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Abstract

LaTeX’s precision and flexibility in type-
setting have made it the gold standard for
the preparation of scientific documentation.
Large Language Models (LLMs) present a
promising opportunity for researchers to pro-
duce publication-ready material using LaTeX
with natural language instructions, yet current
benchmarks completely lack evaluation of this
ability. By introducing TeXpert, our benchmark
dataset with natural language prompts for gen-
erating LaTeX code focused on components
of scientific documents across multiple diffi-
culty levels, we conduct an in-depth analysis
of LLM performance in this regard and iden-
tify frequent error types. Our evaluation across
open and closed-source LLMs highlights mul-
tiple key findings: LLMs excelling on standard
benchmarks perform poorly in LaTeX gener-
ation with a significant accuracy drop-off as
the complexity of tasks increases; open-source
models like DeepSeek v3 and DeepSeek Coder
strongly rival closed-source counterparts in La-
TeX tasks; and formatting and package errors
are unexpectedly prevalent, suggesting a lack of
diverse LaTeX examples in the training datasets
of most LLMs. Our dataset, code, and model
evaluations are available on GitHub. 1

1 Introduction

LaTeX is a highly versatile and widely adopted doc-
ument preparation system built over the TeX type-
setting program (LaTeX). With research-specific
advantages including robust handling of mathemat-
ical equations, simple formatting commands, and
straightforward management of references, it is a
popular choice to produce publication-ready scien-
tific material (Bos and McCurley, 2023).

The recent emergence of LLMs across various
applications (García-Ferrero et al., 2024; Sherifi
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TeXpert

et al., 2024; Zhao et al., 2024) coupled with im-
proved instruction-following ability (Yin et al.,
2023; He et al., 2024) prompts an essential research
question: "Can LLMs generate publication-ready
LaTeX code for components of scientific documents
from natural language instructions?". Through this
research, we aim to evaluate the capability of LLMs
in generating syntactically and logically accurate
LaTeX code (which we refer to as accurate LaTeX
code generation or simply LaTeX generation) and
analyse the main types of errors they encounter.

While certain aspects of LaTeX code generation
with LLMs, especially for mathematical content
(Zou et al., 2024; Zhang et al., 2024), have been sig-
nificantly studied, a comprehensive study of LLMs’
LaTeX generation ability for various components
commonly used in scientific documents (such as
tables, figures, bibliography, etc.) remains unex-
plored. We believe a comprehensive benchmark
for evaluating LLMs on LaTeX generation offers
two key benefits: analysing common errors LLMs
make in generating LaTeX code can provide for-
mat and error-based hints for flagging AI-generated
research material (Chamezopoulos et al., 2024),
and delineating the complexity of LaTeX tasks that
LLMs can reliably perform can greatly reduce re-
searchers’ effort on formatting and typesetting.

In this work, we evaluate a diverse range of
closed-source and open-source LLMs on their La-
TeX generation capabilities. The main contribu-
tions of this paper can be stated as follows:

1. We introduce TeXpert, a benchmark designed
to evaluate LLMs in generating accurate La-
TeX code from natural language instructions,
focused on commands in scientific documents

2. We evaluate popular open and closed-source
LLMs on TeXpert by computing the success
rate across three difficulty classes

3. We provide comprehensive insights pertaining
to LLM limitations in LaTeX generation and
identify frequent error types
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2 Related Work

Existing works on the evaluation of LLMs treat
LaTeX-based tasks only as a peripheral component
or limit their scope to specific output formats. The
ability of LLMs to generate mathematical LaTeX
equations from various sources has been explored
in datasets like MATH (Hendrycks et al., 2021),
MathBridge (Jung et al., 2024) and STEM-POM
(Zou et al., 2024). Similarly, the STRUC-BENCH
dataset (Tang et al., 2024) contains natural lan-
guage inputs to test LLMs’ LaTeX generation abil-
ity specific only to tabular content. The im2latex-
100k dataset (Deng et al., 2017) also focuses on the
narrow aspect of testing the ability of LLMs to con-
vert images of mathematical formulae into LaTeX
code, while Image2struct (Roberts et al., 2024) in-
cludes testing vision-language models in extracting
structured LaTeX information from images.

A straightforward idea to evaluate the natural
language to LaTeX ability of LLMs would be to
generate free-to-use LaTeX templates 2 represent-
ing various document styles and formats using tex-
tual queries. However, these templates are often
too large to be directly generated by large lan-
guage models (LLMs) and are constrained only
to a standard set of basic commands, limiting their
applicability in this research. Several instruction-
following benchmarks for LLMs evaluate their abil-
ity to follow natural language commands (Qin et al.,
2024; Chen et al., 2024); however, there is a no-
table absence of datasets specifically designed to
assess models in LaTeX code generation for scien-
tific material.

