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Abstract

As Large Language Models (LLMs) are in-
creasingly applied to document-based tasks
- such as document summarization, question
answering, and information extraction - where
user requirements focus on retrieving informa-
tion from provided documents rather than rely-
ing on the model’s parametric knowledge, en-
suring the trustworthiness and interpretability
of these systems has become a critical concern.
A central approach to addressing this challenge
is attribution, which involves tracing the gen-
erated outputs back to their source documents.
However, since LLMs can produce inaccurate
or imprecise responses, it is crucial to assess
the reliability of these citations.

To tackle this, our work proposes two tech-
niques. (1) A zero-shot approach that frames
attribution as a straightforward textual entail-
ment task. Our method using flan-ul2 demon-
strates an improvement of 0.27% and 2.4% over
the best baseline of ID and OOD sets of At-
tributionBench Li et al. (2024), respectively.
(2) We also explore the role of the attention
mechanism in enhancing the attribution pro-
cess. Using a smaller LLM, flan-t5-small,
the F1 scores outperform the baseline across
almost all layers except layer 4 and layers 8
through 11.

1 Introduction

Attribution in Large Language Models refers to
tracing the origins of information embedded in the
model’s outputs. This involves identifying the spe-
cific datasets, documents, or text segments con-
tributing to the generated response. Attribution
is essential for verifying the information’s prove-
nance, ensuring the generated content’s accuracy
and reliability, and addressing concerns regarding
plagiarism, accountability, and transparency in AI
systems. Attribution methods typically involve

*Work done while the first author was an intern at Adobe
Research

mapping responses to the relevant data sources that
influenced the model’s generation.

In LLMs, attribution systematically links the
model’s outputs to their source materials, facili-
tating the identification of the exact documents,
datasets, or references that informed the gener-
ated response. The primary goal is to uphold
transparency, validate factual correctness, and give
proper credit to sources. This process is critical for
maintaining the credibility and accountability of
generative AI systems.

Attribution methods are fundamental for enhanc-
ing the interpretability and dependability of LLMs.
They support the model’s output by providing cita-
tions or references, improving accuracy, and reduc-
ing the risk of misinformation. This ensures that
each response is substantiated by relevant evidence,
forming a basis for assessing the sufficiency and
relevance of the underlying data.

Research on LLM attribution methodologies
encompasses citation generation, claim verifica-
tion, and hallucination detection techniques. These
strategies are aimed at improving the quality and
reliability of LLM-generated content. However,
challenges remain in implementing adequate at-
tribution, including the need for robust validation
mechanisms, managing cases where sources in-
fluence the model’s reasoning indirectly, handling
structured data or non-textual sources (e.g., tables,
figures, or images), and addressing the complex-
ities of multi-lingual or cross-lingual data. Over-
coming these challenges is essential for success-
fully integrating attribution methods within LLMs.

As AI and machine learning systems become in-
creasingly prevalent, the demand for accountability,
transparency, and reliability intensifies. Attribution
techniques are pivotal in achieving these objectives,
positioning them as a key area of research and de-
velopment to advance AI technologies and ensure
their responsible deployment.

The main contributions of this work are:
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• A simple zero-shot prompting technique fol-
lowing the idea of textual entailment.

• An attention-based binary classification tech-
nique exploring whether attention could help
achieve the attribution better.

2 Related Work

Attribution in LLMs has become a vital research
area focused on tracing content origins and ensur-
ing accuracy and accountability. Key studies have
introduced various techniques and addressed chal-
lenges in this field.

Pasunuru et al. (2023) propose a minimal-
supervision method for eliciting attributions, im-
proving scalability, and reducing the need for ex-
tensive human input. An interactive visual tool
for attribution is introduced Lee et al. (2024), aim-
ing to enhance transparency by making attributions
more accessible to non-technical users. Zhou et al.
(2024) explore attribution in low-resource settings,
emphasizing its potential to explain model behavior
when data and resources are limited.

The Captum interpretability library is used in
Miglani et al. (2023) for generative LLMs, offering
insights into the factors influencing model predic-
tions. Khalifa et al. (2024) argue that source-aware
training enhances attribution by linking knowledge
to specific sources, improving content reliability.
The issue of false attribution, stressing the need
for more accurate methodologies, is highlighted in
Adewumi et al. (2024).

Bohnet et al. (2023) focus on attribution in
question-answering systems, proposing methods
for evaluating and modeling attributions in QA
contexts. A survey of LLM attribution research,
summarizing key techniques, challenges, and de-
velopments, is provided in Li et al. (2023). Lastly,
Yue et al. (2023) explores the automated evalua-
tion of attribution, aiming to streamline validation
processes in practical applications.

