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Abstract

Identifying software entities and their semantic
relations in scientific texts contributes to im-
proved reproducibility and allows for the con-
struction machine-readable knowledge graphs.
However, models struggle with domain vari-
ability and sparse supervision. We address
this by evaluating joint Named Entity Recog-
nition (NER) and Relation Extraction (RE)
models on the SOMD 2025 shared task, em-
phasizing generalization to out-of-distribution
scholarly texts. We propose a unified training
objective that jointly optimizes both tasks us-
ing a shared loss function and demonstrates
that joint loss formulations can improve out-
of-distribution robustness compared to disjoint
training. Our results reveal significant perfor-
mance gaps between in- and out-of-distribution
settings, prompting critical reflections on mod-
eling strategies for software knowledge extrac-
tion. Notably, our approach ranked 1st in Phase
2 (out-of-distribution) and 2nd in Phase 1 (in-
distribution) in the SOMD 2025 shared task,
showing strong generalization and robust per-
formance across domains. All code is publicly
available.1

1 Introduction

Software is crucial to scientific work, but iden-
tifying its mentions and relations in text is diffi-
cult due to ambiguity, limited supervision, and do-
main variation (Howison and Bullard, 2016; Pan
et al., 2015). The Software Mention Detection
(SOMD) shared task series addresses these chal-
lenges through benchmark datasets and evaluation
frameworks. While the 2024 edition focused on
pipeline approaches using full-text articles from
the SoMeSci corpus (Dietze et al., 2024), the 2025
task shifts to joint modeling of NER and RE at the
sentence level to reduce cascading errors (Li and Ji,
2014; Zeng et al., 2014; Cabot and Navigli, 2021).

1https://github.com/sm9ta/somd2025-joint-loss

In this work, we evaluate joint NER and RE models
for software knowledge extraction under domain
shift. We compare span-based (GLiNER (Kral
et al., 2023)), encoder-based (BERT, SciBERT, and
DeBERTa (Devlin et al., 2019; Beltagy et al., 2019;
He et al., 2021)), and instruction-tuned architec-
tures (Gemini and Llama (Team et al., 2023; Tou-
vron et al., 2023)) on the SOMD 2025 benchmark.
Our central research question is: Does a joint
loss objective improve generalization in multi-
task NER and RE models? We find that joint
loss boosts in-distribution performance and consis-
tently mitigates degradation in out-of-distribution
settings. This highlights its utility as a simple yet
effective mechanism for improving robustness in
extractive multitask learning.

2 Related Work

Extracting software mentions and their semantic
relations from scientific texts is crucial for repro-
ducibility and knowledge organization, yet soft-
ware is often referenced informally, posing chal-
lenges for automatic identification and disambigua-
tion (Schindler et al., 2021). Early approaches
treated NER and RE as separate pipeline stages (Li
and Ji, 2014; Zeng et al., 2014), but this modular-
ity frequently led to cascading errors, particularly
when entity boundaries were misidentified (Zhang
et al., 2017). To mitigate these issues, recent work
has shifted toward joint models that unify NER
and RE within a single architecture. Span-based
methods leverage contextualized representations
to jointly encode entities and their relations (Wad-
den et al., 2019; Ye et al., 2022), while generation-
based architectures such as REBEL (Cabot and
Navigli, 2021) and iterative decoding frameworks
(Hennen et al., 2024) aim to improve expressive-
ness and compositional generalization.
In addition, a growing body of work has focused
on discourse-aware and document-level models,
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which extend the context window beyond a single
sentence. For example, Wadden et al. (2019) in-
troduce a span-based architecture that propagates
information across sentences using global context
graphs, while Ye et al. (2022) use levitated markers
to retain global coreference and discourse signals.
Models like SciREX (Jain et al., 2020) further high-
light the importance of integrating paragraph-level
and document-level context to improve entity link-
ing and relation reasoning in scientific documents.
These approaches demonstrate that sentence-local
models are often insufficient for resolving long-
range dependencies, a limitation we also observe
in our results. While much of the literature em-
phasizes architectural integration, fewer studies ex-
plore the role of joint loss optimization, i.e., cou-
pling NER and RE learning via a shared objective
(Sun et al., 2022; Zhang et al., 2022; Liu et al.,
2023). We extend this line of research by com-
paring joint and disjoint loss formulations across
model families and analyzing their impact on gen-
eralization, particularly under distribution shift.
In the SOMD 2024 shared task, participants ex-
plored alternatives to traditional pipeline systems.
Thi et al. (2024) proposed a three-stage BERT-
based pipeline, while Otto et al. (2024) used an
instruction-tuned LLM for QA-style extraction.
Others investigated few-shot adaptation with GPT-
3.5/4 (Istrate et al., 2024) or token-level fine-tuning
with Falcon-7B (Khan et al., 2024), highlighting
the challenges of aligning LLMs with structured
tasks. Building on these efforts, our work unifies
evaluation across model types and emphasizes gen-
eralization under domain shift, responding to re-
cent calls for more robust extraction frameworks
(Krüger et al., 2024).

