
Proceedings of the Fifth Workshop on Scholarly Document Processing (SDP 2025), pages 164–172
July 31, 2025 ©2025 Association for Computational Linguistics

Inductive Learning on Heterogeneous Graphs Enhanced by LLMs for
Software Mention Detection

Gabriel Silva
IEETA, DETI, LASI, Univ. Aveiro, PT

grsilva@ua.pt

Mário Rodriges
IEETA, ESTGA, LASI, Univ. Aveiro, PT

mjfr@ua.pt

António Teixeira
IEETA, DETI, LASI, Univ. Aveiro, PT

ajst@ua.pt

Marlene Amorim
GOVCOPP, DEGEIT, Univ. Aveiro, PT

mamorim@ua.pt

Abstract

This paper explores the synergy between
Knowledge Graphs (KGs), Graph Machine
Learning (Graph ML), and Large Language
Models (LLMs) for multilingual Named En-
tity Recognition (NER) and Relation Extrac-
tion (RE), specifically targeting software men-
tions within the SOMD 2025 challenge. We
propose a methodology where documents are
first transformed into heterogeneous KGs en-
riched with linguistic features (Universal De-
pendencies) and external knowledge (entity
linking). An inductive GraphSAGE model, op-
erating on PyTorch Geometric’s ’HeteroData’
structure with dynamically generated multilin-
gual embeddings, performs node classification
tasks. For NER, Graph ML identifies candi-
date entities and types, with an Large Language
Model (LLM) (DeepSeek v3) acting as a val-
idation layer. For RE, Graph ML predicts de-
pendency path convergence points indicative
of relations, while the LLM classifies the rela-
tion type and direction based on entity context.
Our results demonstrate the potential of this
hybrid approach, showing significant perfor-
mance gains post-competition (NER Phase 2
Macro F1 improved to 43.6% from 29.5%, RE
Phase 1 33.6% Macro F1), which are already
described in this paper, and highlighting the
benefits of integrating structured graph learning
with LLM reasoning for information extraction.

1 Introduction

Advancing the capabilities of Natural Language
Processing (NLP) often requires moving beyond
the surface level of plain text to leverage richer,
more structured information. While raw text pro-
vides the foundation, incorporating details like se-
mantic relationships, external world knowledge,
or task-specific metadata can significantly boost
performance on complex understanding (Safuan
and Ku-Mahamud, 2025). This necessity, how-
ever, introduces a significant challenge: developing

frameworks capable of seamlessly handling diverse
data formats and integrating multiple layers of an-
notations – ranging from word-level tags (like part-
of-speech) to sentence-level labels (like sentiment)
and document-level classifications (like topic).

KGs provide a notably flexible and powerful
paradigm to address this complexity. By repre-
senting information as nodes (entities, concepts)
and edges (relationships), KGs offer an inherently
structured way to capture intricate connections
within and beyond the text. This structure facil-
itates the coherent integration of various annotation
types across different textual granularities, ensuring
that, for instance, word-level syntactic information
can coexist and relate to document-level semantic
themes. Crucially, KGs excel at maintaining the
explicit connections between linguistic units and as-
sociated knowledge, preserving context that might
be lost in purely sequential models. Furthermore,
the KG paradigm benefits from a mature and grow-
ing ecosystem of established standards, databases,
and software tools for creation, querying, and rea-
soning.

Despite the clear advantages offered by KGs for
representing rich, multi-level information, the re-
cent trajectory of mainstream NLP research has
largely centered on models that process raw text se-
quences directly. This past decade has been marked
by significant breakthroughs: the fundamental con-
tribution of distributional representations via Word
Embeddings (Mikolov et al., 2013), the develop-
ment of powerful sequential models like Bi-LSTMs
(Lample et al., 2016), arguably the most impactful
release with the Transformer architecture (Vaswani
et al., 2017), followed by large pre-trained mod-
els such as BERT (Devlin et al., 2019) and BART
(Lewis et al., 2020), and more recently, generative
AI and LLMs such as ChatGPT (OpenAI, 2023).
Although these methods have pushed the state-of-
the-art by learning complex patterns from vast tex-
tual data, their primary focus on sequential text

164

input means the potential synergies of explicitly in-
tegrating structured knowledge, as offered by KGs,
remain relatively underexplored in many applica-
tion areas.