3 Method and Experimental Setup

The attribution task defined in AttributionBench
Li et al. (2024) is framed as a binary classifica-
tion problem, where the objective is to determine
whether a given claim is attributable to its asso-
ciated references. The work in AttributionBench
explores this problem using both zero-shot infer-
ence and fine-tuning of LLMs. Similarly, our for-
mulation adopts the same approach to the problem.
However, we restrict our methodology to zero-shot

experiments due to computational limitations. Ad-
ditionally, we also investigate if attention layers
could help improve the attribution.

3.1 Zero-shot Textual Entailment
We frame this attribution task as a textual entail-
ment problem to ensure simplicity and efficiency.

Textual entailment refers to the relationship be-
tween two text fragments, typically a premise and a
hypothesis, where the goal is to determine whether
the premise entails the hypothesis. Formally, given
two sentences S1 (premise) and S2 (hypothesis),
textual entailment can be defined as a binary rela-
tion Entail(S1, S2), where:

Entail(S1, S2) =

{
1, if S1 entails S2

0, otherwise

Here, S1 entails S2 if the meaning of S1 logically
supports or guarantees the truth of S2. The task
is to model this relation using techniques, such as
deep learning models, to predict this entailment
relationship based on large corpora of annotated
text pairs.

Why zero-shot Textual Entailment? The core
challenge in zero-shot textual entailment is to build
models that can generalize well to unseen tasks
and relationships, relying purely on contextual un-
derstanding rather than task-specific fine-tuning.
This is typically achieved through techniques like
transfer learning, where models use their broad lan-
guage understanding to handle specific inference
tasks on the fly. For example, a model may be able
to infer whether the statement “It is raining outside”
entails “The ground is wet” without having been
specifically trained on this exact inference.

QUESTION: how much of the world’s diamonds does de beers
own?

RESPONSE: De Beers owns 40% of the world’s diamonds.

CLAIM: De Beers owns 40% of the world’s diamonds.

REFERENCE: Title: Diamond Section: Industry, Gem-grade
diamonds. The De Beers company, as the world’s largest
diamond mining company, holds a dominant position in the
industry, and has done so since soon after its founding in
1888 by the British businessman Cecil Rhodes.
.....
.....
De Beers sold off the vast majority of its diamond stockpile
in the late 1990s – early 2000s and the remainder largely
represents working stock (diamonds that are being sorted
before sale). This was well documented in the press but
remains little known to the general public.
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Setting Model (Size) ExpertQA (#=612) Stanford-GenSearch (#=600) AttributedQA (#=230) LFQA (#=168) ID-Avg.

F1 ↑ FP ↓ FN ↓ F1 ↑ FP ↓ FN ↓ F1 ↑ FP ↓ FN ↓ F1 ↑ FP ↓ FN ↓ F1 ↑

Zero-shot Li et al. (2024)

FLAN-T5 (770M) 38.2 1.3 47.4 73.5 15 11.5 80.4 12.2 7.4 37.2 0 48.2 57.3
FLAN-T5 (3B) 55.6 15.8 27.9 74 17.2 8.7 79.8 15.2 4.8 75.3 6.5 17.9 71.2
AttrScore-FLAN-T5 (3B) 55.7 32.4 9.6 64.6 27.3 6.5 80.5 16.5 2.6 71.4 21.4 6.5 68.1
FLAN-T5 (11B) 52 36.4 7.5 59.2 32.7 5 78.6 18.3 2.6 79.8 10.1 10.1 67.4
T5-XXL-TRUE (11B) 54.5 17.8 27.3 68.5 16.2 15.3 85.2 7.8 7 80.4 1.2 17.9 72.2
FLAN-UL2 (20B) 59.4 22.5 18 72.5 19.2 8 82.5 13 4.3 80.1 4.2 15.5 73.6
AttrScore-Alpaca (7B) 47.4 11.1 37.7 68.6 21.2 9.8 79 14.8 6.1 68.7 10.1 20.8 65.9
GPT-3.5 (w/o CoT) 55.3 30.4 12.1 62 30.5 3.8 74.7 20.9 3.5 72.6 22 4.2 66.2
GPT-3.5 (w/ CoT) 60.4 23 16.2 66.1 25.5 7.2 78.9 14.3 6.5 73.4 19.6 6.5 69.7
GPT-4 (w/o CoT) 56.5 32.8 8 59.8 33.2 3.5 81 15.7 3 71.6 23.2 4.2 67.2
GPT-4 (w/ CoT) 59.2 26.3 13.9 71.7 19.5 8.5 82.2 10 7.8 80.2 14.9 4.8 73.3