3 Task and Dataset

The SOMD 2025 task involves a two-phase
sentence-level joint NER and RE on annotated sci-
entific texts from the SoMeSci corpus (Schindler
et al., 2021). The annotation schema includes 14 en-
tity types and 11 relation types that can be found in
Appendix A. In Phase 1 (In-Distribution Valida-
tion Set) models are trained and evaluated on 1,432
annotated sentences (train) and 256 test sentences,
while in Phase 2 (Out-of-Distribution Test Set)
457 new test sentences from unseen domains are
released without gold labels. Models are evaluated
via leaderboard submissions, with an additional
focus on generalization.

4 Method

4.1 Model Selection

In early experiments, we evaluated instruction-
tuned decoder-based models (Gemini 2 and
LLaMA 3 8B) in zero and few-shot configurations
without fine-tuning. However, their performance
was not satisfactory as they failed to follow
SOMD’s strict schema, hallucinated outputs,
and lacked token-level precision, issues also
noted in prior work (Otto et al., 2024; Istrate
et al., 2024), which highlights the limitations
of instruction-following LLMs in structured
extraction. We therefore excluded them from joint
training and focused on encoder-based models
with proven suitability for NER and RE.
We selected DeBERTa-v3, SciBERT, and GLiNER
based on their complementary strengths and
empirical performance in previous NER and RE
benchmarks. SciBERT is pretrained on 1.14M
scientific papers from Semantic Scholar and is
specifically optimized for the scientific domain
(Beltagy et al., 2019), making it particularly suited
to the SOMD corpus. DeBERTa-v3 incorpo-
rates disentangled attention and enhanced mask
decoding, which improve generalization across
domains, especially in out-of-distribution settings
(He et al., 2021). GLiNER, a span-based model,
provides strong performance on fine-grained entity
recognition due to its ability to directly model
entity spans without relying on token-level tagging
(Kral et al., 2023). This is particularly useful in
software-related texts where entity boundaries may
be ambiguous.
Other prominent pretrained models such as
RoBERTa or BioBERT were not included in our
final evaluation due to domain misalignment
(e.g., biomedical corpora in BioBERT (Lee et al.,
2020)) or redundancy with DeBERTa in terms of
architectural class. We also did not include models
such as T5 (Raffel et al., 2020) or BART (Lewis
et al., 2019), as their sequence-to-sequence format
is less compatible with structured joint token- and
span-level prediction. In the end, our goal was not
exhaustive benchmarking, but rather a focused
comparison across representative architectures:
span-based (GLiNER), domain-specialized
encoder (SciBERT), and general-purpose contex-
tual encoder (DeBERTa) to assess how model
inductive biases influence generalization under
joint optimization.
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4.2 Model Architecture
Given an input sentence x = {x1, x2, . . . , xN},
the encoder produces hidden states h =
{h1, h2, . . . , hN}, which serve as the basis for
downstream prediction tasks. On top of the en-
coder, we add two task-specific classification heads.
The first is a token-level classifier for NER that
predicts BIO-encoded entity labels for each token.
The second head is a relation classifier that predicts
the type of semantic relation between entity pairs,
based on the concatenation of their respective token
representations. For each candidate pair (i, j) of
detected entities, their corresponding embeddings
hi and hj are concatenated and passed to a feedfor-
ward classification layer. In the end, we evaluate
multiple encoder backbones, including SciBERT,
DeBERTa-v3-large, and GLiNER.
Figure 1 illustrates the architecture and informa-
tion flow in our joint NER and RE model, includ-
ing task-specific heads and shared optimization
through a unified loss.

