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Abstract

While server-side Large Language Models
(LLMs) demonstrate proficiency in function
calling and complex reasoning, deploying
Small Language Models (SLMs) directly on
devices brings opportunities to improve la-
tency and privacy but also introduces unique
challenges for accuracy and memory. We in-
troduce CAMPHOR, an innovative on-device
SLM multi-agent framework designed to han-
dle multiple user inputs and reason over per-
sonal context locally, ensuring privacy is main-
tained. CAMPHOR employs a hierarchical ar-
chitecture where a high-order reasoning agent
decomposes complex tasks and coordinates ex-
pert agents responsible for personal context
retrieval, tool interaction, and dynamic plan
generation. By implementing parameter shar-
ing across agents and leveraging prompt com-
pression, we significantly reduce model size,
latency, and memory usage. To validate our
approach, we present a novel dataset capturing
multi-agent task trajectories centered on person-
alized mobile assistant use-cases. Our exper-
iments reveal that fine-tuned SLM agents not
only surpass closed-source LLMs in task com-
pletion F1 by 35% but also eliminate the need
for server-device communication, all while en-
hancing privacy.

1 Introduction

Server-side Large Language Models (LLMs) are
powerful semantic parsers that interpret user intent
and map queries to executable function calls. To
ground a query within a personal environment such
as an open toolbox, retrieval-augmented generation
(RAG) (Borgeaud et al., 2022) can be adopted to
pre-fill the LLM prompt with external knowledge
relevant to the user query, such as top-K most rele-
vant tools. An orthogonal strategy is long-context
language modeling (Beltagy et al., 2020; Zaheer
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et al., 2020), which pre-loads the prompt with all
available external knowledge, taking advantage of
a larger context window up to 128K tokens (Dubey
et al., 2024). However, a server-side LLM is not
optimal for a mobile assistant due to privacy and
latency concerns.

Privacy. User queries to mobile assistants are
often ambiguous, making it crucial to ground them
in personal information, such as contacts, installed
tools, and past activities. While the assistant needs
access to personal data to improve understanding,
it must also prioritize user privacy by keeping sensi-
tive information on the device. Even private cloud
solutions are not ideal for this, as they commonly
avoid storing user-specific data, which prevents KV
caching in multi-turn dialogues (Li et al., 2024).

Latency. In addition to the limited flexibility
of KV caches due to privacy concerns, server-side
LLMs introduce extra latency between understand-
ing (which occurs on the server) and execution
(which happens on the user’s device). This latency
can degrade the user experience, particularly for
solutions requiring multiple server-device round
trips. For instance, the ReAct framework (Yao
et al., 2023), which breaks down the understanding
task into multiple steps and reasons over interme-
diate execution results, is hindered by this added
latency.

A more effective solution to address latency and
privacy concerns is to deploy a small language
model (SLM) on-device, allowing it to process per-
sonal data and interpret user queries locally. How-
ever, SLMs introduce new challenges related to
accuracy due to tighter budgets on prompts and
KV caches. While a RAG approach is scalable
across personal databases, the retriever is a sep-
arate model which gates the performance of the
language model since it is impossible to achieve a
perfect recall given the fixed prompt budget (Fan
et al., 2024). The problem becomes worse for com-
positional queries which are naturally harder for
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retrieval. Consider the following example:

Can you show me the cheapest flight
options to Barcelona next month and
add it to my calendar? Also, let my
travel buddy know about our trip plan.

The query is both compositional and includes a
personal entity (my travel buddy). Successfully
retrieving the appropriate tool requires task decom-
position, which depends on the granularity of the
available toolbox (i.e., the tools present on the
user’s device). While long-context modeling al-
lows the language model to consider all relevant
tools and personal entities during query parsing, it
also rapidly exhausts the prompt budget, increases
KV cache overhead, and introduces a "needle-in-a-
haystack" challenge (Liu et al., 2024) for the SLM.

We argue that a key to successful on-device un-
derstanding is an agentic approach that decom-
poses the understanding task in functional space,
proactively seeks personal information and runtime
feedback before generating the final function call.
Specifically, we propose CAMPHOR, an SLM-
based collaborative agent understanding system
for grounded query parsing. CAMPHOR features
a hierarchical architecture, with a high-order rea-
soning agent that incrementally solves a query by
orchestrating sub-agents. Each sub-agent is respon-
sible for a unique functionality, such as retrieving
personal entities, fetching latest user activities, and
calling task-completion APIs. We apply tool com-
pression techniques that enable the SLM to rea-
son over device-specific toolboxes while satisfying
prompt and memory budgets. Overall, CAMPHOR
is designed to offer optimal accuracy and speed,
while protecting user data on device.

We release the CAMPHOR dataset1, which con-
sists of multi-agent execution trajectories focused
on mobile assistant use cases (as shown in Fig-
ure 1). The dataset is unique in how it simulates
user device states and ground query understanding
to personal information. We fine-tune the SLM-
based CAMPHOR agent on this dataset, and prove
that fine-tuned SLMs can outperform closed-source
LLMs in terms of task completion metrics, while
eliminating server-device communication costs and
safeguarding user privacy.

1The dataset can be found at https://github.com/
sofyc/CAMPHOR.

Figure 1: CAMPHOR dataset simulates a user’s smart-
phone environment, encompassing diverse personal in-
formation stored across multiple apps on the device.