The use of graphs has been previously demon-
strated in adjacent fields, such as Open Information
Extraction, particularly for the Chinese language,
where graph-based approaches have yielded favor-
able results (Lyu et al., 2021). Initial research has
also investigated the potential of integrating graphs
and LLMs. The study by (Chen et al., 2024) exam-
ines the role of graphs as both enhancers and predic-
tors. An example of the combined capabilities of
graphs and LLMs is Microsoft GraphRAG (Edge
et al., 2025), which aims to leverage their synergis-
tic effects.

The research presented here is part of the 2025
Software Mention Detection (SOMD) competition.
The primary contribution of this work is a multilin-
gual NER and RE system that utilizes KGs, Graph
ML, and LLMs.

2 Method

In this section, the methodology employed is de-
scribed. We will outline the overall approach, de-
scribe the processing of the dataset and finally how
to generate our predictions for both NER and RE.

2.1 Overall Process
The methodology presented involves converting in-
put documents into a structured graph format. This
intermediate representation is specifically designed
to serve as input for various Graph ML algorithms.
The overall system architecture that facilitates this
process is illustrated in Figure 1.

Figure 1: Overview of the current framework architec-
ture

There are 3 crucial steps in this architecture. The
first one is the Text Processing Module where we

convert the dataset into our initial graph represen-
tation, we enrich our data by using making use
Entity Linking and Universal Depedencies. The
second step is the NER Module. In this module, the
Graph ML algorithm performs two tasks: identify-
ing entities and determining the type of each entity.
The LLM serves as a confirmation layer when the
Graph ML algorithm is uncertain about which type
of entity to assign to a given word. The last step
is the RE module, in this module our Knowledge
Graph (KG) already has knowledge about the pre-
dicted entities and identifies where a relationship
is present, then the LLM will decide which type of
relationship exists between these two words based
on their entity types.

2.2 Dataset Processing
In this work the only dataset used was the one pro-
vided by the competition. This dataset consists
of 1,150 sentences for algorithm development, fol-
lowed by two distinct testing phases. The first test-
ing phase contains 203 sentences, while the second
phase includes an additional 220 sentences. The
first phase test set more closely resembles the train-
ing data, whereas the second phase serves as an
out-of-domain evaluation.

As previously described, the text processing
module is responsible for processing the dataset.
Initially, texts are converted into a unified repre-
sentation, ensuring consistent spacing around punc-
tuation across all sentences and proper formatting
of URLs, among other standardizations. This pro-
cess may add or remove tokens from sentences,
therefore, an additional attribute is maintained for
each word to represent its mapping in the original
sentence, enabling reconstruction at a later stage.

The second step of this text processing module
involves performing Entity Linking. We query DB-
pedia for concepts identified in the sentences and
establish links in our KG to the corresponding DB-
pedia nodes, this query is shown in Listing 1. We
query DBPedia Software sub-set for concepts that
contain the given word in English. Each DBPedia
concept that is found is then added as a Class on
our Graph with the connections found in the "class"
query variable. Ideally, this step would engage with
the entire DBpedia instance rather than this limited
subset. However, at the time of preparing this work,
access to a DBpedia dump was unavailable due to
maintenance. In this step, we also parse the sen-
tence using a Universal Dependencies (de Marneffe
et al., 2014) parser to extract the syntactic depen-

165

dencies and morphological features of each word.

Listing 1: DBPedia SPARQL Query. "word" is replaced
with the term to query.
SELECT DISTINCT ?s ?label ?class WHERE {

?s rdf:type dbo:Software .
?s rdfs:label ?label .
FILTER (lang(?label) = ’en ’) .
?label bif:contains "word" .
?s rdf:type ?class .