Identifying and acting upon this need, we present
TeXpert, an organised dataset designed to evaluate
LLMs’ capability to generate syntactically and logi-
cally correct LaTeX code from textual descriptions,
focused on scientific document components.

3 Dataset Construction

To assess LLMs’ capability to convert unstructured
textual descriptions to LaTeX code, we build a
benchmark dataset by following the process de-
scribed in Figure 1. The process involves two ma-
jor steps:

Collecting atomic LaTeX commands: We be-
gin by systematically analyzing a range of data
sources and scientific document templates to col-
lect atomic LaTeX commands (details of sources

2https://www.overleaf.com/latex/templates

Figure 1: Process used to construct TeXpert, along with
the dataset schema

Category
Atomic

commands
Example

Text
Formatting

86 \textbf

Equations
and Symbols

83 \arcsin

Document
Structure

75 \subsubsection{}

Citation and
References

39
\bibliographystyle
{style}

Tables and
Figures

36 \cellcolor{color}

Total 319

Table 1: Details of the atomic LaTeX commands used
to build TeXpert

and methodology are provided in Appendix A.1).
These atomic commands, representing the mini-
mal functional units commonly used in scientific
writing and typically consisting of a backslash fol-
lowed by a keyword and optional arguments, were
extracted to form the basis of our dataset. The com-
mands were then classified into 5 categories based
on their purpose, as shown in Table 1. By adding
an extra base step of collecting atomic commands
commonly found in scientific formats, we regulate
the scope of our final dataset containing LaTeX
code generation tasks.

Generating TeXpert using atomic LaTeX com-
mands: We curate a structured benchmark dataset
containing natural language instructions for gener-
ating LaTeX code for various elements of scientific
content using a combination of manual effort and
LLM-based command generation. We build our
dataset incrementally (while restricting the domain
to atomic commands collected in the previous step
to ensure specificity to scientific document compo-
nents) using three different classes, namely Simple,
Average and Hard, by increasing the complexity
of tasks, the number of distinct atomic commands
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and components of scientific documents needed,
adding package requirements, and so on.

In order to classify the final task complexity
as Simple, Average or Hard, we use specific con-
straints based on the number of commands, pack-
ages and components, precise description of which,
along with a few examples, is found in Table 6
in Appendix A.2. With a focus on a small but
high-quality dataset, we manually verify every row
across all three classes in our dataset to ensure clear
LaTeX generation requirements and consistency
with the difficulty constraints. Our final dataset,
named TeXpert, thus contains instructions and a
classification label based on difficulty. After ex-
perimentation, we also add columns with a LaTeX
code satisfying all requirements (if generated by
any LLM) for future fine-tuning, along with the
LLM that generated this correct code, resulting
in the final schema in Figure 1. Statistics of our
dataset are shown in Table 2.

4 Experimental Setup

We utilise a systematic evaluation framework to
assess LLMs’ ability to generate syntactically cor-
rect LaTeX code from natural language prompts
using the TeXpert dataset. We experiment with a
wide range of open-source LLMs including Mis-
tral Large 24.11 (AI, 2024b), Codestral (AI, 2024a),
DeepSeek V3 (DeepSeek-AI, 2024), and DeepSeek
Coder 33b (Guo et al., 2024) as well as multiple
high-performance closed-source models including
GPT-4o (OpenAI, 2024b), GPT-4o-mini (OpenAI,
2024a), Gemini 1.5 Flash (Team, 2024), Claude 3.5
Sonnet (Anthropic, 2024) and Grok 2-1212 (xAI,
2024).

For each sample across the three difficulty levels
in TeXpert, we provide the LLM with a prompt
containing task instructions for LaTeX code gener-
ation (provided in Figure 5 in Appendix B). Dur-
ing generation, model parameters were set to pre-
determined values to ensure deterministic outputs,
as detailed in Table 11 in Appendix B. Detailed
model configurations are provided in Section B.3
in Appendix B. Rule-based extraction techniques
are used to extract the LaTeX code from the re-
sponse.

