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Abstract

This paper introduces Hidden Forms
(hFORMS), a dataset of natural language
commands paired with user interfaces with
masked visual context. By obscuring specific
UI elements, the dataset challenges Computer-
Using Agents to parse natural language
instructions and infer the correct bounding
box locations by leveraging UI context.
Furthermore, hFORMS contains three distinct
masking strategies representing progressive
difficulty levels. Additionally, we explore
parameter-efficient fine-tuning approaches
using Vision-Language models from the Llama
and Qwen series, demonstrating that fine-tuning
on mobile domains results in more than 5x
improvement in zero-shot domain adaptation
performance when identifying bounding boxes
on the desktop and web domains.

1 Introduction

Recent work in NLP has seen the extension of lan-
guage modeling techniques to develop Computer-
Using Agents (CUAs) (Gemini Team, 2024; An-
thropic, 2025; OpenAI, 2025). CUAs execute
natural-language user requests by interacting with
elements of the graphical user interface (GUI),
such as buttons, menus, and text fields. Current
CUAs perform about half as well as humans on
popular agent evaluation benchmarks such as OS-
World (Xie et al., 2025), WebArena (Zhou et al.,
2024), and VisualWebArena (Koh et al., 2024) with
the average human performance hovering around
75%. Furthermore, leaderboards for these bench-
marks 1 are populated by proprietary models, or
models that use a significant number of parameters
(> 70B) (Qin et al., 2025), raising concerns about
locally deployable solutions. This requires devel-
oping parameter-efficient techniques with smaller
language models.

*Work done while at Georgia Tech
1https://os-world.github.io/

Figure 1: An example of the task in hFORMS. The task
is to identify the bounding box location for the content
on the screen. The interface contains multiple elements
that are hidden from the model.

Motivated by the prevalence of mobile interac-
tions, several datasets have been developed to build
CUAs in the mobile domain (Zhang et al., 2023;
Wang et al., 2025; Rawles et al., 2024). However,
leaderboards for these datasets are also dominated
by closed-source systems such as GPT-4, Claude,
and Gemini. Locally deployable systems require
developing smaller-scale models that run on low-
resource hardware, e.g. single-GPU devices. How-
ever, building generalist UI-understanding capabil-
ities in smaller vision-language models requires
additional domain-specific training. To address
these limitations, we build upon existing paired
natural-language GUI datasets and introduce Hid-
den Forms 2 (hFORMS). hFORMS addresses a
crucial auxiliary task in UI understanding: given a
natural language description of GUI content or an
action command, the system must infer the correct
bounding box location to place this information.
Importantly, the ground truth location of the ele-
ment is concealed from the system, compelling it to
leverage on-screen contextual cues to successfully
complete the task.

2The dataset and code is available at https://github.
com/avalab-gt/hFORMS.
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2 Related Work

Prior work on UI modeling focused on the iden-
tification and classification of visual elements on
mobile screens (Chen et al., 2020; Bunian et al.,
2021; Zhang et al., 2021; Wu et al., 2023). Follow-
ing the development of vision-language models,
more recent work focused on jointly modeling re-
ferring expressions within the context of mobile
interfaces (Bai et al., 2021; Li et al., 2020; Hsiao
et al., 2022; Heck et al., 2024).

UIBert (Bai et al., 2021) consists of a dataset
specifically for the task of UI understanding. Bai
et al. (2021) introduce five tasks to learn repre-
sentations by jointly modeling on-screen content
and their captions obtained through OCR. They
evaluate trained models for referring expression
retrieval, a multiple-choice task where the goal is
to retrieve the correct on-screen content given a nat-
ural language description. ScreenQA (Hsiao et al.,
2022) is a dataset of questions and answers target-
ing content across multiple Android apps. Given an
app screenshot, crowdworkers write questions and
answers that address specific screen components.
ScreenSpot (Cheng et al., 2024) is a benchmark
dataset of screenshots and instructions from iOS,
Android, Windows, MacOS, and webpages that
evaluates the ability of models to identify the lo-
cations of screen content corresponding to natural
language commands.