}

Each word has attributes including feats, their
dependency graph, lemma, edges, and other char-
acteristics defined in Universal Dependencies. Ad-
ditionally, each word can be linked to the original
sentence to which it belongs. We form each triple
and upload this data into a triplestore (Virtuoso).
For a more in-depth look at the process of building
the graph from text can be read at (Silva et al., 2023,
2024). An example of the connections in the graph
can be seen in Figure 2. We start at a sentence
and navigate the graph through its dependency tree
(Sentence -> ROOT word -> dependents). An ex-
ample of what a "word" node looks like can be
seen in Figure 3. This word did not have any con-
nections to DBpedia, as such, the edges are not
present.

Figure 2: Example of the connections in a graph starting
from a sentence.

2.2.1 Named Entity Recognition
For NER we add the entity tags without the BIO
part to each word in our graph as an attribute.
Words that do not represent an entity are simply
tagged with "Nothing".

2.2.2 Relation Extraction
To represent relations between entities while treat-
ing the problem as a node classification task, we
did not label the relations as edges in our graph.
Instead, we made use of the dependency graph. For

Figure 3: Example of a word node for the word "Proc-
torU"

each pair of entities that form a relation, we tra-
verse their dependency graph until we reach the
word at which they converge. At this convergence
point, we create an attribute and designate it as a
relationship. To backtrack we simply look for the
beginning of identities that converge in that word.

In Figure 4 we have an example of how we do
this. The sentence from the test set "Standardized
regression coefficients (SCR) were calculated us-
ing the sensitivity package of the R - project [50]
." has a relationship (sensitivity, PlugIn_of, R). In
this example we can see that they both converge on
the word "package" by following their dependency
graphs:

sensitivity - package
R - project - of - package
This allows for a relation to be marked at the

"package" word.

Figure 4: Using the Dependency Graph to get the con-
vergence between two entities.

2.3 Prediction Process

In this subsection, we will elaborate on the process
used to derive NER and RE results from the initial
text.

166

2.3.1 Named Entity Recognition

Following the construction of the initial graph the
format has to be adapted from triples to the Pytorch
Geometric (PyG) (Fey and Lenssen, 2019) format.
As part of this preparation pipeline, embeddings
are generated for each word node. These embed-
dings are created using the "intfloat/multilingual-
e5-large-instruct" model(Wang et al., 2024) from
HuggingFace1. We chose this model due to its
multilingual capabilities, performance and size ac-
cording to the MTEB benchmark2 (Muennighoff
et al., 2023). These are intentionally not stored in
the graph due to their large vector size. Instead,
they are computed dynamically when required by
the Machine Learning pipeline, just prior to con-
verting the augmented graph into the PyG format.

Given the heterogeneous nature of the graph,
which contains nodes and edges with diverse types
and attributes, representing the complete edge in-
formation within a single tensor is not feasible.
As a result, we utilize the HeteroData object3 to
structure the graph data for model training. Addi-
tionally, we adopted an inductive learning approach
(Lachaud et al., 2023), selected for its improved ap-
plicability and generalizability to real-world scenar-
ios where graph structures may evolve or be unseen
during training. We use a GraphSAGE (Hamilton
et al., 2018) based architecture. Our model for
both tasks consists of 8 layers where each layer is
a GraphSAGE layer, followed by normalization,
ReLU and applying dropout with a learning rate of
0.01 and dropout of 0.3.

We train two distinct models: one that predicts
whether a word corresponds to an entity, and an-
other that predicts the type of the previously iden-
tified entities. If the output of the entity type pre-
diction falls below a specified threshold, we vali-
date the result using a LLM, specifically, we uti-
lize DeepSeek v3 (deepseek-chat) (DeepSeek-AI
et al., 2025) with queries adapted from the Mi-
crosoft RAG (Edge et al., 2025) GitHub repository.
The NER query can be seen on Table 1 We uti-
lize the five entity types with the highest likelihood
identified by the Graph ML algorithm as grounding
for our query.