2 Related Work

Small Language Models and On-device Agents
demonstrate benefits of faster inference, lower la-
tency, and enhanced privacy protection. Studies
show that SLMs like Mistral (Jiang et al., 2023),
Phi (Abdin et al., 2024), TinyLlama (Zhang et al.,
2024), MobileLLM (Liu et al.), MiniCPM (Hu
et al., 2024), and Gemma (Team et al., 2024),
when fine-tuned for specific tasks, can outperform
prompting Large Language Models (LLMs). In
particular for the function calling task, the Octopus
series (Chen et al., 2024b) has achieved remarkable
accuracy, exceeding 97% for function calling on
device. Most related to our work is the on-device
Octo-planner (Chen et al., 2024a), which breaks
down a query into multiple subqueries for function
call generation. However, we argue that query de-
composition in natural language space is an uncon-
strained optimization problem, as the granularity
of decomposition depends on the available toolset.

Multi-agent Planning is the process where
multiple agents, each with unique capabilities,
knowledge, and objectives, work together towards
shared or interrelated goals. The rise of large
language models (LLMs) has significantly ad-
vanced the development of multi-agent planning,
as tasks for each agent can potentially be solved
through prompts. Agentic frameworks like Re-
Act (Yao et al., 2023), Reflexion (Shinn et al.,
2024), LATS (Zhou et al.), SwiftSage (Lin et al.,
2024), and AUTOACT (Qiao et al.) continuously
prompt LLMs to reflect on and critique their past ac-
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tions, sometimes incorporating additional external
information, such as environmental observations
and feedback. In this work we focus on multi-agent
that solves user queries while understanding user
data on a device. Examples of such data includes
past user actions, personal entities and installed
toolsets (Wu et al., 2024).

Retrieval Augmented Generation and Long-
context Language Models are two orthogonal ap-
proaches to ground a fine-tuned LM with external
data sources, which in this work include the dy-
namic set of personal entities and tools (Borgeaud
et al., 2022). A standard workflow of RAG includes
possibly a query generation step (or a query decom-
position step for compositional utterances) (Ma
et al., 2023; Rackauckas, 2024) followed by sparse
and/or dense retrieval. The retrieval model is com-
monly a separate set of parameters which can be
trained either separately or jointly with the LLM.
A major limitation of RAG is that a sub-optimal
retrieval model will gate the performance of the
LLM which has access to more contextual informa-
tion. In contrast, long-context LLMs allow for the
direct incorporation of more external data into the
prompt (Beltagy et al., 2020; Zaheer et al., 2020;
Kitaev et al., 2019; Ding et al., 2023). However,
this comes at the cost of increased size of prompt
and KV caches, making it impractical for small lan-
guage models (SLMs) and on-device deployment.

Prompt Compression is an optimization to re-
duce the number of prompt tokens at least at the
inference time. We adopt the technique to en-
able SLMs to retrieve directly from a dynamic
toolbox. Related to this work are the work of
Gist tokens (Mu et al., 2024), Parallel Context En-
coder (Yen et al., 2024), and Squid which com-
presses a piece of long text into a single embed-
ding (Chen et al., 2024c). These approaches dif-
fer in terms of how the compressed embedding is
learned and incorporated with the base LLM, as
either prompt tokens or late fusions in the attention
layer.

3 Methodology

3.1 Agents Overview
CAMPHOR is a collaborative agent framework
that performs grounded query parsing on a user de-
vice. It consists of the following agents, including
an orchestrator:

• High-order reasoning agent plans the process
of understanding a user query, solving the

query by determining the order in which other
expert agents are invoked, effectively using
the expert skills to complete sub-tasks.

and various experts:

• Personal context agent generates function
calls to search relevant personal context that
would be helpful in resolving entity ambigu-
ities and under-specified queries. The set of
function calls that can be invoked by the
agent is unique for each user device, as the
databases of personal entities are linked to the
apps installed on a user device.

• Device information agent generates generic
function calls to retrieve device information
including current location, time and screen
entities.

• User perception agent represents a single func-
tion call to fetch the recent user activities on
device.

• External knowledge agent generates generic
function calls to seek information from exter-
nal sources including web search, Wikipedia
and calculator.

• Task completion agent generates function calls
to represent the user intent towards task com-
pletion. The set of function calls that can
be invoked by the agent is unique for each
user device, as the capabilities are determined
by the apps installed on a user device.

Take the following query as an example

Can you show me the cheapest flight
options to Barcelona next month and
add it to my calendar? Also, let my
travel buddy know about our trip plan.

The high-order agent proactively gathers personal
information to understand the user intent. This
includes Device information agent to obtain the
current location and Personal context agent to look
up the entity travel buddy. The Task completion
agent is finally invoked to generate the task com-
pletion function calls. Figure 2 shows a high-level
overview of all CAMPHOR agents.

3.2 Dynamic Prompt Construction
We model all agents in CAMPHOR with the same
underlying SLM. A general formulation of all
agents is that they take as input an agent-specific
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Figure 2: An overview of multiple agents in CAM-
PHOR. The figure includes all agents for completeness.
In practice, a subset of the agents can be invoked in
arbitrary order until task completion.

prompt and produces a function call which can be
executed. The execution result of each expert agent
is sent back to instruct the higher-order agent and
the next expert agent. An agent prompt pa is gener-
ated by a template formatting function f(ia, ha, ta),
where ia is an agent-specific task instruction and
ha stands for the message history (i.e., the past
agent actions and observations) that the agent has
access to.

ta is an optional parameter representing func-
tion definitions that go into the prompt. Note
that most agents actually use a static set of func-
tions that are shared across user devices. The
static set of function calls and parameters can be
directly memorized by the model without defi-
nitions revealed in the prompt. However, two
agents—the personal context agent and the task
completion agent—interact with a dynamic set of
device-specific functions. This is because the en-
tity databases and capable tools are dependent on
the apps installed on each user’s device. For these
two agents, we need to present a dynamic set of

function definitions in the prompt.