We then evaluate each LLM’s response with
GPT-4o as a judge, using a predefined evalua-
tion prompt (refer to Figure 4 in Appendix B) to
compute success rates and classify error types (de-
scribed in Table 7 in Appendix B). The evaluation

prompt was iteratively refined through manual spot
checks of evaluation outputs, focusing on clarity,
correctness, and alignment with evaluation criteria.
This process continued until the prompt consis-
tently yielded reliable and interpretable results, as
per our judgment. For the hard set, we also pro-
vide manually generated and verified LaTeX code
as a reference during evaluation, to help identify
all requirements of the task. To mitigate potential
evaluation bias from using the same model family
as the judge, we use DeepSeek v3 as an evaluator
for GPT-4o and GPT-4o-mini.

5 Result Discussion

The accuracy of LaTeX generation for scientific
documents across difficulty classes is presented in
Table 3 and visualised in Figure 2. The overall dis-
tribution of error types across all difficulty levels is
presented in Table 4 and Figure 3, while individual
error distributions for Simple, Average, and Hard
difficulty classes are also provided in Tables 8, 9
and 10 in Appendix B.2, respectively. From Ta-
ble 3, we can infer that GPT-4o outshines all other
LLMs in LaTeX code generation, closely followed
by DeepSeek v3. DeepSeek Coder 33b provides
the best performance on the most complex tasks.

Figure 2: Overall accuracy for LaTeX generation tasks
by various LLMs

LaTeX generation tasks expose fundamental
LLM shortcomings: Even models that perform
highly on other benchmarks like GPT-4o and Mis-
tral Large fail to achieve over 80% and 60% accu-
racy in simple and average sets, respectively. This
reveals a critical capability gap in using LLMs for
formatting scientific documents in LaTeX, most
likely due to the scarcity of LaTeX examples in
training datasets.
Hard LaTeX tasks reveal a universal limitation
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Difficulty Class
No. of

samples
Average length of
textual instructions

Average no. of
atomic LaTeX commands

Average no.
of extra

LaTeX packages
Simple 250 115.8 ± 24 characters 10.9 ± 7.2 0.5 ± 0.8
Average 150 299.1 ± 85.7 characters 51.2 ± 29.2 3.6 ± 2.4

Hard 40 558.4 ± 216.7 characters 85.9 ± 31.0 6.6 ± 2.0

Table 2: Statistics of the TeXpert dataset, organised by difficulty class

Model Accuracy %
Simple Average Hard Overall
Closed-Source Models

GPT-4o-
mini

62.4 45.3 5 51.4

GPT-4o 78.8 58.7 15 66.1
Claude-3.5

Sonnet
62.8 56.7 0 55.0

Gemini 1.5
Flash

53.6 33.3 0 41.8

Grok 2
1212

62.4 52.0 5 53.6

Open-Source Models
Mistral

Large 24.11
64.4 59.33 10 57.7

Codestral
22B

60.8 41.3 0 48.6

DeepSeek
V3

71.2 58.7 10 61.4

DeepSeek
Coder 33b

69.2 58.0 17.5 60.7

Table 3: Main accuracy results (in %). Values in bold
indicate the best accuracy for each difficulty class

Model Error Types in %
CE SE LE PE FE

Closed-Source Models
GPT-4o-

mini
0.0 1.3 53.7 23.2 21.7

GPT-4o 0.0 2.1 59.1 15.2 23.6
Claude-3.5

Sonnet
0.0 5.3 44.3 29.9 20.6

Gemini 1.5
Flash

3.4 2.0 52.3 21.6 20.8

Grok-2
1212

1.2 5.3 46.5 25.5 21.4

Open-Source Models
Mistral

Large 24.11
0.0 2.5 53.0 20.8 23.7

Codestral
22B

0.6 2.8 52.5 18.8 25.3

DeepSeek
V3

1.2 3.8 54.3 18.7 22.0

DeepSeek
Coder 33b

0.4 2.6 54.0 20.5 22.5

Table 4: Overall error distribution for LaTeX generation
tasks by various LLMs. CE = Capability Error, SE =
Syntax Error, LE = Logical Error, PE = Package Error,
FE = Formatting Error

Figure 3: Error distribution for LaTeX generation tasks
by various LLMs

across models: Accuracy across the Simple and
Average sets remains consistent across models,
however, models show a dramatic performance cliff
on hard tasks, with Claude and Gemini completely
failing. This consistent degradation pattern clearly
shows a threshold on the number and complexity
of instructions for LaTeX generation using LLMs,
which can be presumed to lie between instruction
statistics for the Average and Hard sets in Table 2.