1https://huggingface.co/intfloat/
multilingual-e5-large-instruct

2https://huggingface.co/spaces/mteb/
leaderboard

3https://pytorch-geometric.readthedocs.io/en/
latest/generated/torch_geometric.data.HeteroData.
html

Both predictions are then incorporated into our
graph and transmitted to the RE Module. If two or
more connected words are identified as entities we
can add the respective BIO tags in conjunction with
the entity tag, the one that comes first in the sen-
tence will be tagged with the B and the following
linked ones with I.

2.3.2 Relation Extraction
The RE process is similar to the NER process with
the model architecture being the same. As dis-
cussed in Section 2.2.2 we identify the convergence
point of each pair of words that form a relationship
so in this step we want to predict which words are
a convergence point. Once this convergence point
is established, we just have to go through the iden-
tities that were identified in the previous step for a
given the sentence.

The LLM in this prediction module is used to
determine both the direction and type of the re-
lationship. We ground the LLM by giving it the
Entity type of each identified word and ask it to
classify the relation type. The model used is the
same as previously mention, DeepSeek V3. In in-
stances where no convergence word is identified,
we provide the LLM with the entities and ask it
to identify if there are any relations present in the
sentence. Table 2 shows the query used.

3 Results

This section presents the results of our training
on the validation set and the performance on the
test set for both phases of the competition. Every
run was documented using the Weights & Biases
platform (Biewald, 2020).

3.1 Named Entity Recognition

As previously outlined in the methods section, NER
was categorized into two models: a binary model
and an entity classification model.

3.1.1 Binary Model
The Binary Model performed well when identify-
ing entities and non-entities. The model achieved
an F1-Score of 93.6% with a recall and precision
of 93.8% and 93.3% respectively on the valida-
tion set. Additionally, we plotted the ROC and
Precision-Recall curves, as presented in Figures 56.
The accuracy is not reported as it is not a relevant
metric for this problem due to the imbalance in
the dataset (number of words classified as entity vs
non-entity).

167

https://huggingface.co/intfloat/multilingual-e5-large-instruct
https://huggingface.co/intfloat/multilingual-e5-large-instruct
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.data.HeteroData.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.data.HeteroData.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.data.HeteroData.html

Figure 5: ROC Curve for the Entity Binary classification
model.

Figure 6: Precision-Recall curve for the Entity Binary
classification model.

The F1-Score and corresponding curves indicate
that the model demonstrated strong performance in
accurately identifying whether a word is an entity.

3.1.2 Entity Type Model

Using the output from the previous model, the sub-
sequent step was to add this prediction as an at-
tribute for each word to identify the type of entity.
Consequently, we trained a model with this addi-
tional attribute, which indicates whether a word
is an entity, and aims to predict the type of entity
present in the word. The training results yielded
F1, Precision, and Recall scores of 70.5%, 70.7%,
and 71.6%, respectively, on the validation set. A
normalized confusion matrix is presented in Fig-
ure 7.

The model exhibited the greatest difficulty in
identifying entities classified as "AlternativeName"
and "SoftwareCoreference.". Additionally, it fre-
quently confused "PlugIn" with "Application," with
a misclassification rate exceeding fifty percent.
This observation is further supported by the ROC
curve presented in Figure 8.

During Phase 1, we evaluated the performance of
the Graph ML model by submitting results without
validation from the LLM. This approach resulted in
a decrease in performance, thereby supporting our
hypothesis that utilizing the LLM as a confirma-

tion tool in cases of model uncertainty represents a
viable strategy.

The results for Phase 1 of this model was a
Macro-average F1 score of 44.6%, with Precision
at 52.7% and Recall at 40.2%. In Phase 2, the re-
sults showed a decline, with an F1 score of 29.5%,
Precision at 35.8%, and Recall at 27.3. Following
the conclusion of Phase 2, we have successfully
improved these metrics, resulting in current values
of 43.6% for F1, 43.7% for Precision, and 45.2%
for Recall, which are now comparable to the results
of Phase 1.