3 Building the hFORMS Dataset

hFORMS consists of three splits –
hFORMSScreenQA, hFORMSUIBert, and
hFORMSScreenSpot. As the names indicate,
the splits are built by modifying ScreenQA,
UIBert, and ScreenSpot. While ScreenQA and
UIBert contain Android app screenshots from
RICO (Deka et al., 2017), ScreenSpot is a smaller
dataset consisting of screenshots from WebArena
(Zhou et al., 2024).

3.1 Bounding Box Identification

For ScreenQA, we first collect all question-answer
pairs addressing a given screenshot and the associ-
ated bounding boxes on the GUI elements. Then,
the bounding boxes are masked based on the strate-
gies described in Section 3.2 to ensure that the GUI
does not contain any of the elements whose posi-
tions are to be identified. The long-form versions
of the answers are used to generate the dataset.

(a) Original UI (b) Static

(c) High-contrast (d) Low-contrast

Figure 2: Examples of the three different masking strate-
gies in hFORMS.

Since UIBert contains bounding boxes for every
element, masking all of which would make the task
impossible, we select 20% of the bounding boxes
for GUI elements at random. The number was
empirically selected to produce a similar number
of masked elements as the ScreenQA dataset. The
textual component in hFORMSUIBert is obtained
from the UIBert referring expressions.

Finally, since ScreenSpot contains only one
bounding box corresponding to the action to
be taken, the selection is trivial. We use

Dataset Split # Samples

hFORMSScreenQA

Train 62,373
Validation 7,832
Test 7,691

hFORMSUIBert

Train 15,624
Validation 471
Test 565

hFORMSScreenSpot

Mobile 502
Desktop 334
Web 436

Table 1: Dataset statistics for the different splits in
hFORMS
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Masking Model IoU BCP

ScreenQA

Static
Llama-3.2-11B 37.19 58.86
Qwen2.5-VL-7B 64.78 74.09

High-contrast
Llama-3.2-11B 54.12 77.81
Qwen2.5-VL-7B 80.34 85.58

Low-contrast
Llama-3.2-11B 17.61 30.70
Qwen2.5-VL-7B 39.56 57.38

UIBert

Static
Llama-3.2-11B 36.58 54.34
Qwen2.5-VL-7B 58.54 67.08

High-contrast
Llama-3.2-11B 44.05 67.08
Qwen2.5-VL-7B 74.65 78.94

Low-contrast
Llama-3.2-11B 25.33 39.82
Qwen2.5-VL-7B 39.33 51.68

Table 2: IoU and Box Center Prediction results on the
ScreenQA split of hFORMS

hFORMSScreenSpot to evaluate zero-shot domain
adaptation capabilities and posit that masking a
single element represents real-world situations.

hFORMS is formatted in the JSON Lines for-
mat, an example of the json schema is provided in
Appendix B.

3.2 Masking GUI Information

The next step in building hFORMS is to mask the
corresponding contextual information on the GUI.
In this work, we experiment with three different
masking strategies of varying levels of difficulty.
The first masking strategy simply draws a white
box over the identified bounding boxes. The second
masking strategy masks the bounding boxes with
a contrasting color. This results in an easier task
that represents a multiple choice scenario where
the system has to choose from a limited number
of options to fill in content. The final masking
strategy uses a color that is selected dynamically
based on the pixel values around the bounding box.
By choosing a color that is as similar as possible
to the background, the corresponding GUI element
is effectively hidden from the system, making the
identification of the element a harder challenge than
either of the previous strategies. Examples of the
three masking strategies are provided in Figure 2.

Model Training Data IoU BCP

Mobile

Llama-3.2-11B
None 1.21 0.40

ScreenQA 2.43 9.56
UIBert 6.56 13.55

Qwen2.5-VL-7B
None 5.95 26.10

ScreenQA 12.93 33.67
UIBert 31.35 52.99

Desktop

Llama-3.2-11B
None 0.83 1.22

ScreenQA 1.69 5.69
UIBert 2.55 5.39

Qwen2.5-VL-7B
None 2.37 11.93

ScreenQA 7.22 15.27
UIBert 12.24 21.56

Web

Llama-3.2-11B
None 0.74 0.92

ScreenQA 1.00 5.50
UIBert 2.08 4.82

Qwen2.5-VL-7B
None 3.93 20.41

ScreenQA 17.26 35.09
UIBert 28.83 42.43

Table 3: Zero-shot cross-domain performance
of Llama-3.2-11B and Qwen2.5-VL-7B on
hFORMSScreenSpot. The source domain dataset is
provided under Training Data.