Open-source models strongly rival closed-source
ones in LaTeX generation: Open-source models
like DeepSeek V3 and DeepSeek Coder 33b per-
form well on par with frontier closed-source mod-
els like GPT-4o and Claude-3.5-Sonnet in overall
accuracy with minimal capability errors as well.
Notably, DeepSeek Coder 33b greatly outperforms
Claude 3.5 Sonnet and Grok 2 in the Hard set. This
demonstrates the potential of open-source models
to provide powerful yet cost-effective alternatives.

6 Error Analysis

In this section, we provide a brief analysis of the
most common error types and probable sources dur-
ing LaTeX generation by LLMs. From our perspec-
tive, most powerful LLMs still struggle to provide
error-free code due to basic oversights like missing
packages and unfaithful instruction following. It is
encouraging to see minimal capability errors and
syntax errors. We leave an in-depth analysis of the
root cause of errors to the future scope.
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Logical errors dominate: Logical errors consis-
tently account for the majority of issues across
LLMs, highlighting struggles to fully satisfy task
requirements. In all the cases we analysed, the most
pronounced errors across all model variants were
focused on missed instructions and wrong struc-
tural placement, especially in GPT-4o-mini and all
open-source models. Similarly, error clustering
in multiple equation and table generation tasks in-
dicates that LLMs like DeepSeek v3 and Mistral
Large struggle with maintaining long-range con-
sistency. We believe these errors likely arise from
weak structural understanding inherent in LLMs,
limited exposure to LaTeX context, and misalign-
ment between pretraining tasks and formal docu-
ment generation.

Frequent formatting lapses: Notably, formatting
errors occur far more frequently than we antici-
pated in all the LLMs we experimented with. Anal-
ysis of the evaluations reveals that these errors pri-
marily involve incorrect environment selection and
malformed tables or captions accompanying large
tables or figures. Such issues indicate limited struc-
tural understanding and inadequate grounding in
LaTeX syntax, even in larger models like DeepSeek
v3 and GPT-4o, showing that scale alone is not the
solution. We speculate that these errors stem from
a scarcity of training data and examples specifically
addressing table formatting and related constructs.

Package errors are concerning: Package er-
rors are prominently caused by improper or in-
complete inclusion and configuration of essential
LaTeX packages, especially bibliography-related
ones, most prominent in Claude 3.5 Sonnet. GPT-
4o has the lowest share of missing packages, show-
ing encouraging signs that more inclusive training
data might mitigate this issue, although Codestral’s
minimal package error rate also suggests potential
for alternative approaches to reduce them further.
Additionally, the use of non-standard or incompati-
ble packages, especially in DeepSeek and Mistral
models, is concerning and may point to LLMs hal-
lucinating or making up packages to fill reasoning
gaps. Overall, package issues suggest a fundamen-
tal gap in dependency management and environ-
ment consistency within LaTeX code generated by
LLMs.

7 Conclusion

We curate TeXpert, a comprehensive benchmark
designed to challenge LLMs to evaluate their La-

TeX code generation capability from natural lan-
guage prompts. Our dataset consists of a total of
440 high-quality samples, organised by difficulty.
Our findings reveal that LaTeX generation is still
an underperforming skill in LLMs and that there
is a need to include LaTeX package details and
complex layouts in the training data for LLMs to
improve their capability in this task. By making
the code and dataset for TeXpert publicly available,
we hope to support and encourage further research
within the community.

Limitations

Our research marks a significant step forward in
providing a benchmark for evaluating the LaTeX
generation capabilities of LLMs. However, we
acknowledge the limitations of our work as follows:

• Limited dataset size: The Hard set’s restricted
size of 40 samples is a possible challenge in the
generalisability of our findings. To address this,
we encourage future work to increase the number
and complexity of hard examples to broaden the
benchmark’s effectiveness.

• Fine-tuning models and improved prompts:
Using our dataset to fine-tune models and reduce
logical and package errors in LaTeX-based tasks
is another straightforward extension to our work,
along with checking advanced prompting struc-
tures for performance improvements.

• Additional LaTeX sources and applications:
While our work focuses on generating LaTeX
code for only scientific documents, incorporat-
ing sources and tasks for other document types,
such as resumes and books, would broaden the
research scope.
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A Curation of TeXpert - Additional
Details

A.1 Data Collection and Sources

To build the core of our TeXpert dataset, we manu-
ally extracted atomic commands from the Overleaf
documentation listed in row 1 of Table 5 and from
25 documents each in LaTeX template repositories
given in rows 2 and 3 of Table 5. This approach
ensured a diverse range of document formats and
LaTeX commands commonly used in scientific ma-
terials. For each document, a Python script us-
ing regular expressions was used to extract atomic
LaTeX commands. These commands were then
manually verified and grouped into five categories
based on their function, as shown in Table 1. This
process was intended to focus the dataset on com-
monly used LaTeX elements in scientific writing.