3.3 Prompt Compression
As discussed earlier and demonstrated through ex-
periments in Section 5.5, a RAG-based approach is
sub-optimal because the retriever gates the perfor-
mance of an SLM. Additionally, it is impractical to
include the entire set of function definitions in the
prompt, as this would quickly exceed the prompt
token limit. To address this, we compress each
function definition into a single token, which is
then appended to the beginning of the prompt. This
prompt compression approach is reminiscent of the
cross-modality token used in multi-modal language
modeling. By doing so, the agent can still access
and reason over the full set of function definitions,
while significantly reducing the number of input
tokens—by a factor corresponding to the average
length of function definitions in the prompt.

We opt for the SLM itself as a text encoder to ob-
tain the single-token embedding for each function
definition, by taking the output embedding of the
last token therein, as illustrated in Figure 3. The
choice is motivated by the fact that the language
model is already pre-trained to encode text, offering
meta-learning generalization. During fine-tuning,
gradients will not be back-propagated through the
function tokens. Comparing to gist tokens (Mu
et al., 2024) which also leverage a pre-trained lan-
guage model to encode texts as KV caches, our
approach significantly reduces the cache size since
only a single embedding is needed for each func-
tion definition, whose KV caches are computed on
the fly of language model inference.

Positional Embeddings. We set custom position
indices for the computation of the Rotary Positional
Embeddings (Su et al., 2024). Every function to-
ken in the prompt shares the same position index
0 while the first token in the formal prompt starts
with with position index 1. Function tokens are
restricted from attending to each other, but each
prompt token can attend to all function tokens, rea-
soning over the toolbox jointly.

4 CAMPHOR Dataset

A central focus of CAMPHOR is personalized plan-
ning and query understanding on device. However,
existing function calling datasets (Patil et al., 2023;
Qin et al.) only provide task completion annota-
tions for user queries but not incorporating personal
knowledge for understanding. On the other hand,
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Figure 3: Prompt compression technique. We use the pre-trained SLM itself as a text encoder to generate a
single-token embedding for each function description, by taking the output embedding of the final token therein.
The compressed function tokens are appended to the beginning of the prompt.

there exist a few datasets on agent planning but
they largely focus on mathematics (Cobbe et al.,
2021; Mishra et al., 2022; Lu et al.) and common
sense reasoning (Talmor et al., 2019; Geva et al.,
2021) instead of query parsing.

To this end, we created the CAMPHOR dataset
by annotating each query with a trajectory of func-
tion calls that demonstrate how a multi-agent sys-
tem proactively fetches personal information to
solve a user query by breaking down the under-
standing task into smaller actions. The dataset is
developed by assigning a personal device state to
each query, which includes a randomly sampled
history of user activities, as well as the personal
entities and tools available on the device. Each
query in the dataset is generated by GPT-4o based
on a device state and a set of global function defi-
nitions. The GPT-4o is also instructed to annotate
the query in a multi-step fashion. The execution
results are fetched from the device state for each
function calling, which are then used to guide the
next step of annotation. The final solution path is
reviewed and verified with human oversight. Over-
all, the CAMPHOR dataset contains 3,410 queries,
which are split into 2,728 for training and 682 for
test. The dataset is flattened, resulting in 35,444
prompt-completion pairs for SLM fine-tuning, with
an average of 10.39 pairs per query.

5 Experiments

We consider two SLM candidates for fine-tuning
the CAMPHOR agents: Phi-3.5 and Gemma-2.
The sequence of prompt and completion pairs asso-
ciated with each query is obtained by unrolling the

ground truth trajectories in the dataset. Fine-tuning
details are provided in Appendix A.

5.1 Evaluation Metrics
We consider three end-to-end evaluation metrics on
task completion:

• Tool F1 measures the accuracy of the function
names used in task completion function calls.
F1 is selected as the metric because it not only
accounts for true-positive predictions within
the ground truth set, but also penalizes false-
positive predictions outside of it.

Example: send_imessage_message

• Delexicalized Plan F1 measures the accuracy
of both function names and parameters in task
completion function calls. A true-positive pre-
diction must not include any parameter hal-
lucinations. The prediction is measured at
the abstract syntax tree level, disregarding the
order of parameters.

Example: send_imessage_message(
receiver, content)

• Plan F1 measures the accuracy of both func-
tion names, parameters and their values in
task completion function calls. A subset of
the parameters does support a open set of val-
ues, instead of closed-set enums. We adopt
a lenient match rule to evaluate open-ended
values: a match is incurred if the Sentence-
BERT (Reimers, 2019) embedding similarity
between target and predicted values is higher
than threshold 0.7.
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Example: send_imessage_message(
receiver = "555-123-4567", content =
"Flight Booked")

5.2 LLM Baseline Experiments
Before presenting results for the fine-tuned SLM
agents, we first evaluated the performance of state-
of-the-art LLMs on the CAMPHOR test set as base-
lines. We choose Claude-3.5 as the LLM for eval-
uation to avoid any potential label leakage as the
CAMPHOR dataset is generated with GPT-4 in the
loop.