4 Results

4.1 Fine-tuning

We experiment with two open-
source Vision-Language Models –
Llama-3.2-11B-Vision-Instruct-bnb-4bit
(Dubey et al., 2024) and
Qwen2.5-VL-7B-Instruct-bnb-4bit (Bai
et al., 2025). We use the 4-bit versions of the
models as provided by the unsloth library 3 as the
4-bit models fit on a single GPU and represent
compute situations when these models are typically
utilized. We fine-tune models for the task of
predicting the bounding box as a text sequence
x1<SEP>y1<SEP>x2<SEP>y2 where x1,y1 and
x2,y2 represent the top-left and bottom-right
corners of the bounding box. Additional details
about the fine-tuning setup are provided in
Appendix A.

We report performance on two metrics – the
Intersection over Union (IoU) and Box Center Pre-

3https://unsloth.ai/
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Figure 3: Histogram of IoU scores for the three different masking strategies - Llama on hFORMSScreenQA

Figure 4: Intersection over Union of two bounding
boxes.

diction (BCP). IoU is a metric that calculates the
ratio between the overlapping area (intersection)
and the combined area (union) of predicted and
ground truth bounding boxes (Figure 4). The BCP
metric measures whether the center of the predicted
bounding box lies anywhere inside the ground-truth
box. Since the UIBert and ScreenSpot datasets con-
tain natural language statements that ask the system
to click on UI elements, BCP is an appropriate met-
ric since a click on any UI element is a successful
hit. In this work, the center of the predicted box
serves as a proxy for a click on a screen. BCP
accuracy is predicted using the formula in Equa-
tion 1 and is exemplified in Figure 5. While IoU
is optimized only when the two bounding boxes
overlap completely, BCP awards partial credit for
predicting a reasonably correct response.

BCP = 1(xc,yc)pred ∈ Bounding BoxGT (1)

Table 2 presents parameter-efficient fine-tuning
results from Llama-3.2-11B and Qwen2.5-VL-7B
on the ScreenQA and UIBert splits of hFORMS.
Consistent with our hypothesis, the low contrast
masking is the hardest task, while the high contrast
masking is the easiest on both splits of the dataset.

Figure 5: Example computation of Box Center Predic-
tion. In this example, since the center of the predicted
box (in red) lies inside the ground truth box (in green),
the BCP score is 1, even though the IoU is less than 1.

Across all masking strategies, Qwen2.5-VL-7B per-
forms better than Llama-3.2-11B since the pre-
training data for Qwen includes screenshots from
GUIs for agentic capabilities.

4.2 Zero-Shot Cross-Domain Adaptation

An important challenge when building CUAs is
ensuring that they adapt to unseen domains since
user interfaces often change with software updates,
and users may request actions on newly developed
apps not seen during training. Another concern
is when dealing with screenshots with different
aspect ratios and resolutions since mobile desk-
top, and web app windows are scaled differently.
Alleviating this concern requires good zero-shot
cross-domain adaptation capabilities. In this work,
we evaluate the models in a zero-shot configuration
on a modified version of the ScreenSpot dataset,
which serves as the holdout domain. Since there is
only one bounding box in the ScreenSpot dataset
per screenshot, we experiment with only the Low-
contrast masking strategy.

We evaluate the versions of the models
fine-tuned on each of the two datasets sepa-
rately and present the results in Table 3. As
before, Qwen2.5-VL-7B performs better than
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Llama-3.2-11B. Additionally, training on the UIB-
ert split performs better than ScreenQA. We hypoth-
esize that this is because the commands in UIBert
are similar to the commands in ScreenSpot that
address clicking related tasks while the ScreenQA
dataset contains descriptions of content. Further-
more, the benefits of training on the UI-based
datasets carries over, evidenced by better perfor-
mance on the Mobile split of ScreenSpot when
compared to Desktop and Web. Interestingly,
though the models are fine-tuned on the UI-based
datasets, the performance on Desktop and Web re-
sults in up to 5x improvement in IoU scores over
the versions that are not trained (prompt available
in Appendix C). We observe comparable perfor-
mance between iOS and Android, Appendix D.

