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Abstract

We present an agentic framework, Thinker,
which achieves state of art performance in chal-
lenging reasoning tasks for realistic customer
service scenarios that involve complex business
logic and human interactions via long horizons.
On the 7-bench retail dataset, Thinker achieves
82.6% success rate with GPT-4o (version 2024-
06-01) (baseline: 68.3%), and 81.9% success
rate with Llama-3.1 405B (baseline: 49.6%),
without any fine-tuning. Thinker effectively
closes the gap in reasoning capabilities between
the base models by introducing proper struc-
ture.

The key features of the Thinker framework
are: (1) State-Machine Augmented Generation
(SMAG), which represents business logic as
state machines and the LLM uses state ma-
chines as tools. (2) Delegation of tasks from
the main reasoning loop to LLM-powered tools.
(3) Adaptive context management.

Our prompting-only solution achieves signfi-
cant gains, while still maintaining a standard
agentic architecture with a ReAct style reason-
ing loop. The key is to innovate on the tool
interface design, as exemplified by SMAG and
the LLM-powered tools.

1 Introduction

Recently, there has been increasing excitement
around the potential of LLM agents to enable
new levels of automation across various industries.
However, the deployment of LLMs in real world
systems is not at all trivial.

Recently, Sierra’s research team published 7-
bench (Yao et al., 2024), a challenging public
dataset to evaluate Al agents’ performance and re-
liability for real-world customer support scenarios.
T-bench allows automatic end-to-end evaluation by
having a user model talking to an Al agent, where
the user model is an LLM instructed by a script of
task instructions (see Appendix C for examples).
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As Sierra CEO Bret Taylor noted (Taylor, 2024),
results of “agents built with simple LLM constructs
(like function calling or ReAct)” still result in poor
performance, indicating an urgent need for more
structured and effective agent architectures.

It is clear that we need more robust agent archi-
tectures that can handle business logic reliably and
talk and adapt flexibly like a human. We present
an agentic framework with the following features:

» State-Machine Augmented Generation
(SMAG). We represent business logic as state
machines. The LLM agent orchestrates state
transitions to precisely follow business logic
and is aided by state-dependent instructions.
This introduces structure and improves the
agent’s ability to follow complex business
rules.

* Delegation of tasks from the main reason-
ing loop to LLM-powered tools. We formu-
late specific reasoning tasks as LLM-powered
tools (e.g. find product items based on a re-
quirement stated in natural language). This di-
vision of reasoning responsibilities improved
reasoning accuracy.

* Adaptive context management. The stan-
dard practice has been to use static system
prompts and append all conversations, inter-
nal outputs, and tool calling results as the con-
text for LLM. Thinker optimizes the context
to remove distractions and prepare the LLM
with contextually relevant information.

The contributions of this paper are:

* We introduce SMAG (State-Machine Aug-
mented Generation), a new paradigm for pre-
cisely handling business logic while retaining
modern conversational experience. The state
machines introduce determinism and struc-
ture to the reasoning process, which improves
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Figure 1: Thinker: An Agentic Framework.

the agent’s ability to follow complex business
rules. LLM uses such state machines as tools
and handles user conversations.

¢ We validate the effectiveness of the Thinker
framework on the retail dataset of 7-bench,
achieving state-of-the-art results. Specifically,
Thinker improved the success rate from 49.6%
to 81.9% for Llama-3.1 and from 68.3% to
82.6% for GPT-40 (version 2024-06-01).

Note that the large gain is achieved via a
prompting-only solution and it is using a sim-
ple and standard agentic architecture with a
ReAct style reasoning loop. We highlight the
power of careful tool interface design. In
SMAG, we offload deterministic logic (e.g.
business logic and rules) as tools. In LLM-
powered tools, we achieve similar effect as
multi-agent architectures, yet using a much
simpler abstraction. With these carefully de-
signed tool interfaces, the main reasoning loop
is kept simple and focused on the main task of
tool calling and responding to the user. We be-
lieve this is a valuable insight regarding future
agentic architectures.

2 The Thinker Framework

An illustration of Thinker is given in Figure 1.
There is a main reasoning loop that handles each
turn, where in each step, the LLM call generates
a response which could either involve some tool
calls or responding to the user. If the LLM outputs
tool calls, the tool calling results are then added to
the working memory for subsequent reasoning. Al-
lowing multiple tool calls in one round not only im-
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proves efficiency but also more effectively supports
requests that involve multiple tasks (e.g., change
address for all my pending orders). This is na-
tively supported in GPT4 via the functional calling
support; we have implemented the equivalent func-
tionality for Llama-3 via prompting and postpro-
cessing. The loop exits when the LLLM decides to
respond to the user. To improve reasoning, the re-
sponse starts with a “Thought” element. Since the
main reasoning loop involves ReAct-style thoughts
and GPT-style multi-function calling, the high level
orchestration structure is essentially ReAct (Yao
et al., 2022) and GPT-style multi-function calling
(OpenAl, 2023) combined.

As illustrated by Figure 1, there are three types
of tool calls: (1) simple tools that correspond to
the raw APIs (2) LLM-powered intelligent tools
which takes natural language inputs and may in-
volve an internal multi-step workflow to carry out
a specific sub-task (Section 2.2) (3) flows (state
machines), which model business processes and
rules that involve multi-turn user interactions (Sec-
tion 2.1). The tool call results, chat history, system
instructions, available tools, and active flows col-
lectively form the working memory. Thinker uses
adaptive context management to optimize the con-
text before feeding into the LLM (Section 2.3).