A key difference between instruction-based in-
ference and fine-tuning is that the former relies
fully on the prompt instructions which must be
clear and often framed with specific structure to
guide the pre-trained model. In comparison (as we
will show in Section 5.3), the prompts used in fine-
tuning can be more concise and tailored according
to prompt budgets, as the model is tuned to act for
certain pattern of inputs. Given the requirement of
instruction-based inference, we evaluated a wide
range of prompting strategies and aim to pick the
best for the comparison with SLM fine-tuning. The
prompting strategies include:

• Static employs a consistent prompt template
which contains all available function defini-
tions for all CAMPHOR agents. The LLM
agent is tasked to generate a sequence of func-
tion calls for each CAMPHOR query. The pre-
diction history is also appended to the prompt
of each turn.

• ReAct is similar to the Static baseline, but addi-
tionally has the option to perform an explicit
reasoning step before generating a function
call.

• Reflexion is similar to ReAct, but additionally
incorporates a reflection step to examine the
generated function calls and provide feedback.
Reflexion inherently requires multiple trials,
the number of which is set to 3.

• AUTOACT employs three district prompt tem-
plates that respectively handle function call
generation, parameter filling and reflection of
the results. Similar to other baselines, each
CAMPHOR query is parsed as a sequence of
function calls with parameter values. The pre-
diction history is also appended to the prompt
of each turn.

• CAMPHOR Agents employ distinct prompt
templates for each CAMPHOR agent. The
prompt of each agent contains agent-specific
task descriptions, function calls of that agent
and in-context examples. The prediction his-
tory is also appended to the prompt of each
turn. This setting is closer to the dynamic
prompt construction adopted in fine-tuning.
Examples for the prompts can be found in the
Appendix B.

Evaluation results of various LLM prompting
strategies are presented in Table 1. The table
demonstrates the importance of dynamic, agent-
specific prompting strategies in solving CAM-
PHOR queries. One conclusion is that it is sub-
optimal to overload all agent instructions and func-
tion definitions into a static prompt template. Given
the results, we select CAMPHOR-agent as the LLM
baseline to compare with fine-tuned SLM agents.

5.3 SLM Fine-tuning Experiments

Remember that we consider two base SLMs, Phi-
3.5 and Gemma-2, for fine tuning. A key question
we aim to answer is how to formulate the prompt
such that the SLM maintains high accuracy while
satisfying the prompt budget of on-device deploy-
ments.

We start with the dynamic prompt formatting
function described in Section 3.2. Each agent
prompt contains an agent-specific task description,
the prediction history and optionally function de-
scriptions. Compared to the agent-specific prompts
in LLM experiments, there are two differences in
the SLM fine-tuning. First we only append def-
initions for the dynamic set of functions for the
personal context agent and the task completion
agent, since the static functions (and their param-
eters) can be memorized via fine-tuning. Second,
we removed in-context examples for each agent
from the prompt, considering the prompt budget
and also because the model can be trained to react
to input patterns without in-context learning. In the
fine-tuning process, we employ parameter sharing
across agents so that all of them are trained jointly
in a single, unified model.

Table 2 shows the results comparing the fine-
tuned SLMs with the best LLM prompting strategy.
The fine-tuned SLMs, including both Phi-3.5 and
Gemma-2, outperform the LLM result in task com-
pletion metrics. Meanwhile, the Phi-3.5 model
without fine-tuning does poorly in task comple-
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Metric Prompting Strategy

CAMPHOR AUTOACT Reflexion ReAct Static

Tool F1 / % 51.31 48.59 48.94 36.72 35.7
Delexicalized Plan F1 / % 30.07 25.77 24.49 19.16 18.78

Plan F1 / % 27.96 24.77 22.53 18.36 17.18

Table 1: Claude 3.5 Sonnet performance with different prompting strategies.

Metric
Model

Phi-3.5
(fine-tuning)

Gemma-2
(fine-tuning)

Claude-3.5
(LLM baseline)

Phi-3.5
(no fine-tuning)

Tool F1 / % 67.84 63.72 51.31 12.94
Delexicalized Plan F1 / % 44.85 41.57 30.07 10.39

Plan F1 / % 38.77 37.43 27.96 9.72

Table 2: Performance of the fine-tuned SLM compared to the untuned LLM baseline and Phi-3.5 (without fine-
tuning). All experiments use the CAMPHOR LLM and CAMPHOR SLM prompts according to model type.

tion. The results highlight the effectiveness of fine-
tuning an SLM for specialized agent tasks, showing
it to be more powerful than simply prompting a pre-
trained LLM with task instructions. Moreover, the
performance of fine-tuning is not compromised by
prompt simplification since the model is trained to
learn fixed input-output mappings patterns.

To further optimize the prompt, we remove sys-
tem instructions from each agent prompt and only
reveal the prediction history, based upon which the
SLM is fine-tuned to predict the next function call
in the trajectory. Surprisingly we found that the
prompt simplification leads to only marginal degra-
dation of the task completion, with a plan F1 38.3%
compared to 38.7% in the original setting. The re-
sult demonstrates that fully non-instruction tuning
is also a promising direction to further improve
on-device efficiency without sacrificing much ac-
curacy.