4.3 Performance Analysis

The results in Tables 2 and 3 raise questions regard-
ing the nature of bounding box hits and misses. To
understand this distribution, the histogram of IoU
scores is presented in Figure 3. As observed in
Figure 3, the distributions have significant differ-
ences between the different types of masking. Note
that peaks at either extreme have been removed for
clarity and the unmodified distributions are avail-
able in Appendix E. The high-contrast masking has
a significant peak around IoU 0.8 while the low-
contrast masking, a harder task, has a distribution
that decreases as the IoU values increase. The static
masking appears to be relatively uniform, which
further supports the observations from Table 2 that
the difficulty is in between the other two strategies.

5 Conclusion

This work introduces Hidden Forms (hFORMS),
a dataset comprising natural language commands
paired with user interfaces where relevant informa-
tion is masked to help build UI understanding capa-
bilities in Computer Using Agents. By obscuring
UI elements, we challenge agents to parse natural
language instructions and infer the correct bound-
ing box locations by leveraging contextual cues.
hFORMS presents three distinct masking strategies
representing progressive difficulty levels. Addi-
tionally, we explore parameter-efficient fine-tuning
approaches using Vision-Language models from
the Llama and Qwen series, demonstrating that fine-
tuning on mobile domains significantly improves
zero-shot domain adaptation performance on the
desktop and mobile domains.

Limitations

This work is limited by the fact that it is primar-
ily situated in the mobile domain, and the desktop
and webapps are restricted to zero-shot domain-
adaptation experiments. Future work could address
expanding the dataset to larger datasets for the other
domains. Additionally, the hFORMS dataset is ob-
tained by extending datasets from prior work. To
make the challenge harder, future work could ad-
dress collected samples specifically for this chal-
lenge by recruiting annotators. Finally, this work
only evaluates models that fit on a single GPU,
we leave the evaluation of much larger models to
future work.
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A Fine-tuning details

All fine-tuning and inference was run on Nvidia
A40 GPUs with 48GB GDDR6 memory.

For our experiments, we fine-tune both our mod-
els using the 8-bit Adam optimizer with a learning
rate of 2e-4 and 5 warmup steps. We use LoRA
(Hu et al., 2022) to train adapters while keeping
base weights frozen. We use a LoRA r = 16 and α =
16 with a dropout of 0, and adapter weights added
to all linear layers, attention modules, across the
vision and language layers. All models are trained
for 10000 steps which was the numbers of steps
at which the relative decrease in loss was less than
1%. All experiments use a random seed of 3407.
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B JSON Schema

{
"image": "image_files /5.jpg",
"image_width": 1080,
"image_height": 1920,
"statement_l": "There␣are␣12␣exercises␣

↪→ in␣total␣to␣do.",
"statement_s": "12",
"bbox": "509<SEP >116<SEP >569<SEP >169",
"box_center": "539.0<SEP >142.5"

}

Figure 6: JSON Lines schema describing the dataset
structure

C Prompt for Zero-Shot experiments

Look at the image and find the UI element
that matches this instruction. Return
ONLY the bounding box coordinates in this
EXACT format with NO text before or after:
x1<SEP>y1<SEP>x2<SEP>y2

D Breakdown of results for the mobile
domain

Table 4 contains a breakdown of the results by dif-
ferent operating systems on the split for ScreenSpot
mobile. The low-contrast masking strategy is used
in this experiment.

Model OS IoU BCP

ScreenQA

Llama-3.2-11B
Android 3.68 13.77

iOS 1.22 5.49

Qwen2.5-VL-7B
Android 10.16 31.58

iOS 15.63 35.69

UIBert

Llama-3.2-11B
Android 9.96 20.65

iOS 3.27 6.67

Qwen2.5-VL-7B
Android 30.88 55.06

iOS 31.81 50.98

Table 4: Breakdown of results by operating system on
ScreenSpot-mobile. The data used to train the models
is provided as a header.
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Figure 7: Histogram of Intersection over Union scores on ScreenQA.
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Figure 8: Histogram of Intersection over Union scores on UIBert.
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