Our Zero-shot gpt4-o (05-13-2024) 52 13.1 33 64.7 14 21.2 71.5 10 18.3 81.14 23.8 15.47 64.1
flan-ul2 (20B) 55 32.7 10 75.2 16 8.7 84.16 20.86 12.17 85.38 16.6 13.09 73.8

Table 1: We evaluate our zero-shot approach against the AttributionBench. Results highlighted in bold denote the
highest performance. Our method performs better than existing approaches on the Stanford-GenSearch and LFQA
sub-datasets. The average ID achieved using our method with flan-ul2 is 73.8, representing the highest value.

Answer the question with ONLY a ‘YES’
or ‘NO.’ Does the REFERENCE entail the
CLAIM?

Figure 1: For our zero-shot experiments, we used this
prompt template to query the LLM for determining
whether the REFERENCE entails the CLAIM.

In our problem formulation, we task the LLM
with a textual entailment problem by utilizing the
prompt outlined in Fig. 1. This process involves
evaluating the relationship between the given claim
and its associated references, as defined in Attribu-
tionBench.

3.2 Attention-based attribution
Given the computational limitations, we designed
experiments using a single LLM, specifically the
flan-t5-small model, to analyze attention layers
in addressing the attribution task.

Experimental Setup: We utilized the attention
weights from each layer as input to a fully con-
nected layer for binary attribution classification.
We did this for all 12 layers.

4 Results and Analysis

In the initial phase of our evaluation of the at-
tribution task, we conduct zero-shot experiments.
The framework presented in AttributionBench is
divided into two key components: in-distribution
(ID) and out-of-distribution (OOD) sampling of
the dataset. In their experimental setup, Attribu-
tionBench employs F1 score, False Positive (FP),
and False Negative (FN) rates as evaluation metrics.
Consistent with their methodology, we adopt the
same metrics - F1, FP, and FN - for the evaluation
in this study.

4.1 Evaluation Metrics

F1: The F1 score is a metric used to evaluate the
performance of a classification model, specifically
its balance between precision and recall.
FP: The False Positive Rate (FP) is a measure
used to evaluate the performance of a classification
model, specifically in binary classification tasks. It
quantifies the proportion of negative instances that
are incorrectly classified as positive.
FN: The False Negative (FN) is a metric used to
evaluate the performance of classification models.
It represents the proportion of actual positive in-
stances incorrectly classified as negative.

4.2 Zero-shot

In this zero-shot setup, we formulate the attribu-
tion binary classification task as a simple textual
entailment problem. To do so, we prompt the LLM
using the template shown in Fig. 1. We compare
our zero-shot method with the baseline zero-shot
approach given in Li et al. (2024). With this simple
question, we outperform the baselines in both ID
and OOD sets.

We present our zero-shot experimental results
in Table 1 for ID data distribution. We mainly
used two LLMs: gpt4-o Achiam et al. (2023)
and flan-ul2 Raffel et al. (2020). We observe
that flan-ul2 performs better with F1 accuracy
metrics in Stanford-GenSearch and the LFQA sub-
dataset. The best ID-average (flan-ul2) = 73.8.

Similar to the results observed for in-distribution
(ID) data, the highest-performing model for out-
of-distribution (OOD) tasks, as presented in Ta-
ble 2, is flan-ul2, specifically for the AttrScore-
GenSearch and HAGRID sub-datasets. When eval-
uating the OOD performance, our approach, lever-
aging the flan-ul2 model, achieves the highest
average score, reaching an impressive value of
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Setting Model (Size) BEGIN (# = 436) AttrScore-GenSearch (# 162) HAGRID (# = 1013) OOD-Avg.