5.4 Prompt Compression

Even though we only append definitions for the
dynamic function set in the prompt, they still con-
sume a significant amount of prompt space for large
toolboxes. We further experiment with the prompt
compression technique described in Section 3.3
where each function definition is represented as a
single token in the prompt.

As shown in Table 3, applying the prompt com-
pression technique only leads to marginal changes
in the task completion F1, from 39.89 % to 38.45 %.

But it should be noted that the prompt compression
technique reduces the number of static prompt to-
kens (without message history which dynamically
grows) further by 96.00% for the personal context
agent and 95.02% for the task completion agent.

Table 4 shows a summary of all prompt optimisa-
tion steps we have taken for SLM fine-tuning. Com-
paring to the prompt used for the CAMPHOR LLM
baseline, the fine-tuning prompt is made much
shorter and concise. We optimised the prompt by
removing agent-specific instructions and employ-
ing compression technique to represent each func-
tion definition as a single token. The total static
token reduction rate compared to the baseline is
98.3%, meaning that the fine-tuned SLM requires
much shorter prompts than instruction-based infer-
ence in LLM.

5.5 Comparison with RAG

One could argue that an alternative approach to gen-
eralize to a dynamic toolbox is retrieval-augmented
generation (RAG). However, we showcase here
that RAG creates a performance bottleneck for the
SLM when handling CAMPHOR queries due to
sub-optimal retrieval recall. Figure 4 shows the
retrieval recall at K for the CAMPHOR test queries
using a Sentence-BERT (Reimers, 2019) as the
retriever. The recall at K=5 is only 0.5 for the per-
sonal context agent and 0.8 for the task completion
agent. Unsurprisingly the end-to-end plan F1 for
a RAG approach with top 5 function definitions in
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Metric No Prompt Compression Prompt Compression Relative ∆

Tool F1 / % 66.95 65.91 -1.55%
Delexicalized Plan F1 / % 44.68 44.29 -0.87%

Plan F1 / % 39.89 38.45 -3.61%

# of PC Tool Tokens 575 23 -96.00%
# of TC Tool Tokens 261 13 -95.02%

Table 3: Applying prompt compression significantly reduces the prompt size with marginal changes in accuracy.
The prompt size reduction is measured for personal context (PC) and task completion (TC) agents respectively.

CAMPHOR LLM CAMPHOR SLM -instructions +compression

Prompt

{task description}
{agent instructions}

{tool definition}
{message history}

{few-shot examples}

{agent instructions}
{tool definition}

{message history}

{tool definition}
{message history}

{compressed tokens}
{message history}

Static token
reduction % 0% 48.6% 50.3% 98.3%

Table 4: A summary of prompt optimisation for CAMPHOR agents. Prompts in SLMs are simplified by virtue of
fine-tuning. We further experimented with removing task instructions from the prompt, and compression techniques.
Static token reduction rate measures the reduction of static prompt tokens (excluding message history) compared to
the prompt used in instruction-based inference.

Figure 4: Retrieval recall at K computed with an exter-
nal retrieval model for personal context agent and task
completion agent.

the prompt is only 32.5% due to error propagation,
compared to 38.7% when all function definitions
are present in the prompt.

Why is RAG not working well? Queries in
CAMPHOR are compositional with multiple task
completion function calls. The average number of
task completion function calls for each query is 3.
However, given a tight prompt budget of K=5, it is
rather difficult to make sure the retriever is able to

fetch all function calls into the K=5 bucket. As a di-
rect consequence, the language model will not see
the correct function definitions in the prompt, con-
ditioned on which it is trained to generate the com-
pletion. The following shows an example where
retrieval failed to find all ground truth:

Query
Can you show me the cheapest flight
options to Barcelona next month and
add it to my calendar? Also, let my
travel buddy know about our trip plan.

Ground truth functions
create_calendar_event, send_message

Retrieved functions
send_mail, send_message,
download_appstore_app, play_podcasts,
create_reminders

While admitting that the performance of the re-
triever on such queries can be improved with cus-
tomized fine-tuning and more advanced dense re-
trieval techniques (Santhanam et al., 2022), we
contend that the pre-trained language model itself
holds greater potential for selecting the appropri-
ate function call in an end-to-end manner, when it
has full visibility of the toolbox enabled by prompt
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compression techniques.

6 Conclusion

This work introduces CAMPHOR, a collaborative,
SLM-based agent framework designed for person-
alized query parsing on user devices. CAMPHOR
proactively retrieves on-device information and de-
composes the understanding tasks into multiple
steps of function calls. Our results show that a fine-
tuned SLM outperforms instruction-based LLMs in
this task. By employing advanced prompt compres-
sion techniques, CAMPHOR strikes an optimal
balance between accuracy and efficiency, while
safeguarding user data directly on the device.

Limitations

The personalized user query parsing task studied
in this work is restricted to single interactions.
While many user queries can indeed be resolved
in one interaction, this approach oversimplifies
the problem space. In practice, many real-world
tasks—especially those requiring user disambigua-
tion or confirmation—still depend on multi-turn
interactions between the user and the assistant. In
such cases, system policies play a critical role in
guiding the conversation and triggering the next
agent. Future work should focus on extending
CAMPHOR to handle multi-turn conversations, in-
corporating system policies and user follow-ups.

