training
or context. Due to resource constraints for further
finetuning, we limited our experiments to models
up to 32 billion parameters only. Models evalu-
ated included Pixtral-12B (Agrawal et al., 2024),
Mistral-Small-24B (Mistral A, 2025), InternVL3-
14B (OpenGVLab), and Qwen-2.5-VL (Alibaba
Group, 2024). The InternVL3-14B model demon-
strated notably superior initial performance, as
summarized in Table 1. Consequently, InternVL3-
14B was selected as the foundational model for all
subsequent experimental settings.

4.2 Setting B: Image-Only Finetuning
(SciVQA Data)

Building upon our baseline, we finetuned the In-
ternVL3 model using the official SciVQA training
dataset. Finetuning employed a Low-Rank Adap-
tation (LoRA) (Hu et al., 2021) strategy with the
following hyperparameters: rank = 64, epochs = 4,
and a learning rate of 4 x 10~*. The purpose was to
specialize the model explicitly toward chart-based
visual question-answering tasks. The models were
finetuned on a single A100 GPU of 80 GB RAM.

4.3 Setting C: Enhanced Contextual
Finetuning (Image Sharpening and RAG)

Analysis of results from Setting B via manual veri-
fication of 100+ random samples highlighted two
prevalent challenges:
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1. Image Quality: A significant portion of failed
cases on the validation set were associated
with poor image clarity, which hindered ef-
fective visual information extraction. To in-
vestigate this, we manually inspected 100 ran-
domly sampled failure cases. Among these,
approximately 20% (i.e., 20 samples) were
found to exhibit image quality issues. These
included low-resolution renders, blurry charts,
and faint or unreadable axis labels and legends.
The annotations were performed manually by
the authors, who marked these images as vi-
sually noisy or difficult to interpret for tasks
such as reading precise values or identifying
attributes like bar height or line trends. Fig-
ure 3 in Appendix A shows one such sample
image.

Contextual Insufficiency: Another source
of model error stemmed from textual con-
text. In certain cases, relying solely on the fig-
ure and its caption failed to provide sufficient
cues such as variable definitions, experimen-
tal configurations, or axis descriptions needed
to fully disambiguate the question. While the
dataset formally categorizes most QA pairs
as closed-ended (i.e., answerable from the im-
age and caption), we found that in practice,
additional context from the surrounding text
could enhance answerability. During our man-
ual analysis of 100 failed cases, we noticed
around 7% of the samples which could have
benefited by additional context provided in the
caption or data from the paper. These were
also verified by the authors through a quali-

Generate Prompt

= 5

Postprocess

T

InternVI3 LLM Final Output Text

rall Methodology

tative assessment of whether access to more
textual context (e.g., caption or the paragraph
surrounding the figure in the paper) could
plausibly improve performance. While the
correct answer may not always be explicitly
stated in the surrounding text, this additional
context often reinforces key concepts, thereby
supporting more accurate answer generation.
Sample instances illustrating such contextual
gaps are included in the Appendix A referred
to in Figure 4 and Figure 5.

Also note that these annotations were based on
a limited, manually inspected subset (n=100)
due to resource constraints. While the propor-
tions reported here may not generalize to the
entire dataset, our intent is to identify com-
mon failure modes rather than provide exact
quantitative prevalence.

To address these issues, we adopted two signifi-
cant improvements:

Image Upscaling and Sharpening: We applied
a Lanczos resampling technique (Turkowski and
Gabriel, 1990), which is renowned for effectively
preserving edge sharpness, to enhance image clar-
ity. Specifically, each image was resized by dou-
bling its original dimensions uniformly to maintain
aspect ratios while improving visual fidelity.

Retrieval-Augmented Generation (RAG): To
incorporate broader textual context for scientific
visual questions, we implemented a retrieval-
augmented pipeline that extracts relevant text from
the source papers associated with each figure in the
SciVQA dataset.

For each figure instance, we first downloaded
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the corresponding academic paper in PDF for-
mat using the metadata provided (e.g., arXiv or
ACL Anthology identifiers). The full text of the
PDF was segmented into semantically meaning-
ful blocks—such as section titles, paragraphs, cap-
tions, and table/figure references—using PDF pars-
ing tools like PDFMiner>. These blocks, separated
based on structural whitespace in the document,
were treated as retrieval units.