3.2 Relation Extraction

The last part of the competition was the RE which
we could only do after having identified the entities.
As was previously described for RE we identify
the word where two entities converge and tag it
as a "relation", as such, the goal of this model
is to find those convergence words. When these
convergence words are found we can go through
the identities and find which ones converge to that
predicted word.

This model achieved an F1 score of 87.4%, pre-
cision of 88.1% and recall of 86.8%. Similarly to
the binary model we can see the ROC and Precision
vs Recall curves in Figure 9 and Figure 10.

Unfortunately we only managed to obtain rela-
tion results for the first phase of the competition
with the scores being: 33.5% F1-Score, 38.4% Pre-
cision and 32.1% Recall. However, with the model
for entities having significant improvements after
the competition is ended, our hypothesis is that
these better results will also show themselves in
the RE portion of the work.

4 Conclusion

Although the results in the competition were not
optimal compared to those of other participants, we
have made significant improvements to the model
during the ongoing open phase which are here pre-
sented, enhancing its competitiveness on the test
set. In the NER task, the Phase 2 results yielded a
Macro F1 score of 29.5% and a Micro F1 score of
37.4%. In this Open Submission phase, the scores
have improved to 43.6% and 58%, respectively, in-
creasing their competitiveness. Unfortunately, for
RE, we were unable to obtain results for Phase 2
in a timely manner. Thus, the Phase 1 results were
as follows: 33.6% F1-Score, 38.4% Precision and
32.1% Recall. With the improvements to the en-

168

Figure 7: Normalized confusion matrix for the entity prediction model.

Figure 8: ROC Curves for the entity prediction model.

Figure 9: ROC Curves for the relation model.

Figure 10: Precision-Recall curves for the relation
model.

tity model, these numbers are expected to be even
better.

Our model possesses several advantages, includ-
ing being lightweight, easily adaptable to other
problems (as no specific code or preprocessing was
conducted for this dataset), and supporting multiple
languages (as long as a parser is available).

Despite the promising methodology and its
positive aspects, considerable work remains to
enhance these results. The work here de-
veloped is available at: https://github.com/
gabrielrsilva11/SOMD2025.

Future Work
- Incorporate additional external knowledge into

our graph to enhance its ability to generalize knowl-
edge. Furthermore, integrate DBpedia (Auer et al.,
2007) into our KG.

- Testing various Graph ML models, including
transformers (Hu et al., 2020), has the potential to
significantly influence the results.

- Obtain additional data or a pre-trained model.
The dataset utilized for training the graph machine
learning algorithms was exclusively provided by
the competition and comprises a total of 1,150 sen-
tences.

5 Acknowledgements

This work was funded by FCT - Fundação para a
Ciência e a Tecnologia (FCT) I.P., through national
funds, within the scope of the UIDB/00127/2020
project (IEETA/UA, http://www.ieeta.pt/) and the
scholarship UI/BD/153571/2022.

References
Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary Ives. 2007.

169

https://github.com/gabrielrsilva11/SOMD2025
https://github.com/gabrielrsilva11/SOMD2025

Dbpedia: a nucleus for a web of open data. In
Proceedings of the 6th International The Seman-
tic Web and 2nd Asian Conference on Asian Se-
mantic Web Conference, ISWC’07/ASWC’07, page
722–735. Springer-Verlag.

Lukas Biewald. 2020. Experiment tracking with
weights and biases. Software available from
wandb.com.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,
Wenqi Fan, Hui Liu, and Jiliang Tang. 2024. Explor-
ing the potential of large language models (llms)in
learning on graphs. SIGKDD Explor. Newsl.

Marie-Catherine de Marneffe, Timothy Dozat, Natalia
Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre,
and Christopher D. Manning. 2014. Universal Stan-
ford dependencies: A cross-linguistic typology. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 4585–4592, Reykjavik, Iceland. European Lan-
guage Resources Association (ELRA).