The simulated device environment in this work
also primarily focuses on the "happy path" of per-
sonal information retrieval. It does not account
for more complex runtime feedback and error-
handling logic, such as conflicting information and
disambiguation requests for multiple search results,
which would need to be communicated back to the
user before task continuation. In future, we aim
to scale our data simulation approach to handle
more complex runtime feedback and in multi-turn
conversational settings, as discussed in the first
paragraph.

Although CAMPHOR is designed for on-device
deployment—a point we emphasize in the pa-
per—this work does not include a dedicated evalu-
ation of privacy guarantees, security safeguards, or
latency/resource trade-offs. Real-world on-device
systems must balance inference speed, energy con-
sumption, and data isolation to meet user expecta-
tions and platform constraints. Future experiments
will benchmark end-to-end latency, measure energy
usage on representative hardware, and analyze how

local data processing impacts privacy and threat
models.
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A Fine-tuning details

Table 5 provides hyper-parameters for fine-tuning
the SLMs, including both Phi-3.5 and Gemma-2.

B Prompts

The CAMPHOR baseline prompt used to instruct
the LLM are shown below. The prompt serves as
the starting point to simplify and derive various
fine-tuning prompts.

The prompt is constructed from the chat template
with a system role and a user role, each of which
contains a few variables. We present the templates
for the system role and the user role respectively.
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Hyper-parameters Phi-3.5 Gemma-2

Optimization
Batch Size 128 32
Training Steps 443 600
Warmup Ratio 0.03 0.03
LR 1× 10−4 1× 10−4

Seed 42 42

Hardware
Data Type bfloat16 bfloat16
Accelerator A100 80G A100 80G

LoRA Config
LoRA Alpha 16 16
LoRA Dropout 0.05 0.05
LoRA Rank 16 16
Target Proj Modules qkv, o, gate_up, down q, k, v, o, gate, up, down

Quantization
Quantization Type nf4 nf4
Double Quantization true true
Computation Type bfloat16 bfloat16

Table 5: Hyper-parameters for fine-tuning Phi-3.5 and Gemma-2.
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The following are the templates for the system role and user role:

System-role Template

{task description} (Optional)
{agent architecture description} (Optional)
Here are available API calls:
{tool definition} (Optional)

User-role Template

{agent specific instruction} (Optional)
Here is the message history:
{message history}
{few shot examples} (Optional)

The following is the task description in the system role:

Task Description

You are a helpful digital assistant. An iPhone user has issued a query to you. Your ultimate
goal is to provide an accurate and helpful response and complete any related tasks. This may
involve utilizing additional context, such as personal contexts and relevant facts, to enhance the
user experience.

The following are the agent descriptions in the system role:

Agent Descriptions

To successfully complete a complex task, collaboration among the following types of agents is
required:
1. High Order Reasoning Agent. This agent is used to plan the specific execution process of
the task, solving a given task by determining the order in which other expert agents are invoked.
Also, this agent will be responsible for overseeing the communication between the expert agents,
effectively using their skills to complete sub-tasks.
2. Information Agent. This agent is responsible for providing direct information including location
information, time information or screen information. Location Information: Detailed current
location information of user.
Time Information: Detailed current time information of user.
Screen Information: A detailed textual description of the user’s screen content. When calling this
agent, please select one type of information to retrieve.
3. Perception Agent. This agent is responsible for translating the onscreen context into a high-
level understanding of the user’s intent. Note that this intent is abstract; if more detailed textual
information is needed, the Information Agent would be a better choice.
4. Personal Context Retrieval Agent. This agent is responsible for actively seeking relevant
personal context that would be helpful in more accurate and personalized response.
5. Tool Calling Agent. This agent is responsible for calling useful tools. Tools can include external
tools like web searches, Wikipedia, and calculators.
6. Answer Agent. This agent is responsible for generating tentative responses and task completion
API calls based on the message history. These responses can then be reviewed by Reflection Agent
and polished for the final answer.
7. Reflection Agent. This agent evaluates the proposed final response and execution history to
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determine whether the suggested textual response and task completion API calls are appropriate
for the given query and provides recommendations for improving the response.
8. Response Submit Agent. This agent is similar to Answer Agent, and is also responsible for
generating tentative responses and task completion API calls based on the message history. The
output from this agent will be directly submitted to the user.
These agents will communicate by sending messages and sharing a message history.

The following are the tool definitions for each agent in their system role:

Tool Definition for Device Information Agent

get_screen_information(): Get a detailed textual description of the user’s screen content.
get_location_information(): Get detailed current location information of user.
get_time_information(): Get detailed current time information of user.

Tool Definition for User Perception Agent

get_intent(): Get a high-level understanding of the user’s intent.