2.1 State Machine Augmented Generation

Real world agent applications often involve com-
plex domain specific policies and rules. Here are
some business rules from the 7-bench retail dataset:

1. Before taking consequential actions that up-
date the database (cancel, modify, return, ex-
change), you have to list the action details and



User: Please upgrade order #W9911714 to the most expensive options available. Keep the shoe size the

) ) : ’ User specified a request
same. I want to pay the difference with my gift card, but if that's not possible, PayPal is fine. P a

Assistant: Thought: To upgrade order #W9911714, I need to find the most expensive items for each
product in the order. I will use the find_product_items function.
Action: <function=find_product_items>...

Thought-Action with parallel tool calls
to manage multiple sub-tasks

[LLM—powered find_product_items tool]

User: API output: {'name':
[{"item_id": "4579334872",

'find_product_items', 'arguments': {'product_id':
"options": {"capacity": "75@ml", ...}, "available":

18310926033, ...

true, "price": 54.85}]
translates language requirement to

Assistant: Thought: I have found the most expensive items for each product in order #W9911714. I will matching product items

now modify the order. I will use the modify_pending_order_items function.

Action: <function=modify_pending_order_items>...

Prepared confirmation suggestion

User: API output: {'name': 'modify_pending_order_items', ‘'arguments': a N a 5 a
since this requires user confirmation

"explicitly_confirmed': False}} [Confirmation Template Omitted]

{'order_id': '#W9911714', ...

Assistant: Thought: I will present the order modification to the user and obtain user confirmation.
Action: * Exchange Water Bottle (ID: 23665) for a new item (ID: 45793) with price change of $0.81..
The total price difference is $71.96. The payment method is gift card (ID: gift_card_4332117).

Do you need to change the address of this order? If so, please let me know before confirming.
Please confirm that you would like to proceed with the modification.

Ask for address change (SMAG rule)

User confirmed modification
No address change

User: Yes, please proceed with the modification as detailed. The payment method using the gift card is
fine. No need to change the address of this order. Thank you!

Assistant: Thought: The user has confirmed the modification and would like to proceed. I will now call
the modify_pending_order_items function with explicitly_confirmed=True to complete the modification.
Action: <function=modify_pending_order_items>{"order_id": "#W9911714", ...

[Presenting confirmation details to user.]

Make actual mutation (state transition)

User: API output: {'name': 'modify_pending_order_items', ‘'arguments': ...

* Water Bottle (item ID: 4579334072) - $54.85..

order status is now "pending (item modified)

The total price difference of $71.96 has been paid using your gift card (ID: gift_card_4332117). The
. Is there anything else I can help you with?

Assistant: Your order #W9911714 has been successfully modified. The new items are:

[ Tell user that order has been modified ]

Figure 2: Illustrated example execution log with Llama-3.

obtain explicit user confirmation to proceed.

At the beginning of the conversation, you have
to authenticate the user identity.

To cancel an order, you must collect the can-
cellation reason from the user.

An order can only be exchanged or returned
once.

If you need to modify both the shipping ad-
dress and the items of a pending order, the
address modification must happen first.

The standard solution is to introduce tools as
functions and let LLM orchestrate their use. The
aforementioned business logic would be written as
LLM system prompts. However, this is not reliable
as we cannot guarantee that LLM would strictly
follow the business logic. This is an important prob-
lem that must be solved before agents can replace
humans in real world situations.

Our solution for ensuring agents follow busi-
ness logic is State Machine Augmented Generation
(SMAG). In SMAG, we represent business logic as
state machines (we will refer to them as flows) and
allow the LLM to drive these state machines and
orchestrate execution. The result is more consis-
tent adherence to business logic without breaking
flexible conversational user interactions.

2.1.1 SMAG as a General Paradigm

In SMAG, we represent business logic as a number
of flows (i.e., state machines). We explain SMAG
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via object-oriented programming constructs. In
essence, a flow has the following key operations
that an LLM can invoke:

* Flow instantiation: Instantiates a flow by pro-
viding the required parameters (via LLM).
Pseudo code: flow = FLOW_TYPE (params)

Setting slot variables: A flow has a set of slot
variables. It is possible that the user already
provided some slot variables. Hence this oper-
ation allows flexible slot filling. Pseudo code:
flow.setSlots(slot_variables_dict)

Trigger state transitions by providing the user
input expected at the current state of the
flow: For example, if the current state ex-
pects the user to confirm (yes/no) to a muta-
tion action, then the user_input_dict would
provide such information. Pseudo code:
flow.next(user_input_dict)

The agent maintains a set of current flow in-
stances. Each flow has internal states representing
the current state of the state machine (slot vari-
ables and other internal variables), which can be
serialized and persisted across turns as session in-
formation. At the beginning of each turn, we would
deserialize flows from their serialized representa-
tions in the requests. Therefore we can obtain
the current set of active flows, their states, and
state-dependent instructions. The flow informa-
tion consists of state-dependent instructions for



the LLM agent, including suggested messages pre-
pared based on the current flow state and instruc-
tions for the LLM that are specifically applicable
to the current situation. This flow information is
then included in the working memory for the LLM
to reason about the current state, and decide what
flows to start/end and whether we should trigger
state transitions for some existing flows (when the
user provides the requested information compatible
with the current state).

2.1.2 SMAG Explained Through 7-Bench

Pattern: Wrap tool calling into flows to ensure
required sequencing of events.