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, and Chenyu Zhang et al.
2025. Deepseek-v3 technical report. Preprint,
arXiv:2412.19437.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and
Jonathan Larson. 2025. From local to global: A
graph rag approach to query-focused summarization.
Preprint, arXiv:2404.16130.

Matthias Fey and Jan E. Lenssen. 2019. Fast graph
representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on
Graphs and Manifolds.

William L. Hamilton, Rex Ying, and Jure Leskovec.
2018. Inductive representation learning on large
graphs. Preprint, arXiv:1706.02216.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou
Sun. 2020. Heterogeneous graph transformer. In
Proceedings of The Web Conference 2020, WWW
’20, page 2704–2710, New York, NY, USA. Associa-
tion for Computing Machinery.

Guillaume Lachaud, Patricia Conde-Cespedes, and
Maria Trocan. 2023. Comparison between induc-
tive and transductive learning in a real citation net-
work using graph neural networks. In Proceedings
of the 2022 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining,
ASONAM ’22, page 534–540. IEEE Press.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics.

Zhiheng Lyu, Kaijie Shi, Xin Li, Lei Hou, Juanzi Li,
and Binheng Song. 2021. Multi-grained dependency
graph neural network for chinese open information
extraction. In Advances in Knowledge Discovery and
Data Mining.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word
representations in vector space. In International Con-
ference on Learning Representations.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2023. Mteb: Massive text embedding
benchmark. Preprint, arXiv:2210.07316.

R OpenAI. 2023. Gpt-4 technical report. ArXiv, 2303.

Safuan and Ku Ruhana Ku-Mahamud. 2025. Handling
semantic relationships for classification of sparse text:
A review. Engineering Proceedings, 84(1).

Gabriel Silva, Mário Rodrigues, António Teixeira, and
Marlene Amorim. 2023. A Framework for Foster-
ing Easier Access to Enriched Textual Information.
In 12th Symposium on Languages, Applications and
Technologies (SLATE 2023), volume 113 of Open Ac-
cess Series in Informatics (OASIcs), pages 2:1–2:14,
Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

Gabriel Silva, Mário Rodrigues, António Teixeira, and
Marlene Amorim. 2024. First assessment of graph
machine learning approaches to Portuguese named
entity recognition. In Proc. Int. Conference on Com-
putational Processing of Portuguese, pages 563–567.
ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Multilingual
e5 text embeddings: A technical report. Preprint,
arXiv:2402.05672.

A Prompts Used

170

https://www.wandb.com/
https://www.wandb.com/
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
https://arxiv.org/abs/2412.19437
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216
https://doi.org/10.1145/3366423.3380027
https://doi.org/10.1109/ASONAM55673.2022.10068589
https://doi.org/10.1109/ASONAM55673.2022.10068589
https://doi.org/10.1109/ASONAM55673.2022.10068589
https://api.semanticscholar.org/CorpusID:5959482
https://api.semanticscholar.org/CorpusID:5959482
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2210.07316
https://www.mdpi.com/2673-4591/84/1/61
https://www.mdpi.com/2673-4591/84/1/61
https://www.mdpi.com/2673-4591/84/1/61
https://doi.org/10.4230/OASIcs.SLATE.2023.2
https://doi.org/10.4230/OASIcs.SLATE.2023.2
https://aclanthology.org/2024.propor-1.61
https://aclanthology.org/2024.propor-1.61
https://aclanthology.org/2024.propor-1.61
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2402.05672
https://arxiv.org/abs/2402.05672

Table 1: Prompt Structure for entity identification

Section Prompt Details
Target Activity You are an intelligent assistant that helps a human analyst to identify the entity type of words in

a Sentence.
Goal Given a word or words identify their given entities based on a given list.
Steps

1. You are given a word or words. If there is more than one word identify if they belong to
the same entity or are separate entities.
- Each word is separated by a space, even if it is punctuation count it as a word.
- You must ONLY classify the given words. DO NOT CLASSIFY ANY OTHER WORDS
IN THE SENTENCE.