To locate the caption associated with each figure,
we applied regular expressions to detect references
such as “Figure X” in the parsed text. This enabled
us to extract the specific caption block aligned with
the figure metadata.

Next, we generated sentence embeddings
(Reimers and Gurevych, 2019) for all textual
blocks using a pre-trained Sentence-BERT model.
An embedding was also computed for the extracted
figure caption. To identify the most relevant textual
context, we computed cosine similarity between
the caption embedding and each block embedding
within the same paper. The top two blocks with
the highest similarity were selected—typically the
caption itself and an adjacent explanatory section
(e.g., description of results or methods).

To further enrich context, we also generated an
embedding of the input question and used it to re-
trieve an additional textual block. This block often
provided broader or complementary information
from the paper, such as experimental setup, vari-
able definitions, or related discussion, which might
not be present near the figure.

Thus, each instance is paired with three retrieved
text blocks: the caption block and two additional
context blocks (one based on caption similarity, one
on question similarity). These were concatenated
and used as external context alongside the image
during fine-tuning. We retained the LoRA-based
fine-tuning strategy from Setting B.

4.4 Setting D: Augmented Dataset and
Post-processing Refinement

To further enhance model robustness and gener-
alization, we augmented the training data with
additional samples from the ChartQA dataset
(Masry et al., 2022), which features complex
reasoning-based questions spanning diverse chart
types. ChartQA was selected due to its structural
and semantic alignment with SciVQA, particularly
in its inclusion of real-world scientific plots, nu-

Shttps://github.com/pdfminer/pdfminer.six

meric reasoning, and visual attribute-based ques-
tions. From this dataset, we integrated approx-
imately 2,500 samples into our training corpus.
These samples were filtered to retain those that met
two criteria: (i) the figure type was within the scope
of our model (e.g., bar, line, or pie charts), and (ii)
the questions were of high quality, which we en-
sured by selecting only those samples from the
ChartQA dataset that were explicitly tagged as hu-
man authored. In ChartQA, each QA pair includes
metadata indicating whether it was generated by
a human or machine based method. We filtered
out all machine generated questions and retained
only those tagged as human annotated, as these are
typically designed to be of higher semantic quality.
The dataset filtering was done automatically solely
based on the tags provided in the dataset without
any manual inspection. The 2,500 sample limit was
chosen to maintain a balanced distribution with the
original SciVQA samples and to prevent the model
from overfitting to the style or domain of a single
dataset.

Despite accuracy improvements, we observed
that the fine-tuned InternVL model occasionally
generates a range of values (e.g., “between 0.2 and
0.3”) instead of a single numerical answer, particu-
larly in cases where the model exhibits uncertainty.
This behavior appears to stem from the model’s ten-
dency to express ambiguity when it is not confident
about a precise value. We have included an exam-
ple of such a case in the Appendix A. While such
responses can be semantically reasonable (partic-
ularly when axis resolution is low or approximate
visual estimation is needed), they pose challenges
for automatic evaluation, which often relies on ex-
act matching or scalar closeness to gold answers.

To address inconsistent range-based outputs
in direct answer questions, we implemented a
lightweight post-processing module using regular
expressions and simple heuristics to detect numeric
ranges and replace them with their arithmetic mean.
This standardization improves alignment with ex-
pected ground truth formats and ensures more con-
sistent scoring under numeric evaluation schemes.
While this transformation may introduce minor in-
accuracies when ranges are semantically justified,
it generally enhances answer conformity and evalu-
ation robustness.

This combined approach leveraging data set en-
hancement and output refinement further improved
model precision and interpretability, as shown in
Table 1.
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Setting Model Settings R-1F1 R-LF1 BSF1
A Pixtral-12B 0.6480  0.6480 0.9680
Mistral-Small-24B 0.6787 0.6782 0.9742
Qwen-2.5-VL 0.6780  0.6780  0.9610
InternVL3-14B 0.7130  0.7130  0.9750
B InternVL3-14B + Finetuning 0.7753  0.7750  0.9804
C InternVL3-14B + Finetune + RAG 0.7986  0.7983  0.9846
D InternVL3-14B + Finetune + RAG + Augmentation and Post Refinement  0.8049  0.8043  0.9849

Table 1: Evaluation metrics across multiple settings. Each row shows results using progressively advanced
configurations for vision-language QA. Setting A includes baseline models; B-D represent stages of fine-tuning,
RAG integration, and data augmentation. R-1: ROUGE-1, R-L: ROUGE-L, BS: BERTScore

Table 2 presents the leaderboard results for the
SciVQA 2025 shared task. Our system, ExpertNeu-
rons, achieved the highest performance across all
evaluation metrics, demonstrating the effectiveness
of our RAG-VLM architecture.