In 7-bench, to enforce that mutation actions must
obtain explicit user confirmation first, we wrap the
mutation API calls into flows to enforce the re-
quired sequencing of events. SMAG ensures that
the first call to a mutation API with the required
parameters is only a dry-run. It validates the pa-
rameters and checks whether the action is allowed
and return errors if found. At this point, it would
not perform any actual mutation since it has not
obtained user confirmation. Instead, the flow is
in a state where it expects the user to confirm the
action (yes/no). At this state, the flow’s code pre-
scribes that the agent should present a confirmation
message to the user, along with related warnings
and information, and ask the user whether they
would like to confirm the action. If the user con-
firms, then the LLM agent triggers a state transition
to the “CONFIRMED” state, which will actually
carry out the mutation operation and then present a
summary to the user.

Another more complicated rule is: “If you need
to modify the shipping address and modifying the
items of a pending order, then the shipping address
modification must happen first (otherwise the ad-
dress change would fail because the state is no
longer pending after item modification)” Notice
that there is nuance here because there are two
flows involved: ModifyPendingOrderAddress and
ModifyPendingOrderltems and the business logic
is about their ordering. To implement this, we let
the ModifyPendingOrderltems flow include an in-
struction to explain to the user the rule and ask
whether they have any changes to the shipping ad-
dress. If the user says yes (need address change),
then the agent is instructed to pause the Modi-
fyPendingOrderltems flow until the ModifyPendin-
gO0rderAddress flow completes.

Pattern: Limiting actions only to those com-
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patible with the state ensures that the agent does
not attempt to activate an action when its condi-
tions are not met.

We allow the system prompt (containing the tool
specification and instructions) to be conditioned
on the current state variables. For example, in 7-
bench, before successful user authentication, we
can hide all tools except authentication tools and
provide a hint to remind the LLM to ask for au-
thentication information; after user authentication,
the instructions related to how to authenticate users
can be dropped.

2.2 Delegation to LLM-Powered Tools

One of the core requirements of a retail customer
service is to identify the product items from the
user’s requests. In the 7-bench baseline, the LLM
calls get_product_details(product_id) to get
a list of all items for a product, and then reason
about what items match the user’s requirement. We
have observed that modern LLMs still struggle with
this class of reasoning and data processing tasks.
Our solution is to formulate an LLM-powered intel-
ligent tool for finding matching product items that
meet a user requirement stated in natural language.
The find_product_items tool takes as input a
product_id, user_id (for pulling in the user’s past
orders), and a natural language requirement and
returns a list of product items that match the user’s
requirement, which involves 3 steps:

1. Fetch the available product items for the given
product_id and compute all possible values
for each attribute. Fetch the user’s past order
history. Include them in the LLM prompt.

Call LLM to map the requirement to essen-
tially a SQL query. Note that the requirement
may be stated with reference to some items in
the user’s order history. The tool can use the
order history to infer the user’s requirement.

. Execute the SQL-like query and return the
results. In case of errors, return the full list of
available product items as a fallback.

As an example, suppose the main reasoning
loop generates a find_product_items function
call, searching for a jigsaw puzzle with require-
ment "more fancy theme, 500 pieces less, but with
the same difficulty level"; then the LLM-powered
find_product_items tool first generates the fol-
lowing filters via an internal LLM call:



THOUGHT: The user ordered a jigsaw puzzle with
1500 pieces, an "animals"” theme, and an
"intermediate” difficulty level. The user wants a
puzzle with a more fancy theme, which likely
means a theme other than "animals”, 500 pieces
less than their previous order, which would be
1000 pieces, and the same "intermediate”
difficulty level.

JSON: {"pieces”: ["1000"], "theme": ["art",
"fantasy"], "difficulty level”: ["intermediate"],
"price_filtering”: "none"”, "scope"”: "all"}

The resulting filters are then applied to the product
items to arrive at the desired product items.

The main LLM reasoning loop delegates
product search tasks to the LLM-powered tool
find_product_items by simply rephrasing the
user’s requirement. The internal LLM call of
find_product_items handles a focused reason-
ing task with all related information (the available
product items, the user’s past orders, the user’s
product request) present and no other distractions.
This division of reasoning responsibilities improves
reasoning accuracy. In contrast, with the more tra-
ditional approach, the main reasoning loop would
get all items and reason about what items match
user’s requirement. The main LLM reasoning loop
has to deal with more complex contexts and has
many responsibilities, which degrade its reasoning
accuracy. In addition, LLMs do not excel at data
processing, a task best suited for SQL-like execu-
tion. Instead, LLM should focus on formulating
SQL-like queries only and leave the execution of
the queries to code logic.

In addition, we also added another tool,
query_orders (similar to find_product_items),
which returns orders satisfying the user’s require-
ment. In this case, the main loop again has a rel-
atively simple task - extracting the user’s require-
ment from the chat history; the LLM tool is also
handling a simple task - it sees a concise require-
ment and stays focused on solving this task.

2.3 Adaptive Context Management

Modern LLMs can support long context windows.
However, it is also known that long context win-
dows sometimes cause performance degradation
(see, e.g., (Li et al., 2024)) as the LLM can get lost
in the long context and get confused. In addition,
inference with long contexts result in higher latency
and inference costs. For real world conversational
scenarios, the uncompressed context refers to: the
system prompt (instructions + tools), the entire chat
+ tool calling history. Thinker optimizes the context
to remove/compress distractions and prepares the
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LLM with contextually relevant information (tool
specifications, instructions, and tool calling results,
which relate to the current situation).

Compression: We remove redundant tool call-
ing results from the context, to reduce distractions
and lower inference cost. For example, the confir-
mation suggestions are meant to prepare the LLM
for a message to the user. Once the message is sent,
we can omit the confirmation suggestions.