4.3 Joint Loss Objective
To encourage shared representations between NER
and RE, we optimize a joint loss function. The
NER loss is a masked token-level cross-entropy
over K entity classes:

LNER = −
N∑

i=1

mi log
exp(zi,yi)∑K
k=1 exp(zi,k)

(1)

where mi masks out incomplete tokens, zi are the
logits, and yi are gold labels. The RE loss is com-
puted over a set of candidate entity pairs R, with
L relation types (including a “no-relation” class):

LRE = −
∑

(i,j)∈R
log

exp(zij,rij )∑L
l=1 exp(zij,l)

(2)

The total loss is:

L = LNER + λLRE (3)

where λ is a tunable weight (default λ = 1).

4.4 Training Setup
We fine-tune all models using AdamW with warm-
up and early stopping. The training is done for 3 to
6 epochs depending on the model with batch size 8
and learning rate 3× 10−5. Dropout and gradient
clipping are applied, and the best checkpoints are
selected via dev set macro F1.

4.4.1 Joint Training Procedure
Algorithm 1 outlines our joint training procedure.
For each batch, contextualized embeddings are
computed, token-level predictions and loss for
NER are obtained, and relation classification is per-
formed on candidate entity pairs. The two losses
are then combined into a single objective, and a
joint backward pass is used to update all model pa-
rameters simultaneously. To evaluate the effect of
shared optimization, we also implement a disjoint
training variant where NER and RE tasks are opti-
mized separately in isolated stages and gradients
are not shared across tasks during training.

Algorithm 1 Joint Training for NER and Relation
Extraction
Require: Training dataset D = {(X,Y,R)},

where X denotes the input token sequence,
Y the corresponding token labels, and R the
relation annotations.

1: Initialize model parameters Θ (shared encoder,
NER head, and RE head).

2: for each epoch do
3: for each batch (X,Y,R) ∈ D do
4: H ← Encoder(X) {Compute contextual

representations}
5: ZNER ← NER_Head(H)
6: Compute masked NER loss using the

cross-entropy loss CE(·):

LNER ←
N∑

i=1

mi CE(ZNER
i , yi)

7: Generate candidate entity pairs C from
Y (using gold labels during training or
predicted labels at inference).

8: for each candidate pair (i, j) ∈ C do
9: rij ← Concat(Hi, Hj)

10: ZRE
ij ← RE_Head(rij)

11: end for
12: Compute RE loss:

LRE ←
∑

(i,j)∈C
CE(ZRE

ij , r
gt
ij)

13: Compute joint loss: L ← LNER + LRE

14: Perform backpropagation: update Θ us-
ing ∇L (e.g., via AdamW with a linear
scheduler).

15: end for
16: end for
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5 Results

We evaluate joint NER and RE models on
the SOMD 2025 benchmark using span-based
(GLiNER), encoder-based (SciBERT, DeBERTa-
v3). All models are jointly fine-tuned using both
a disjoint and unified loss objective and evalu-
ated across in-distribution (Phase 1) and out-of-
distribution (Phase 2) subsets while their perfor-
mance is summarized in Table 1. We report total
and macro-averaged F1, precision, and recall as per
SOMD 2025 guidelines. NER is evaluated using
token-level exact matches under the IOB2 scheme,
while RE requires exact entity span and relation la-
bel matches. Phase 2 uses leaderboard submissions
due to the current unavailability of gold annotations.