A.2 Difficulty constraints

Table 6 shows the constraints followed while
classifying samples into difficulty classes (Sim-
ple/Average/Hard) during the generation of tasks in
the TeXpert dataset. A randomly chosen example
from each set is also provided for reference.

B Experimentation - Additional Details

B.1 Prompts

The prompts used during experimentation to eval-
uate responses using GPT-4o/DeepSeek v3 as a
judge and to generate LaTeX code using natural
language instructions and are given in Figures 4
and 4 respectively.

B.2 Error descriptions and distribution

Details of error types along with examples are
given in Table 7. Additionally, the individual error
distributions for Simple, Average, and Hard diffi-
culty classes for each LLM are given in Tables 8, 9
and 10 respectively.

B.3 Model parameters
We report the generation parameters for all models
used in our experiments to ensure transparency and
reproducibility. All models were accessed through
provider APIs, and the common parameter settings
used across all models (except Anthropic models)
are listed in Table 11. The model sizes of all closed-
source models are approximate and taken from
Abacha et al. (2025).
OpenAI Models: We run our experiments on two
flagship models, GPT-4o (~200B parameters) and
GPT-40-mini (~8B parameters). We use the Ope-
nAI Python SDK to access the models via API,
specifying seed=1234 and n=1 along with the pa-
rameter values listed in Table 11, to ensure maxi-
mum determinism in responses. All other parame-
ters are kept to default values.
DeepSeek Models: We use two recently released
models, DeepSeek v3 (~671B parameters) and
DeepSeek Coder (~33B parameters). DeepSeek
models were accessed using the OpenAI Python
SDK by specifying the DeepSeek URL endpoint
and authentication details. Here too, we set
seed=1234 and n=1 along with the parameter val-
ues listed in Table 11 during experimentation, keep-
ing the rest to default values.
Mistral Models: We experiment with two pow-
erful models, Mistral-Large-Instruct-2411 (~123B
parameters) and Codestral-22B-v0.1 (~22B param-
eters). Both models were accessed using the official
API in Mistral Python SDK, with an extra parame-
ter random_seed=1234 along with values in Table
11, with the rest as default.
Google AI Models: The Gemini 1.5 flash model
was accessed using the official Google Generative
AI Python SDK. Within the Generation Config, we
set parameters values to those mentioned in Table
11, along with candidate_count=1 and the rest as
default.
xAI Models: We use a recently released Grok-2-
1212 model by xAI, accessed using the OpenAI
Python SDK by specifying the xAI endpoint. Here
too, we set seed=1234 and n=1 along with the pa-
rameter values listed in Table 11 during experimen-
tation, keeping the rest to default values.
Anthropic Models: The Claude 3.5 Sonnet model
(~175B parameters) was accessed via the of-
ficial Anthropic Python SDK. Due to limited
configurable parameters, only temperature=0.0,
top_p=1, and max_tokens=8096 were explicitly
set, with all other settings left at their defaults.

13

https://arxiv.org/abs/2411.00387
https://arxiv.org/abs/2411.00387


Data Source URL

Overleaf Documentation https://www.overleaf.com/learn

Overleaf Academic Journal Templates https://www.overleaf.com/latex/templates/tagged/
academic-journal

LaTeX Templates (Creodocs) https://www.latextemplates.com/cat/academic-journals

Table 5: Primary sources used for collecting atomic LaTeX commands

Difficulty
Class

Length of
textual

instructions

No. of
atomic LaTeX

Commands

No. of
extra LaTeX

packages

No. of specific
formatting
instructions
(for tables,

figures, etc.)

Example

Simple
<200

characters
10–20 <2 <2

Create a document with centered
text in one block and justified text

in another block.

Average
200–500

characters
12–80 2–5 2–5

Create a document with two sections.
The first section should contain an

aligned set of equations. The second
section should contain a centered table,
and the table should reference a figure

placed in the first section.

Hard
500+

characters
80+ 5+ 5+

Your task is to produce a scientific
research paper for arXiv that has a title
page with author names, abstract and

keywords, table of contents, and several
sections. Add a 3x3 table that has lists
in the second column, and figures with
bold captions in last column. On every
page except the first, add a footer with

a signature image. Add an appendix that
includes a table with header row entirely

merged. Finally, add a custom
bibliography.