Enrichment: We detect entities (e.g., a 10-digit
product id) mentioned in the user input and anno-
tate them with the corresponding entity information
(e.g., the id refers to the product id of Sneakers), as
a preprocessing step to bring in more context.

3 Walk Through via an Example

We use an example to walk through how Thinker
solves a typical customer service case. Figure 2
presents an example execution log with Llama-3
on the 7-bench retail dataset. We have added illus-
trations of each decision round.

User: Hi! I recently won a lottery and would like
to upgrade all my items to the most expensive
options available. Please ensure that the shoe
size remains the same. Can you assist me with
this?

[User not authenticated. Before taking any
actions, you have to first authenticate the user
identity by locating their user id via email, or
via name + zip code. This has to be done even
when the user already provides the user id.]

Note that the annotation was a state-dependent
instruction from SMAG. After authentication and
checking the user’s orders, there are a few rounds
of clarification where the assistant identified 3 or-
ders but only one of them is pending. Then the
user requested to upgrade the order. Figure 2
then illustrates the steps starting from this turn.
Thinker executes a reasoning loop to perform mul-
tiple rounds of reasoning and tool calls to arrive at
a response. In each round, it generates an output
structure that has a Thought part, which performs
Chain-of-Thought reasoning, followed by an Ac-
tion part, which could either be a list of actions or a
response to the user. In round 1, the agent outputs
4 calls to find_product_items.

We have also prepared an LLM-powered intel-
ligent tool, find_product_items, which finds the
matching product items based on a natural language
description. Notice to comply with the nuanced re-
quirement “Ensure the shoe size remains the same”,
the agent generated a requirement argument of
“most expensive, size 9”. The LLM-powered tool



then loads all available Shoe items. The LLM call
in the tool translates the requirement into a filter
condition “size”: [“9”] and a post-processing filter
“most expensive” — this is essentially mapping the
natural language requirement “most expensive, size
9” to SQL statement “SELECT * FROM products
WHERE product_id="6938111410" AND size IN
[“9”] ORDER BY price DESC LIMIT 1”. Then ex-
ecuting such filtering logic yields a single product
item. The tool call results generate additional mes-
sages and are appended to the execution trace. We
noticed that even GPT-4o still makes mistakes at
direct “data processing” tasks but casting the prob-
lem as a “SQL-like query generation” followed by
deterministic data processing is a lot more reliable.

Then in round 2, Thinker used SMAG to enforce
the business logic that a mutation action must be
first presented to the user for confirmation. Since
we have not asked the user for confirmation, the
state machine logic thus returns a templated con-
firmation message and some state-dependent in-
structions to instruct the LLM to ask for confirma-
tion. Another nuance is that if the user needs an
address change to this pending order, the address
change must be finished before the item modifica-
tion. Thus the templated confirmation suggestion
includes a sentence that asks whether the user needs
an address change, to comply with the business
logic. Given the templated confirmation suggestion
and the LLM instructions for this state, in the next
round, the LLM summarized the templated confir-
mation suggestion into a response message. Since
this round has no more tool calls, this exits the rea-
soning loop and the response is sent to the user,
asking whether the user needs an address change
and whether the user confirms the change.

In the next turn, the user then confirms the
change and replies that no address change is needed.
The agent then carries out the actual mutation logic,
since the agent parsed a state-progressing user in-
put (explicitly_confirmed=True). Finally, in the
next turn the LLM generated a response with the
modification details to the user. This successfully
fulfilled the user’s needs.

4 Experiments

We conducted our experiments on the 7-bench
retail dataset with GPT-40 (through Azure API,
version=2024-06-01) and an in-house deployment
of Llama-3.1 405B model, with temperature=0.
The 7-bench framework allows automatic end-to-

end evaluation by having a user model talking to
an Al agent, where the user model is an LLM in-
structed by a small script (task instructions, see Ap-
pendix C for some examples). We noticed issues in
some task instructions (errors and ambiguities that
confuse the user model), so we made some minor
changes (listed in Appendix A); these changes are
applied to the baselines as well. For the user model,
we use the GPT-40 model. We further optimized
the user model via a Chain-of-Thought prompt (Ap-
pendix B.1) so that it starts generation by recalling
the relevant instructions, then recalls the unfulfilled
instructions (to better keep track of the remaining
things to do), and finally gives a response. This lead
to a 1.8% success rate improvement on Llama-3.
We consider CoT user model results as the base-
line since our focus is on Al agent performance.
Fixing the task specifications and improving the
user model minimizes user side errors and makes
it possible to solve challenging tasks (If the user
model makes a mistake, no agent can fix it. Such
user errors render the task less interesting).

In all experiments, we collect 5 runs and report
the average accuracy. In Thinker agent implemen-
tations with both GPT-40 and Llama-3, the LLM-
powered tools are all based on Llama-3.

4.1 Main Results

With GPT-40 as the LLM model for the main rea-
soning loop, the baseline performance (GPT-40
single function calling, CoT user model, with task
corrections) is 68.3% and the Thinker agent im-
proved accuracy to 82.6%.

With Llama-3.1 405B, the baseline performance
(ReAct single function calling, CoT user model,
with task corrections) is 49.6% and the Thinker
agent improved accuracy to 81.9%.

In Appendix C, we list some examples of re-
maining errors. Many of the remaining errors are
due to errors from the user model. This points to
some areas for improvement for the 7-bench syn-
thetic user model setup; sometimes the user model
does not correctly immitate real user behavior (e.g.,
a real user would typically confirm their own ad-
dress when asked by the agent while the synthetic
user sometimes refuses to do so because the task
instruction does not include the full address).