Tool Definition for Personal Context Agent

get_settings_cellular(): Retrieve user’s cellular data usage summary.
get_settings_notifications(keyword): Retrieve user’s notifications containing a specific keyword.
get_health_records(): Retrieve user’s health records.
get_health_medications(): Retrieve user’s medication list.
get_fitness_summary(): Retrieve user’s fitness summary and activity.
get_safari_history(keyword): Retrieve browsing history of Safari containing a specific keyword.
get_news_history(keyword): Retrieve browsing history of News containing a specific keyword.
get_podcasts_history(keyword): Retrieve listening history of Podcasts containing a specific key-
word.
get_notes_content(keyword): Retrieve notes containing a specific keyword.
get_reminders_content(keyword, time_range): Retrieve reminders containing a specific keyword
or/and within a specific time range.
get_calendar_event(theme, time_range): Retrieve calendar events related to a theme or/and within
a specified time range.
get_mail_event(theme, time_range): Retrieve mail invitation or confirmation for events related to
a theme or/and within a specified time range.
get_imessage_history(keyword): Retrieve chatting history of iMessage containing a specific key-
word.
get_music_playlist(keyword): Retrieve songs in user’s music playlist containing a specific key-
word.
get_voice_recording(keyword): Retrieve recordings from the user’s voice memos with titles con-
taining a specific keyword.
get_books_library(): Retrieve user’s reading books.
get_contacts_information(keyword): Retrieve contact information, including person_id, name,
phone_number, relationship.
get_appstore_history(): Retrieve the purchase and download history of apps.
get_maps_places(keyword): Retrieve user’s saved places containing a specific keyword.
get_amazon_information(): Retrieve user’s Amazon account information.
get_amazon_orders(keyword): Retrieve user’s Amazon orders containing a specific keyword.
get_instagram_information(): Retrieve user’s Instagram account information.
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get_instagram_post(keyword): Retrieve user’s Instagram post containing a specific keyword.

Tool Definition for External Knowledge Agent

search_safari(query): Perform a search in Safari app using the specified query, which can include
searches for information, weather forecasts, available items on Amazon, and other types of
information.

Tool Definitions for Task Completion Agent

play_podcasts(title): Play a podcast with the specified title.
create_notes(content): Create a note with the specified content.
create_reminders(time, content): Set a reminder with the specified content at the specified time.
create_calendar_event(time, event_title): Create a calendar event with the specified event_title at
the specified time.
cancel_calendar_event(event_title): Cancel the calendar event with the specified event_title.
send_mail(receiver, content): Send an email to the receiver with the specified content.
send_imessage_message(receiver, content): Send a message to the receiver with the specified
content via iMessage.
play_music(title): Play music with the specified title.
call_contacts(person): Call the specified person.
download_appstore_app(app_name): Download the specified app.
show_maps_place(name): Show the location of the specified place in the Maps app.
show_amazon_item(name): Show the page of the specified item on Amazon.
create_instagram_post(content): Create a new post with the specified content on Instagram.

The following are the agent-specific instructions in the user role:

Agent Specific Instruction for Device Information Agent

Now your task is to generate accurate and helpful API calls to retrieve device information based
on the message history.

Agent Specific Instruction for User Perception Agent

N/A (Just one tool in the toolbox and there are no parameters; no need to call the model to
determine the tool.)

Agent Specific Instruction for Personal Context Agent

Now your task is to generate accurate and helpful API calls to retrieve personal context based on
the message history.

Agent Specific Instruction for External Knowledge Agent

Now your task is to generate accurate and helpful API calls to retrieve relevant facts or public
information based on the message history.
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Agent Specific Instruction for Task Completion Agent

Now your task is to generate accurate and personalized textual response and task completion API
calls for user based on the message history.

The following is an example for the message history. This history gets updated dynamically after an
agent is invoked and the execution result is sent back.

Example of Message History

[User]: Can you show me the cheapest flight options to Barcelona next month and add it to my
calendar? Also, let my travel buddy know about our trip plan.

[High Order Reasoning Agent]: [Device Information Agent]

[Device Information Agent]: [’get_location_information()’]

[Execution Result]: ["latitude": 53.3478, "longitude": -6.2597, "city":
"Dublin", "country": "Ireland", "postal_code": "D01 V902", "formatted_address":
"Ryanair Head Office, Airside Business Park, Swords, Co. Dublin, Ireland"]

[High Order Reasoning Agent]: [Personal Context Agent]

[Personal Context Agent]: ["get_contacts_information(keyword=’travel buddy’)"]

[Execution Result]: ["person_id": "003", "name": "Alice Johnson",
"phone_number": "555-123-4567", "relationship": "Travel Buddy", "is_self":
"False"]

[High Order Reasoning Agent]: [External Knowledge Agent]

[External Knowledge Agent]: [search_safari(query=’Cheapest flights from Dublin
to Barcelona January 2024’)]

[Execution Result]: [Cheapest flights from Dublin to Barcelona in January 2024:
- Tuesday, January 7th: =C29.99, Departure at 7:00 AM, Arrival at 10:30 AM. -
Thursday, January 16th: =C32.50, Departure at 6:45 AM, Arrival at 10:15 AM. -
Friday, January 10th: =C31.00, Departure at 8:00 AM, Arrival at 11:30 AM.]

[High Order Reasoning Agent]: [Task Completion Agent]

[Task Completion Agent]:
Textual Response:
Sure! Here are some of the cheapest flight options to Barcelona next month from various sources:
From Ryanair:
1. Tuesday, January 7th at 7:00 AM, arriving at 10:30 AM - C29.99.
2. Thursday, January 16th at 6:45 AM, arriving at 10:15 AM - C32.50.
3. Friday, January 10th at 8:00 AM, arriving at 11:30 AM - C31.00.
I will add the cheapest flight, which departs on January 7th at 7:00 AM and costs C29.99, to your
calendar and notify your travel buddy.
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Task Completion API Calls:
["create_calendar_event(time=’2024-01-07T07:00:00’, event_title=’Flight
to Barcelona - Departure from Dublin at 7:00 AM’)",
"send_imessage_message(receiver=’555-123-4567’, content=’We have a flight
to Barcelona on January 7th at 7:00 AM. Please be ready!’)"]