# Team R-1F1 R-LF1 BSF1
1 ExpertNeurons 0.8049 0.8043 0.9849
2 THAii_LAB  0.7899 0.7892 0.9839
3 Coling_UniA 0.7862 0.7856 0.9817
4 florian 0.7631 0.7621 0.9831
5 Infyn 0.7350 0.7345 0.9787

Table 2: Leaderboard on SciVQA 2025 test set. R-1:
ROUGE-1, R-L: ROUGE-L, BS: BERTScore. Baseline
not ranked.

5 Discussion

Table 1 summarizes the performance of F1 for
ROUGE-1, ROUGE-L and BERTScore in the four
setting of methodology (A to D) on test set. Each
stage demonstrates incremental improvements with
better contextual modeling and data augmenta-
tion. Setting D secured the top rank in the leader-
board with 0.8049 (ROUGE-1 F1-score), 0.8043
(ROUGE-L F1-score), and 0.9849 (BERTScore F1-
score).

Our experiments highlight several key insights
into the performance and limitations of retrieval-
augmented VQA systems in scientific domains.

Baseline models evaluated under Setting A
(A1-A4) demonstrated limited ability to handle
scientific chart-based questions. Among them,
InternVL3-14B (A4) performed the best with
ROUGE-1 and ROUGE-L scores of 0.7130, and
a BERTScore F1 of 0.9750, indicating that even
strong vision-language models struggle without
task-specific adaptation. This highlights the inher-
ent complexity of scientific figures, which often
lack standalone semantics and require specialized

training or contextual information.

With fine-tuning on the SciVQA dataset (Setting
B), InternVL3-14B achieved a substantial perfor-
mance boost—ROUGE-1 improved from 0.7130 to
0.7753 (+6.23%), and BERTScore rose to 0.9804.
However, we observed a plateau on questions de-
manding deeper reasoning beyond surface-level
visual cues, underscoring the need for additional
context.

Setting C addressed these limitations by inte-
grating high-resolution image sharpening and con-
textual grounding via our RAG pipeline. This led
to a further increase in ROUGE-1 to 0.7986 and
BERTScore to 0.9846, suggesting enhanced capac-
ity for visual-textual reasoning through targeted
retrieval from source PDFs.

Finally, Setting D yielded the highest per-
formance: ROUGE-1 reached 0.8049, and
BERTScore climbed to 0.9849. The 0.63% gain in
ROUGE-1 and marginal BERTScore improvement
over Setting C reflect the complementary benefits
of including 2,500 reasoning-centric samples from
ChartQA and the application of post-processing
techniques to resolve answer ambiguity

6 Limitations

Although our approach demonstrates promising
results, it still has several limitations stemming
from two primary factors.

Firstly, certain challenges arise from the data
itself. These include poor image quality, lack of
contextual information, or missing visual elements.
Additionally, in some instances, the correct answer
is visually ambiguous or difficult to distinguish
from the figure for example, differentiating be-
tween values such as 0.54 and 0.56 in a bar graph.

Secondly, while our method incorporates addi-
tional contextual information to support answer
prediction, this context is not always sufficient or
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fully relevant. Although the inclusion of retrieved
context generally improves performance, there are
edge cases where questions originally labeled as
unanswerable could become answerable with the
added context potentially leading to inconsistencies
in evaluation and lower performance. A system-
atic analysis of these cases is currently lacking and
would require additional strategies to robustly iden-
tify and handle such cases. Furthermore, although
the auxiliary dataset used to enhance model perfor-
mance contributes positively, it does not compre-
hensively capture the full complexity and diversity
of question types presented in the shared task.

7 Conclusion

We present a Retrieval-Augmented VQA pipeline
that combines vision-language modeling with
document-aware context retrieval to improve sci-
entific chart understanding. Through progressive
experimentation and enhancement, our method
achieved significant gains in accuracy, reasoning
depth, and answer quality.

By integrating image sharpening, textual re-
trieval, and dataset augmentation, the system suc-
cessfully bridges the gap between purely visual
inputs and the rich semantic context needed for ef-
fective scientific QA. Our approach demonstrates
the potential of LLM enhanced vision-language
systems in handling complex academic visual data.