Using Llama-3.1 70B as the base model instead
of Llama-3.1 405B, the Thinker success rate drops
from 81.9% to 71.3%. This is likely due to the
reasoning power difference of the LLMs. As a
future work, we plan to investigate the errors and



Table 1: Ablation studies with Llama-3.1 405B

Setup SuccessRate(o) Delta
ReAct baseline 47.8 (1.8)%

+CoT user model 49.6 2.1)% +1.8%

+Multi-function-calls 50.6 (1.4)% +1%
+LLM-powered tools 60.9 (4.0)% +10.3%
+Optimized read-tools 62.3(3.1)% +1.4%
+SMAG 77.9 (2.0)% +15.6%
+ACM, Prompt tweaks 81.9 (2.5)% +4.0%

develop solutions to improve 70B performance (e.g.
via distillation from 405B).

4.2 Ablation Studies

The ablation studies are reported in Table 1 and
Table 2. The second column lists the mean suc-
cess rate and the standard deviation (over 5 runs)
in parentheses and the third column reports the
delta in mean success rate. The "+Multi-function-
calls" setup refers to turning on multiple function-
call support; for Llama-3, this is done via a
prompt based implementation. The "+LLM pow-
ered tools" setup refers to using the LLM-powered
tools find_product_items and query_orders
to replace the raw APIs, get_product_details
and get_order_details. The "+Optimized read-
tools" setup refers to optimization on the non-
mutation tools, such as automatically returning the
order summary as part of the authentication func-
tion calls find_user_id_by_.... The "+ACM,
Prompt tweaks" setup refers to several optimiza-
tions: (1) adaptive context management techniques
such as entity annotation and context compression
(2) prompt tweaks.

For Llama-3, SMAG accounts for 15.6% success
rate improvement and LLM-powered tools 10.3%.
For GPT-40, SMAG account for 8.6% success
rate improvement; multi-function calls accounts
for 3.4%. Interestingly, the LLM-powered tools
only contribute a marginal improvement for GPT-
40. Our hypothesis is that Llama-3 is weaker in
reasoning and delegation of tasks to LLM-powered
tools is able to improve its reasoning.

Multi function-calling and context compression
also improve inference efficiency.

5 Related Work

5.1 Improvements on 7-bench

Lattimer et al. (2024) proposes a self-alignment al-
gorithm (JOSH) that leverages a sparse reward sim-
ulation environment to generate training data, and
then performs fine-tuning. On 7-bench, Lattimer
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Table 2: Ablation studies with GPT-40 (version: 2024-
06-01)

Setup Success Rate (o) | Delta

Single function calling 66.4 (3.2)%
+CoT user model 68.3 (3.9)% +1.9%
+Multi-function-calls 71.7 (2.0)% +3.4%
+LLM-powered tools 71.8 (2.5)% +0.1%
+Optimized read-tools 71.7 (1.6)% -0.1%
+SMAG 80.3 3.1)% +8.6%
+ACM, Prompt tweaks 82.6 (3.1)% +2.3%

et al. (2024) reports an improvement in success
rate from 61.73% (gpt-40-FC) to 67% (gpt-4o-FC-
JOSH-SFT). Unlike JOSH, our method does not
require any fine-tuning and is significantly simpler
to implement.

5.2 State Machines

StateFlow (Wu et al., 2024) proposes to represent
complex task-solving processes as state machines.
For example, the paper decomposes the task of writ-
ing a SQL query into four states: Observe, Solve,
Verify, and Error, and then builds the transitions
among them. The transitions between states are
controlled by heuristic rules or decisions made by
the LLM.

LangGraph (LangChain-Al, 2025) is an open
source Al agent framework that models agent work-
flows as graphs. An introduction to LangGraph
with a case study on a simple email processing sys-
tem is given in (Huggingface, 2025). In this case
study, the workflow may be broken down into the
following steps: (1) read email, (2) classify as spam
or not, (3) draft a response for legitimate emails (4)
send information when legitimate. As seen from
this example, LangGraph introduces structure for
representing the application flow as a state machine,
where a state in LangGraph represents all the in-
formation that flows through different nodes of the
application.

Both StateFlow and LangGraph model complex
task-solving processes as state machines. This is
very different from SMAG, where we use state
machines to represent business logic and rules, and
the LLM agent uses the state machine as a tool.
Simply put, StateFlow and LangGraph use state
machines to orchestrate the application workflow
consisting of LLM nodes and logic-based nodes,
while SMAG uses LLM to drive the state machines
which store business logic and rules as tools. For
a chatbot application, by using state machines as
tools, in SMAG, the LLM can precisely handle
business logic and yet still has full control over the



conversation and can flexibly adapt to the user’s
current question.

5.3 Problem Decomposition

Recent research on LLMs for decision making,
such as Plan-and-Solve Prompting (Wang et al.,
2023) and ADaPT (Prasad et al., 2024), focuses
on general purpose problem decomposition, where
they plans and decomposes complex sub-tasks for
separate LLLM invocations.

Thinker utilizes LLM-powered tools to perform
hierarchical decision making by delegating respon-
sibility between carefully formulated sub-tasks
based on domain specific knowledge.

5.4 Context Management

MemGPT (Packer et al., 2023) proposed virtual
context management inspired by OS memory sys-
tems design to manage the context window. For
7-bench, we only use lightweight adaptive context
management techniques - heuristics based context
compression and entity enrichment, with a focus of
removing distractions and preparing the LLM with
contextually relevant information.