2. For the word or words given identify which entity they belong to from the list of given
words.
- Make sure to take into account the previous words into your classification.

3. Return output as a single list of all the word entity pairs in steps 1 and 2. Use
{record_delimiter} as the list delimiter. DO NOT ADD ANY EXPLANATION.

4. Format each pair as <word> {delimiter} <entity_type>

Examples Example 1:
Words: IMB SPSS Inc .
Entity types: No, Application, Developer, URL, Version, PlugIn, Citation, Extension, Program-
mingEnvironment, OperatingSystem, Release, Abbreviation, License, SoftwareCoreference,
AlternativeName
Sentence: The Pearson correlation coefficient between the two analyses was calculated using
IBM Statistical Package for Social Sciences software (SPSS , ver. 21 ; IMB SPSS Inc . , Chicago
, IL , USA) and differences were considered as statistically significant if the p - Value was <
0.05 .
Output:
IMB {delimiter} Developer
{record_delimiter}
SPSS {delimiter} Developer
{record_delimiter}
Inc {delimiter} Developer
{record_delimiter}
. {delimiter} Developer
Example 2:
Words: GNU
Entity types: No, Application, Developer, URL, Version, PlugIn, Citation, Extension, Program-
mingEnvironment, OperatingSystem, Release, Abbreviation, License, SoftwareCoreference,
AlternativeName
Sentence: FamSeq is a free software package under GNU license (GPL v 3) , which can be
downloaded from our website : http://bioinformatics.mdanderson.org/main/FamSeq , or from
SourceForge : http://sourceforge.net/projects/famseq/ .
Output:
GNU {delimiter} No

171

Table 2: Prompt Structure for relation identification between entities

Section Prompt Details
Target Activity You are an intelligent assistant that helps a human analyst to identify relations between entities

in a sentence.
Goal Given a pair of words identify if a relationship exists between them and the type of relationship

based on a list of options.
Steps

1. You are given a list of words by / in the form of word / word / ...) a sentence and a token
count list which contains the ids of each token. Start by identifying if there is a relationship
between the words.

2. In case there is a relationship, from the list of options given in Relationship Possibilities,
choose the type of relationship that best suits these two words. You must ONLY choose a
relationship from the relationship list.
- Make sure to take into account the full sentence to identify the type of relationship.
- A relationship CAN NOT have itself as the head token and the tail token. Ex: URL_of
\t6\t6

3. In case a relationship is found the output should be in the format of: relationship \tto-
ken_id\ttoken_id
- make sure the token_id count starts at 0 and has a maximum equal to the number of
spaces in the sentence.

4. However if no relationship is found between the entities the output should be "None". DO
NOT ADD ANY EXPLANATION.

Examples Example 1:
Words: Remote / Software / http://softwaresecure.com / ProctorU / http://proctoru.com
Relationship Possibilities: Abbreviation_of, AlternativeName_of, Citation_of, Developer_of,
Extension_of, License_of, PlugIn_of, Release_of, Specification_of, URL_of, Version_of
Sentence: Depending on the course , instructor , and exam type , DE MCS students have
taken exams at a regional location monitored by a paid proctor or have taken exams using
commercial online proctoring services such as Remote Proctor Now from Software Secure (
http://softwaresecure.com) or ProctorU (http://proctoru.com) .
Tokens: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
Output: Developer_of \t41\t37;URL_of \t44\t37;URL_of \t49\t47
Example 2:
Words: Mutation / 3.10 / SoftGenetics
Relationship Possibilities: Abbreviation_of, AlternativeName_of, Citation_of, Developer_of,
Extension_of, License_of, PlugIn_of, Release_of, Specification_of, URL_of, Version_of
Sentence: Sequence data were imported as AB 1 files into Mutation Surveyor v 3.10 (SoftGe-
netics , State College , PA) .
Tokens: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Output: Developer_of \t14\t9;Version_of\t12\t9

172