F1 ↑ FP ↓ FN ↓ F1 ↑ FP ↓ FN ↓ F1 ↑ FP ↓ FN ↓ F1 ↑

FLAN-T5 (770M) 79.6 9.2 11.2 80.8 6.2 13 75.9 13.1 10.9 78.8
FLAN-T5 (3B) 80.2 13.3 6.4 82 6.2 11.7 79 16.9 3.8 80.4
AttrScore-FLAN-T5 (3B) 78.9 17.7 3 76.3 16.7 6.8 68.6 26.9 2.6 74.6
FLAN-T5 (11B) 72.3 25 1.1 78.1 16.7 4.9 64.5 30.6 2 71.6
T5-XXL-TRUE (11B) 86.4 4.8 8.7 76.4 2.5 20.4 78.6 14.4 6.8 80.5

Zero-shot Li et al. (2024) Flan-UL2 (20B) 82.2 13.1 4.6 87.7 5.6 6.8 73.9 21.4 3.9 81.3
AttrScore-Alpaca (7B) 75.9 20.4 3 82.1 6.8 11.1 73.9 19.9 5.6 77.3
GPT-3.5 (w/o CoT) 79.4 15.8 4.4 76.7 18.5 4.3 70.1 25.2 2.8 75.4
GPT-3.5 (w/ CoT) 77.6 14.9 7.3 82.1 11.1 6.8 74 19.7 5.1 77.9
GPT-4 (w/o CoT) 77.5 19.7 2.1 84.3 14.2 1.2 72.1 23.9 2.8 78
GPT-4 (w/ CoT) 77.5 18.3 3.7 83.3 8 8.6 75.9 18.5 5.2 78.9

Our Zero-shot gpt4-o (05-13-2024) 79.69 42.66 5.5 88.24 17.28 7.4 76.54 42.37 14.41 81.48
flan-ul2 (20B) 81.55 32.56 8.71 88.05 9.87 13.5 80.71 42.79 6.36 83.43

Table 2: We evaluate our zero-shot approach against the AttributionBench. Results highlighted in bold denote
the highest performance. Our method performs better than existing approaches on the AttrScore-GenSearch and
HAGRID sub-datasets. The out-of-distribution (OOD) average achieved with our approach utilizing the flan-ul2
model is the highest, reaching a value of 83.43.

83.43. This demonstrates the robustness and su-
perior generalization capability of the flan-ul2
model across both ID and OOD settings.

4.3 Using Attention layers
Preliminary results comparing zero-shot and vary-
ing attention layers on the LFQA attribution subset
are presented in Table 3. We present layer-wise
performance results for all three evaluation met-
rics. Although the results are mixed, the F1 scores
generally outperform the baseline across nearly all
layers, except for layers 4 and 8 to 11. Addition-
ally, lower values of false positives (FP) and false
negatives (FN) compared to the zero-shot baseline
suggest improved performance.

LFQA (#=168)

F1 ↑ FP ↓ FN ↓
Our Zero-shot 20 17.85 86.9

using attention
layer 1 66.67 100 0
layer 2 66.93 98.8 0
layer 3 66.67 100 0
layer 4 0 0 100
layer 5 66.13 100 1.19
layer 6 66.13 100 1.19
layer 7 65.6 100 2.38
layer 8 10.31 9.52 94.04
layer 9 2.35 0 98.8
layer 10 0 0 100
layer 11 66.67 100 0
layer 12 66.93 98.8 0

Table 3: With balanced classes (84 each Class 0/1) using
flan-t5-small, F1 scores exceed the baseline across
most layers, except 4 and 8–11, indicating improved
performance, further supported by reduced false posi-
tives and false negatives.

5 Conclusion and Future Work

In this paper, we conducted zero-shot experiments
on AttributionBench to assess the performance of

textual entailment-based approaches for attribution
tasks. Our findings show that even without fine-
tuning, a simple zero-shot textual entailment ap-
proach outperforms the existing baseline in both
in-distribution and out-of-distribution settings. No-
tably, flan-ul2 demonstrated strong performance
across these scenarios, underscoring its robustness
and suitability for such tasks. We also preliminary
analyzed attention layer behavior using the smaller
flan-t5-small model. The results suggest that
attention mechanisms could provide valuable in-
sights for improving attribution performance.

We plan to overcome computational limitations
for future work by conducting fine-tuning exper-
iments. We aim to use more advanced LLMs to
perform a deeper analysis of attention layers. This
could provide further actionable insights to refine
performance and yield more robust findings.

6 Limitations

Limitation 1: Although fine-tuning could en-
hance the results beyond zero-shot, it comes with
additional computational overhead. Therefore, we
restricted our experiments to zero-shot settings in
this paper and demonstrated how a straightforward
zero-shot textual entailment approach can further
improve performance.

Limitation 2: Regarding exploring attention
mechanisms to enhance the performance of the at-
tribution task, we were similarly restricted by com-
putational limitations. Consequently, we could not
utilize computationally demanding models for this
analysis. Instead, the experiments were conducted
using a lightweight model, flan-t5-small.
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