6 Conclusion

We propose the Thinker agent framework with the
following key techniques:

e State-Machine  Augmented Generation
(SMAG). With business logic and rules
captured by tools that implement state
machines, the LLM agent focuses on the
orchestration of state transitions and is
aided by state-dependent instructions. This
is a general technique that allows us to
decouple the business logic representation
from conversational ability.

Handling complex reasoning via LLM-
powered intelligent tools, with each invoca-
tion addressing a specific reasoning task. This
is a simpler design pattern than multi-agent
architectures.

» Adaptive context management. Thinker opti-
mizes the context to remove/compress distrac-
tions and prepares the LLM with contextually
relevant information.

On the 7-bench retail dataset, these techniques
come together to result in state-of-the-art perfor-
mance. Note that the large gain is achieved via a
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prompting-only solution and it is using a standard
agentic architecture with a ReAct style reasoning
loop. We highlight the power of careful tool inter-
face design, as exemplified via SMAG and LLM-
powered tools. We believe this is a valuable insight
regarding future agentic architectures.
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A Changes to 7-bench tasks

We started with the tasks given in github.com/sierra-research/tau-bench (which contained some
corrections after its initial version) and made the following changes.

Table 3: Changes to the tasks.

Task Before After Explanation

IDs

5,6,7, You are mei_kovacs_8020 You are mei_kovacs_8020 Sometimes the user model

8,9 (28236) (zip: 28236) doesn’t realize that 28236 is
zip.

16 You want to cancel all pend- You want to cancel all pend- User script didn’t specify

ing orders ing orders (since they are no cancellation reason but label
longer needed) is “no longer needed”

33,34  "outputs": ["1093.34"] "outputs": [] "You want to know the to-

tal amount you will get back,
and you want to get the re-
fund on your original pay-
ment method. If cancelling
partial items is not possible,
just keep the order and forget
about it"
Agent would reply back to
explain that it is not possible
to cancel partial items and
skip answering the question
about the total amount since
it is not applicable.

34 "province": "NY" "state": "NY" Order address uses the “state*
field.

38 If agent asks you about the Instruction didn’t include
cancellation reason, say ‘no cancellation reason but label
longer needed’. used “no longer needed”.

67 Your name is Noah but you Your name is Noah but you User script didn’t specify the

go by NoNo. go by NoNo. Your last name user’s last name.
is Ito.
74 "payment_method_id": "payment_method_id": "pay- The instructions did not spec-

"credit_card_4466831",

pal_5914760",

ify a change in payment
method, so we assume it is
the same as the original order
which is paypal_5914760.
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Table 3: Changes to the tasks. (Continued)

76

If removing one item is not
possible, cancel the whole or-
der. You also want to modify
the skateboard to maple ma-
terial, 34 inch, graphic. If not
availabe, cancel the order so
that you can order again.

If removing one item is not
possible, cancel the whole or-
der (reason - ’ordered by mis-
take’). You also want to mod-
ify the skateboard to maple
material, 34 inch, graphic. If
not availabe, cancel the order
(reason: 'no longer needed’)
so that you can order again.
If the agent asked you about
the cancellation reason, say
"no longer needed’.

Added cancellation reasons
to be consistent with the ex-
pected actions

79

If the exact item is not avail-
able any more, you can allow
the material to be different.

If the exact item is not avail-
able any more, you can allow
the material to be different
but the color should be the
same as the 1000ml bottle in
my previous order.

Fixed an ambiguous instruc-
tion to specify the red color,
to be consistent with the syn-
thetic_instruction

86

You also want to want to
change your default address
to your Washington DC ad-
dress (which you do not want
to reveal but is in one of the
orders).

You also want to want to
change your default address
to your Washington DC ad-
dress (which you do not want
to reveal but is in one of the
orders). You don’t need to
change the order address.

Added "You don’t need to
change the order address." in
case the agent asks whether
the user wants to change the
order address, to be consis-
tent with the expected actions

99

If the agent asks for confir-
mation, mention that you’d
prefer the other card as pay-
ment or refund method.

For the camera exchange, if
the agent asks for confirma-
tion, mention that you’d pre-
fer the other card as payment
or refund method.

Added “For the camera ex-
change” to remove ambigu-

ity.

101

"payment_method_id":
"credit_card_3261838"

"payment_method_id": "pay-
pal_3650980"

Instruction didn’t mention
payment method, so we use
the original payment method.

101

You want to return your lug-
gage set and get the exact
same item but with red color,
and reutrn you skateboard in
the same order to ’length’:
’34 inch’, *design’: ’custom’;
You also want to return the
hiking boots.

You want to return your lug-
gage set and get the exact
same item but with red color,
and reutrn you skateboard in
the same order to ’length’:
’34 inch’, ’design’: ’cus-
tom’ but keep the same ma-
terial; You also want to re-
turn the hiking boots via pay-
pal_3650980.

Remove ambiguity and be
consistent with the label.
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Table 3: Changes to the tasks. (Continued)

110 recently you moved to a new recently you moved to anew User model sometimes does
house on the same street and house on the same street and not mention this important
bought a luggage set sent to  bought a luggage set sent to  clue to the agent.
there there (Make sure to mention

’bought a luggage set sent to
there’ to the agent).

111 recently you moved to a new recently you moved to anew User model sometimes does
house on the same street and house on the same street not mention this important
bought a tablet sent to there  and bought a tablet sent to clue to the agent.

there (Make sure to mention
"bought a tablet sent to there’
to the agent)

B Prompts

B.1 Chain-of-Thought User Model Prompt

You are an user interacting with an agent.
Instruction: \{instruction\}

At each step, your generation should have exactly the following format and have exactly 6 lines (as
shown below):

Relevant instructions:
<Quote entire sentences (ending in .) of the instruction that are related to the current situation. If
no instructions are related, say N/A>

Unfulfilled instructions:
<List the additional instructions that you have not yet performed.>

Response:
<Your message to be sent to the agent.>

Rules:
- You MUST strictly follow the Relevant instructions: . Response: . format!! in every step.
- Just generate one line at a time to simulate the user's message.