Future work will explore multi-modal attention
mechanisms across figure-caption-text triplets and
generalize the framework to broader scientific do-
mains, enabling more diverse and open-ended ques-
tion answering capabilities.
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A Error Analysis Examples

All the samples shown below are from validation
set.

Case 1: Low Quality Image
Example 1: Figure 3 shows an image with low
visual resolution. Such figures may hinder model
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Figure 3: image_file : 2010.02498v1-Figure3-1.png

comprehension of fine-grained visual details, in-
cluding axis labels and line plots, impacting the
model’s accuracy in visual question answering.

Case 2: Need for Additional Context Beyond
Caption

Example 1: Figure 4 depicts a Q-network struc-
ture. The question requires reasoning beyond the
figure and its caption. Without context, the model
misinterprets the output of the Q-network.
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Figure 4: image_file : N18-1113.pdf-Figure3.png

Instance ID: 07a642¢0d2¢24761496b7e0a3b41d5fd

Question: Is 'Q-keys’ the output of Q-
network’?

Caption: Figure 3: The structure of Q-network.
It chooses a unlabeled subset from Ul, U2, ..., UK
at each time step. The state representation is com-
puted according to the two classifiers N -class prob-
ability distribution on the representative example
Si of each subset Ui.

Context Extracted from PDF: The Q-value
Q(st,a) is determined by a neural network as il-
lustrated in Figure 3.

Gold Answer: No

Model prediction without Context: Yes

Model prediction with Context: No

Explanation: In this example, the model ini-
tially struggled to produce the correct answer when
relying solely on the image and its caption. The
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term "Q-keys" does not appear in the figure or cap-
tion, making it difficult to verify whether it is part
of the Q-network’s output. However, upon incorpo-
rating the additional textual context which explic-
itly states that "the Q-value Q(st, a) is determined
by a neural network" the model is able to correctly
infer that the Q-network’s output is the Q-value,
not "Q-keys". This additional information provides
supporting clarification and helps leads to the cor-
rect answer.

Example 2: In Figure 5, the question requires
semantic inference of correlation between social
score and Airbnb penetration. The additional con-
text helps the model to better comprehend this in-
formation.
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Figure 5: image_file : 2004.11604v1-Figure8-1.png

Instance ID: db801444bob421e86bc07199fa465997

Question: Is the social score negatively corre-
lated with Airbnb penetration rate in every city?

Caption: Fig. 8: Social score against area
Airbnb penetration rate (on a per city basis)

Context Extracted from PDF: Figure 8 shows
the scatter plot (along with Pearson Correlation)
between the Airbnb penetration rate and the so-
cial score for neighbourhoods in each city in our
dataset. We observe that neighbourhoods with
very high Airbnb adoption rates show lower so-
cial scores than those with lower penetration rates
(Pearson correlation up to -0.74). Results are valid
across all cities considered

Gold Answer: Yes

Model prediction without Context: No

Model prediction with Context: Yes

Explanation: In this case, the model failed to
produce the correct answer when limited to just the
image and caption. The additional context, how-
ever, clearly asserts that the results are "valid across
all cities considered" and quantifies the negative

correlation (Pearson correlation up to -0.74). This
reinforces the claim that high Airbnb penetration
consistently corresponds to lower social scores in
every city analyzed. With this information, the
model is able to identify the presence of a negative
correlation across all cities, showing that additional
textual context can help the model in answering
complex questions.

Case 3: Sample highlighting postprocessing
module refinement
Example 1
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log(rank)
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Figure 6: image_file : 1709.05587v1-Figurel-1.png

Instance ID: 6b81a93e1ccedb999b05564bedadba’?2

Question: What is the approximate value of
log(f/N) for the blue line labeled 'DCR’ at a
log(rank) value of 3.5?

reference figure: Figure 6

Gold Answer: -5

Model prediction before postprocessing step:
between -4 and -6

Model prediction after postprocessing step: -5

Explanation: In this case, the model exhibited
uncertainty regarding the exact answer and returned
a range as output. Our heuristic based post process-
ing module identified this pattern and replaced the
range with a single scalar value, computing the
mean of -4 and -6 to produce -5. The rationale be-
hind this step is to standardize outputs and thereby
improve the reliability and consistency of the eval-
uation process, which might benefit from precise
answers for comparison against ground truth.

229