Table 6: Description of constraints used during classification of tasks in TeXpert with a few examples

Error Type Description Examples

Capability
Error

The LLM fails or denies to provide a
valid response or says the task is out

of its capability.

• LLM responds with: "Sorry, I cannot. . . "
• LLM does not include any code in response

Syntax
Error

The code generated by the LLM does
not follow valid LaTeX syntax.

• Missing closing braces
• Unescaped special characters

Logical
Error

Mismatches between user instructions
and the code logic, i.e., requirements

given in natural language are not
satisfied by the LaTeX code.

• Table headers omitted when explicitly requested
• Missing components in code

Package
Error

Required LaTeX packages are missing
or commands do not match the

document type.

• Using \includegraphics without
importing the graphicx package

Formatting
& Referencing

Error

Layout issues like inconsistent alignment,
font size, or spacing; improper formatting
for cross-references, citations, or labels.

• Misaligned tables with inconsistent widths
• Using \ref{sec:1} without defining

\label{sec:1}

Table 7: Description and examples of error types used during evaluation of generated LaTeX code by LLMs
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Figure 4: System prompt used to evaluate LaTeX code
generated by LLMs using GPT-4o/DeepSeek v3 as-a-
judge

Figure 5: System prompt used to generate LaTeX code
using LLMs for given textual instructions

Model Error Types in % - Simple Set
CE SE LE PE FE

Closed-Source Models
GPT-4o
mini

0 0 57 37.4 5.6

GPT-4o 0 6.3 66.67 17.5 9.5
Claude-3.5
Sonnet

0 13.6 36.8 41.6 8

Gemini 1.5
Flash

5.7 2.9 55 27.9 8.6

Grok-2
1212

3.6 9.9 43.2 41.4 1.8

Open-Source Models
Mistral
Large 24.11

0 7.6 55.5 28.6 8.4

Codestral
22B

1.7 5 60.3 22.3 10.7

DeepSeek
V3

3.5 5.9 52.9 30.6 7.1

DeepSeek
Coder 33b

0 2.2 54.4 36.7 6.7

Table 8: Error distribution for LaTeX generation tasks
from the Simple set by various LLMs. CE = Capability
Error, SE = Syntax Error, LE = Logical Error, PE =
Package Error, FE = Formatting Error
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Model Error Types in % - Average Set
CE SE LE PE FE

Closed-Source Models
GPT-4o
mini

0 1.6 55.9 11.8 30.7

GPT-4o 0 0 58.3 15.7 26
Claude-3.5
Sonnet

0 1 48.5 24.8 25.7

Gemini 1.5
Flash

4.6 0.7 53.6 16.3 24.8

Grok-2
1212

0 3.6 54.5 17.4 24.5

Open-Source Models
Mistral
Large 24.11

0 0 54.1 17.3 28.6

Codestral
22B

0 1.3 53.9 16.2 28.6

DeepSeek
V3

0 2.2 60 11.1 26.7

DeepSeek
Coder 33b

1.1 4.2 56.8 7.4 30.5

Table 9: Error distribution for LaTeX generation tasks
from the Average set by various LLMs. CE = Capability
Error, SE = Syntax Error, LE = Logical Error, PE =
Package Error, FE = Formatting Error

Model Error Types in % - Hard Set
CE SE LE PE FE

Closed-Source Models
GPT-4o
mini

0 2.4 48.2 20.5 28.9

GPT-4o 0 0 52.3 12.3 35.4
Claude-3.5
Sonnet

0 1.2 47.6 23.2 28

Gemini 1.5
Flash

0 2.4 48.2 20.5 28.9

Grok-2
1212

0 2.5 41.8 17.7 38

Open-Source Models
Mistral
Large 24.11

0 0 49.3 16.4 34.2

Codestral
22B

0 2.2 43.3 17.8 36.7

DeepSeek
V3

0 3.2 50 14.5 32.3

DeepSeek
Coder 33b

0 1.4 50.7 17.4 30.4

Table 10: Error distribution for LaTeX generation tasks
from the Hard set by various LLMs. CE = Capability
Error, SE = Syntax Error, LE = Logical Error, PE =
Package Error, FE = Formatting Error

Generation Parameters

temperature 0.0

top_p 1.0

max_tokens 8096

frequency_penalty 0.0

presence_penalty 0.0

Table 11: Generation parameters used across all models
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