- Do not give away all the instruction at once. Only provide the information that is necessary for the
current step.

- Do not hallucinate information that is not provided in the instruction. For example, if the agent
asks for the order id but it is not mentioned in the instruction, do not make up an order id, just say
you do not remember or have it.

- If the instruction did not mention payment method, assume the payment method is unchanged.

- DO NOT make up addresses or phone numbers! Agent should be able to find your address and phone
number in your profile.

- If the instruction goal is satisified, generate '###STOP###' as a standalone message without
anything else to end the conversation.

- Do not repeat the exact instruction in the conversation. Instead, use your own words to convey the
same information.

- Try to make the conversation as natural as possible, and stick to the personalities in the
instruction.

- You should not return an item if it is lost since you do not have the item.
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- Do not accept any workaround suggestions from the agent if that does not align with the instruction.

- If the instruction mentions changing address of a certain order, it meant changing such entire
order’s shipping address.

- DO NOT generate '###STOP###' if agent is still waiting for you to confirm an action (yes or no).

B.1.1 Prompt for the LLM-powered Tool find_product_items

Here is a simplified version of the prompt:

You are given a dictionary (key: an attribute, value: possible values of the attribute) for a product,
the user's past orders of this product, and a user's requirement stated in English.

Respond in the following format (omit the "~ ~""s):

THOUGHT :

<If applicable, describe references to the user's past orders in the user's requirement, including
the detailed product attributes. Then describe the user's requirement in terms of the product
attributes. Important: If the user wants to reorder some items they have ordered before, make sure to
set the scope to "past orders"”.>

JSON:

<Translate the requirement into a JSON dictionary with keys being the product item attributes and
values being the acceptable values. There are two additional special keys:

- "price\_filtering” with value being "cheapest”, "most expensive”, or "none".

- "scope” with value being "all"”, "past orders” (if user would like to order some item they have
ordered before)>

C Example Remaining Errors (with Llama-3.1 405B)

Table 4: Example remaining errors with Llama-3.1 405B

Task ID Task Instructions Error

5 You are mei_kovacs_8020 (zip: 28236) and User model error. User was supposed to not
you want to exchange the water bottle and confirm the exchange of the desk lamp but
the desk lamp. You want to exchange the return the water bottle.
water bottle to a bigger one, and the desk
lamp to a less bright one (prefer battery >
USB > AC). If the agent asks for confir-
mation, only exchange the desk lamp. If
the agent asks for confirmation again, do
not exchange anything, and return the water
bottle instead.

Continued on next page

75



Table 4: Example remaining errors with Llama-3.1 405B (Continued)

8 You are mei_kovacs_8020 (zip: 28236) and User model error. User said “Hi! I’d like
you want to exchange the water bottle and to exchange my desk lamp for a brighter
the desk lamp. You want to exchange the one, preferably one that runs on battery.”
water bottle to a bigger one, and the desk Agent tried to search for "brighter and runs
lamp to a brighter one (prefer battery > on battery" and found no match - so it saw
USB > AC). If the agent asks for confir- the entire list of desk lamps. Agent then
mation, only exchange the desk lamp. thought “The find_product_items tool did

not find an exact match for a brighter desk
lamp that runs on battery. However, it pro-
vided a list of available items. I need to
find the item that best matches the user’s
request.” So it suggested 2 items and the
user chose one of them — this deviated from
the intended trajectory.

16 You are Fatima Johnson in 78712. You want  User error. User is supposed to ask about
to cancel all pending orders and return the the total amount you can get back but they
watch you have received (but nothing else), didn’t.
and you want to know the total amount you
can get back. You are a private person that
does not want to reveal much about your-
self.

20 You are Ethan Garcia, and you live in Den- User error. User is supposed to mention
ver, 80280. You just won a lottery, and you that they want to pay the difference with
want to upgrade all your items to the most your GC but they didn’t.
expensive options (but make sure the shoe
is still the same size). You are happy to pay
the difference with your GC, but otherwise
PayPal is fine. You are a mysterious per-
son and do not want to reveal much about
yourself.

28 You are Isabella Johansson, and you live in ~ User error. User asked to return “the skate-

32286. You want to return the skateboard,
garden hose, backpack, keyboard, bed, and
also cancel the hose you just ordered (if
cancelling one item is not possible, forget
about it, you just want to cancel the hose
and nothing else). You want to know how
much you can get in total as refund. You
are extremely brief but patient.

board, garden hose, backpack, keyboard,
bed”. Agent figured out everything except
the bed — there is no bed. Instead only a pet
bed in one of the orders. So the agent asked
the user to provide more information about
the bed. User said “I don’t have more in-
formation about the bed. Can you proceed
with the other items?” So the bed request
got dropped.
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Table 4: Example remaining errors with Llama-3.1 405B (Continued)

31

You are Olivia Lopez, and you live in Texas
in 76171. You just lost your tablet you
just received and are in a bad mood. You
want to know the tracking number of the or-
der, and if the agent can help you refund or
reorder the tablet. (You know it’s a long
shot, but you want to try). If not, can-
cel the charger you just bought, because
it goes with the tablet... Also cancel the
boot and keep the kettle (if not possible, do
not do anything on that order), and return
the sneaker. You like to do one thing at a
time, and reveal minimal information about
yourself.