Phase 1: In-Distribution Performance We fine-
tuned GLiNER, DeBERTa v3, and SciBERT on the
official training split and evaluated them on the de-
velopment set. GLiNER (base and large-v2.1) was
fine-tuned with improved label alignment; SciB-
ERT incorporated a feedforward classifier over
span start tokens; and DeBERTa v3 (tasksource-nli)
demonstrated stronger stability than its Microsoft
variant. In the end, we report that GLiNER out-
performs other models with a total F1 of 0.88, fol-
lowed by DeBERTa-v3 (0.83) and SciBERT (0.79).

Phase 2: Out-of-Distribution Generalization
In Phase 2, all models showed a noticeable drop
in performance, highlighting the challenge of out-
of-distribution generalization. DeBERTa v3 per-
formed the best (Total F1: 0.69; NER: 0.79; RE:
0.62), likely due to its strong contextual model-
ing and robust sentence-level semantics. GLiNER
followed with a Total F1 of 0.60, suggesting that
it struggled more with semantic variability; and
SciBERT remained competitive with Total F1 of
0.59, showing stable results across tasks despite its
limited adaptability to unseen domains.

5.1 Effect of Joint Loss

Across all models, training with joint loss improved
both in-distribution and out-of-distribution perfor-
mance (Table 1). This indicates that joint loss
might allow models to use interdependencies be-
tween entity recognition and relation extraction
more effectively.

5.2 Error Analysis

All models experienced a notable performance
decline from Phase 1 to Phase 2, underscoring
the challenge of generalizing to out-of-distribution
data. GLiNER, DeBERTa v3, and SciBERT
dropped from total F1 scores of 0.88, 0.83, and
0.79 to 0.60, 0.69, and 0.59, respectively, corre-
sponding to reductions of approximately 0.20–0.25.
This drop was especially pronounced in relation ex-
traction, where domain shifts introduced unfamiliar
entity formats, longer and more nested mentions
(e.g., Stata Statistical Software: Release 13), and
cross-clause relations that proved difficult to cap-
ture. SciBERT was most affected, suggesting that
domain-specific pretraining alone is insufficient to
guarantee robustness across scientific subdomains.
A detailed entity- and relation-level analysis in Ta-
ble 2 and 3 shows that GLiNER and DeBERTa v3
performed well on frequent and syntactically un-
ambiguous entities such as URL, SoftwareCorefer-
ence, and OperatingSystem, where the high number
of training examples and clear structure provided
strong learning signals. They also handled common
relation types like Citation_of and Developer_of
with high accuracy. However, notable differences
emerged in semantically complex and low-resource
categories. DeBERTa v3 outperformed GLiNER
on rare entities like Extension and its associated
relation Extension_of, likely due to its stronger con-
textual representations and attention mechanisms.
Conversely, GLiNER performed better on PlugIn
and PlugIn_of, that might be indicating advantages
of span-based architectures in handling regular syn-
tactic patterns. Both models struggled with un-
derrepresented or domain-specific relations such
as License_of, AlternativeName_of, and Specifica-
tion_of, where F1 scores dropped to zero, highlight-
ing shared limitations in handling class imbalance
and semantic drift.
In addition, an important constraint across all mod-
els seemed to be their reliance on sentence-level in-
puts, which prevented them from resolving longer-
range dependencies or cross-sentence relationships.
This restricted their ability to fully capture the con-
text necessary for accurate entity and relation ex-
traction in complex scholarly texts. Overall, these
findings suggest that improving out-of-distribution
generalization requires stronger pretraining ob-
jectives, more balanced annotation schemes, and
model architectures capable of discourse-level rea-
soning.
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Phase 1 In-Distribution Validation Set Phase 2 Out-of-Distribution Test Set

Model Total F1 Entity Relation Total F1 Entity Relation

F1 P R F1 P R F1 P R F1 P R

Disjoint Loss
GLiNER 0.78 0.77 0.77 0.78 0.80 0.81 0.81 0.59 0.61 0.60 0.69 0.57 0.61 0.63
DeBERTa v3 0.80 0.78 0.77 0.80 0.81 0.81 0.84 0.59 0.63 0.60 0.70 0.56 0.59 0.60
SciBERT 0.75 0.79 0.79 0.79 0.72 0.68 0.77 0.53 0.56 0.59 0.59 0.50 0.59 0.52