The following is an example of few-shot examples in the user prompt:

Few Shot Examples

Here is an example output:
[get_maps_places(keyword="Apple"); get_imessage_history(keyword="Pear")]

Strictly use only the available API calls and separate each API call by semicolons in a list.

The following is an example of the full prompt:

An example of the Full Prompt

You are a helpful digital assistant. An iPhone user has issued a query to you. Your ultimate goal is
to provide an accurate and helpful response and complete any related tasks. This may involve
utilizing additional context, such as personal contexts and relevant facts, to enhance the user
experience.

To successfully complete a complex task, collaboration among the following types of agents is
required:
1. High Order Reasoning Agent. This agent is used to plan the specific execution process of
the task, solving a given task by determining the order in which other expert agents are invoked.
Also, this agent will be responsible for overseeing the communication between the expert agents,
effectively using their skills to complete sub-tasks.
2. Information Agent. This agent is responsible for providing direct information including location
information, time information or screen information. Location Information: Detailed current
location information of user.
Time Information: Detailed current time information of user.
Screen Information: A detailed textual description of the user’s screen content. When calling this
agent, please select one type of information to retrieve.
3. Perception Agent. This agent is responsible for translating the onscreen context into a high-level
understanding of the user’s intent. Note that this intent is abstract; if more detailed textual
information is needed, the Information Agent would be a better choice.
4. Personal Context Retrieval Agent. This agent is responsible for actively seeking relevant
personal context that would be helpful in more accurate and personalized response.
5. Tool Calling Agent. This agent is responsible for calling useful tools. Tools can include external
tools like web searches, Wikipedia, and calculators.
6. Answer Agent. This agent is responsible for generating tentative responses and task completion
API calls based on the message history. These responses can then be reviewed by Reflection Agent
and polished for the final answer.
7. Reflection Agent. This agent evaluates the proposed final response and execution history to
determine whether the suggested textual response and task completion API calls are appropriate
for the given query and provides recommendations for improving the response.
8. Response Submit Agent. This agent is similar to Answer Agent, and is also responsible for
generating tentative responses and task completion API calls based on the message history. The
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output from this agent will be directly submitted to the user.
These agents will communicate by sending messages and sharing a message history.

You are the Personal Context Agent that is responsible for actively seeking relevant personal
contexts that would be helpful in more accurate and personalized response. The High Order
Reasoning Agent has assigned a task to you. Could you please generate a sequence of personal
context retrieval API calls to retrieve relevant personal context in various smartphone apps based
on the available calls and the message history?

Here are available API calls to retrieve relevant personal information for each app:
get_settings_cellular(): Retrieve user’s cellular data usage summary.
get_settings_notifications(keyword): Retrieve user’s notifications containing a specific keyword.
get_health_records(): Retrieve user’s health records.
get_health_medications(): Retrieve user’s medication list.
get_fitness_summary(): Retrieve user’s fitness summary and activity.
get_safari_history(keyword): Retrieve browsing history of Safari containing a specific keyword.
get_news_history(keyword): Retrieve browsing history of News containing a specific keyword.
get_podcasts_history(keyword): Retrieve listening history of Podcasts containing a specific
keyword.
get_notes_content(keyword): Retrieve notes containing a specific keyword.
get_reminders_content(keyword, time_range): Retrieve reminders containing a specific keyword
or/and within a specific time range.
get_calendar_event(theme, time_range): Retrieve calendar events related to a theme or/and within
a specified time range.
get_mail_event(theme, time_range): Retrieve mail invitation or confirmation for events related to
a theme or/and within a specified time range.
get_imessage_history(keyword): Retrieve chatting history of iMessage containing a specific
keyword.
get_music_playlist(keyword): Retrieve songs in user’s music playlist containing a specific
keyword.
get_voice_recording(keyword): Retrieve recordings from the user’s voice memos with titles
containing a specific keyword.
get_books_library(): Retrieve user’s reading books.
get_contacts_information(keyword): Retrieve contact information, including person_id, name,
phone_number, relationship.
get_appstore_history(): Retrieve the purchase and download history of apps.
get_maps_places(keyword): Retrieve user’s saved places containing a specific keyword.
get_amazon_information(): Retrieve user’s Amazon account information.
get_amazon_orders(keyword): Retrieve user’s Amazon orders containing a specific keyword.
get_instagram_information(): Retrieve user’s Instagram account information.
get_instagram_post(keyword): Retrieve user’s Instagram post containing a specific keyword.

Now your task is to generate accurate and helpful API calls to retrieve personal context based on
the message history.

Here is the message history:

[User]: Can you show me the cheapest flight options to Barcelona next month and add it to my
calendar? Also, let my travel buddy know about our trip plan.
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[High Order Reasoning Agent]: [Device Information Agent]

[Device Information Agent]: [’get_location_information()’]

[Execution Result]: ["latitude": 53.3478, "longitude": -6.2597, "city":
"Dublin", "country": "Ireland", "postal_code": "D01 V902", "formatted_address":
"Ryanair Head Office, Airside Business Park, Swords, Co. Dublin, Ireland"]

[High Order Reasoning Agent]: [Personal Context Agent]

Here is an example output:
[get_maps_places(keyword="Apple"); get_imessage_history(keyword="Pear")]

Strictly use only the available API calls and separate each API call by semicolons in a list.
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