User Error. User lost their tablet but asked
to return it. Agent went through the process
and even reminded the user they must phys-
ically return the tablet to receive the refund
but the user confirmed.

33

You are an interesting guy called Noah Pa-
tel, living in the Big Apple in 10108. You
had a work-from-home situation and or-
dered three home office items along with
some hiking items, so that you can go back
to your parent’s place at Seattle to remote
work and enjoy outdoor life. But your com-
pany just announced that you will be back
to the office soon. If cancelling partial items
is possible with the agent, you want to re-
turn the office items (your forgot what) and
keep the hiking items. You want to know
the total amount you will get back, and you
want to get the refund on your original pay-
ment method. If cancelling partial items
is not possible, just keep the order and for-
get about it, but change your default user
profile address to the Seattle parent house
shown in your order (you do not want to
reveal it in chat). You are a funny guy but
recently the WFH situation made you a bit
anxious.

What the user wanted to do is not possible.
So agent eventually gave up and transferred
to human agent, which terminated the pro-
cess before the user is able to continue with
the script and request a change of address.
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Table 4: Example remaining errors with Llama-3.1 405B (Continued)

41 Your name is Mei Patel, and you live in User Error. User instructions specified
445 Maple Drive, Suite 394, Fort Worth, “You want to check it, and potentially cor-
Texas, 76165. You just created your user id rect all order addresses and your user ad-
mei_patel_7272 and ordered some things, dress” Instead, the user said: "Yes, I need
but you have two problems: first, the 1000- to check and potentially correct the address
piece intermediate jigsaw might be too hard  of this order and my user address." So this
for your little kid, you wonder if you can changed one pending order address instead
change it to the easiest one with fewest of 2. Also the user is supposed to “Make
pieces; second, you might have typed your sure you mention these two problems at the
address wrong. You want to check it, and same time in the same order.”
potentially correct all order addresses and
your user address. Make sure you mention
these two problems at the same time in the
same order. You are brief and your mem-
ory is not too good sometimes, but you are
polite.

54 User asked for the total amount they are get-
ting back. Since the return API included the
original total amount instead of the refund
amount, the agent incorrectly assumed that
is the total refund amount. One potential
fix is to modify the return API to include a
description of “Total Refund Amount”.

58 User model error. User wanted to exchange
the coffee machine but chose the wrong
model when the Agent presented all avail-
able options. User didn’t tell the agent that
they wanted to keep the same capacity for
the coffee machine.

59 Reasoning error. Assistant initially was
correct that there is no information about
which order (among two orders the user
mentioned) is the older. But in the next
turn, the agent started to assume the older
order is W2702727.

64 You are James Sanchez. You live in Ambiguous task specification. There are
Chicago 60623. You want to exchange the two Action Cameras satisfying the require-
camera for the highest resolution, water- ment. Need to modify the task specification
proof camera that you can get with the pre- to make it unique.
vious purchaced price.

66 You are Aarav Lee. You want to change the User wants to change luggage set to a coat.

luggage set in your order for a coat. You
live in Phoenix, AZ 85025. Your goal is to
change the order. If there is no way to do
that, return the item specifically. If there
are any issues, cancel the entire order.

This is not possible. Agent tried many ways
to do so but failed. So it was transferred to
human.
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Table 4: Example remaining errors with Llama-3.1 405B (Continued)

71

You name is Ivan Khan and your zip code
is 28243. You are polite, optimistic, orga-
nized. You made some mistake and ordered
an order sent to your son’s address in Wash-
ington DC, and you want to modify it to
your default address in Charlotte (you do
not want to mention it, but it is in your user
profile the agent can look up) because he is
coming back home. You also want to adjust
the desk lamp to be black color, and the
backpack to be medium size and polyester
material instead. If multiple colors are avail-
able for the backpack, you prefer grey. If
the agent asks for payment method, you say
GC initially, but if the agent does not allow
it or asks you to confirm it, you change your
mind to PayPal, and decide to only modify
the backpack.

User error. Script: "If the agent asks for
payment method, you say GC initially, but
if the agent does not allow it or asks you to
confirm it, you change your mind to Pay-
Pal." Agent asked for confirmation assum-
ing original payment (GC). User didn’t ob-
ject to it so GC but the label is to use Pay-
Pal.

82

You name is Chen Silva and your zip code
is 46281. You are messy, flexible, outgoing.
You received two tablets and you only need
one. You want to return the more expensive
one and refund to credit card. If refund
to credit card is not possible, you become
angry and return everything on that order
and refund to GC.

User error. There are two tablets. User is
supposed to return the most expensive one
but the user model didn’t know which one
is more expensive. So it picked the wrong
one.

87

You name is Yusuf Her-
nandez and your email is
yusuf.hernandez8836 @example.com.
You are shy, rigid. You want to modify
all your pending order address to the
Washington DC address (which you do not
want to reveal but is in one of the orders),
along with your user default address.

User error. User is supposed to mention
wanting to change to WashingtonDC ad-
dress.

93

You name is Lei Wilson and your zip code
is 32255. You are confident, organized, cre-
ative, impatient. You received a laptop and
you want to exchange it to i7 processor,
8GB, 1TB SSD. If the agent asks for which
laptop, it is 15-inch, 32GB.

Wrong reasoning. “The user has multiple
orders, but only one of them contains a lap-
top. “ This is wrong - there are 2 orders
containing laptops.
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User error. “For both orders, you’d prefer
the visa card as payment or refund method.”
User didn’t mention this. Agent assumed
the original payment which is a mastercard.
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