Joint Loss
GLiNER 0.88 0.90 0.87 0.94 0.85 0.88 0.85 0.60 0.66 0.65 0.73 0.53 0.58 0.56
DeBERTa v3 0.83 0.83 0.84 0.84 0.82 0.83 0.83 0.69 0.79 0.74 0.84 0.62 0.62 0.63
SciBERT 0.79 0.85 0.84 0.87 0.73 0.72 0.74 0.59 0.61 0.55 0.68 0.58 0.48 0.72

Table 1: Performance metrics for selected models in Phase 1 and Phase 2.

Entity Recognition (F1)

Entity Type GLiNER DeBERTa v3

Application 0.765 0.732
Citation 0.837 0.903
Developer 0.667 0.667
PlugIn 0.435 0.346
Version 0.210 0.794
Extension 0.133 0.400
Release 0.667 0.727
URL 1.000 1.000
Abbreviation 0.529 0.750
ProgrammingEnvironment 0.957 0.936
OperatingSystem 1.000 1.000
SoftwareCoreference 1.000 1.000
AlternativeName 0.457 0.769

Table 2: Entity recognition F1 scores for GLiNER and
DeBERTa v3.

Relation Extraction (F1)

Relation Type GLiNER DeBERTa v3

Developer_of 0.650 0.652
Citation_of 0.682 0.683
Version_of 0.573 0.615
PlugIn_of 0.647 0.579
URL_of 0.787 0.595
Abbreviation_of 0.640 0.667
Release_of 0.522 0.705
Extension_of 0.250 0.545
AlternativeName_of 0.000 0.500
License_of 0.000 0.000
Specification_of 0.000 0.000

Table 3: Relation extraction F1 scores for GLiNER and
DeBERTa v3.

6 Conclusion

We evaluate joint NER and RE models for extract-
ing software mentions and relations in scientific
texts, with a focus on out-of-distribution generaliza-
tion. Our results show that a shared loss objective
consistently boosts performance across architec-
tures, indicating that multitask learning benefits not

only from architectural integration but also from
coupled optimization. This joint loss approach re-
duces error propagation and enhances robustness,
making it a simple yet effective strategy for struc-
tured scientific information extraction.

Limitations

While our study offers valuable insights into joint
NER and RE model generalization, it has limita-
tions. First, restricting inputs to the sentence level
may hinder models from capturing broader con-
text or long-range dependencies, and future work
should explore paragraph- or document-level mod-
eling. Second, baseline Gemini and LLaMA were
evaluated only in the first phase and due to low re-
sults were excluded from further training; adapting
them to the domain may yield better results. Third,
the limited size of the SOMD 2025 dataset may
reduce the effectiveness of large models, especially
for rare entities and relations.
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Phase 1 In-Distribution Validation Set Phase 2 Out-of-Distribution Test Set

Model Total F1 Entity Relation Total F1 Entity Relation

F1 P R F1 P R F1 P R F1 P R

BERT Uncased 0.67 0.75 0.73 0.79 0.60 0.59 0.61 – – – – – – –
Llama 3 8b Finetune 0.66 0.63 0.62 0.65 0.68 0.72 0.66 – 0.52 0.54 0.53 – – –
Gemini 2 Zero-Shot – 0.39 0.37 0.44 – – – – – – – – – –

Table 4: Performance metrics for the additional models we tested in Phase 1 and 2. Not all experiments were
conducted for all models.

Input Sentence
(SoMeSci scholarly text)

Transformer Encoder
(SciBERT / DeBERTa-v3)

NER Head
(Token classification)

RE Head
(Entity pair classification)

Entity Pair Generation
from predicted NER spans

NER Loss
(LNER)

RE Loss
(LRE)

Joint Loss
L = LNER + λLRE

NER and RE Predictions

Figure 1: Architecture and data flow of our joint NER and RE model. The Transformer Encoder processes input
tokens, which are used by two task-specific heads. NER predictions are used to generate entity pairs for RE. Each
task contributes to the total loss, enabling joint optimization.
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