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Abstract

What if artificial intelligence could not only
solve problems for which it was trained but
also teach itself to tackle novel tasks? In
this paper, we finetune Llama 3.1 using re-
inforcement learning on the grid-world game
Frozen Lake and investigate its ability to solve
maps it has never encountered—a phenomenon
recently termed In-Context Reinforcement
Learning (ICRL). Without additional train-
ing, the transformer demonstrates the capac-
ity to adapt to both in-distribution and out-
of-distribution environment parameterizations.
Moreover, it remains effective when trained
on data that blends optimal and suboptimal be-
havior, combines strategies from its context
(behavior-stitching), and dynamically adapts to
non-stationary environments. These proof-of-
concept findings suggest that in-context learn-
ing via reinforcement-tuned transformers may
form the basis of a promising general-purpose
problem-solver.

1 Introduction

Imagine a Mars mission in which a robot’s ap-
pendage suddenly loses functionality. An adaptive
agent capable of rapidly learning new behaviors
could continue the mission successfully. While re-
inforcement learning (RL) has excelled in station-
ary environments (Sutton and Barto, 2018), real-
world applications frequently demand quick adapta-
tion to unexpected changes—something traditional
RL struggles to achieve efficiently (Tsividis et al.,
2017; Duan et al., 2016).

Recent advances leveraging transformer archi-
tectures demonstrate remarkable generalization ca-
pabilities through in-context learning (ICL), en-
abling rapid adaptation to novel tasks without re-
training (Brown et al., 2020; Vaswani, 2017). In-
spired by this, we explore whether transformers
finetuned via reinforcement learning can adapt to
changing conditions without additional training, a
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Figure 1: ICRL-trained Llama 3.1 learns to solve an
unseen Frozen Lake environment. The trajectories in
early (a), mid (b), and late (c) interactions show solution
refinement. Mistakes in early inference (e.g., falling
into holes) disappear with experience in late inference.

phenomenon we term In-Context Reinforcement
Learning (ICRL).

In this work, we finetune Llama 3.1 (Dubey
et al., 2024) on the grid-world game Frozen
Lake (Farama Foundation, 2022) using a reinforce-
ment learning objective (Mnih et al., 2013). We
show that our model not only solves previously un-
seen maps from the same distribution (as seen in
Figure 1) but also generalizes to out-of-distribution
environments, robustly learns from varying data
quality, dynamically adapts to non-stationary con-
ditions, and effectively combines learned behav-
iors. These capabilities underscore the poten-
tial of reinforcement-tuned transformers as versa-
tile, general-purpose problem solvers capable of
human-like adaptability.

2 Background and Related Work

Recent efforts combining transformers with re-
inforcement learning (RL) have significantly
advanced solving complex sequential decision-
making tasks. The Decision Transformer (DT) re-
formulates RL as a sequence modeling problem
by predicting future actions conditioned on past
trajectories and desired returns, effectively leverag-
ing transformer architectures for improved perfor-
mance. However, DT relies heavily on high-quality,
diverse training trajectories, limiting its applicabil-
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ity to new or out-of-distribution scenarios (Chen
etal., 2021).

To overcome the limitations of DT, Algorithm
Distillation (AD) trains transformers to emulate RL
algorithms themselves rather than directly model-
ing trajectory sequences. This allows AD to cap-
ture underlying patterns in algorithmic decision-
making, enabling sample-efficient generalization.
Yet, this approach requires that the problem first be
solved with traditional RL, making it dependent on
the hyper-parameters and quality of the algorithm
it is imitating (Laskin et al., 2022).

The Decision-Pretrained Transformer (DPT) fur-
ther addresses limitations of DT and AD by train-
ing transformers to directly imitate an action or-
acle, thus learning near-optimal policies without
explicitly requiring future reward predictions. De-
spite its improved trajectory stitching capabilities,
DPT’s reliance on oracle-provided optimal actions
during training restricts its practical application to
scenarios where such optimal solutions are readily
available (Lee et al., 2024).

Meta-RL approaches utilizing transformers have
demonstrated promising capabilities for rapid task
adaptation via in-context learning (ICL). These
methods efficiently generalize learned behaviors
to novel tasks based on minimal contextual expe-
rience (Melo, 2022; Bauer et al., 2023). However,
their robustness to dynamically changing environ-
ments and resilience against imperfections in train-
ing data quality have not been extensively explored.

Building upon the foundational works that merge
transformers with reinforcement learning, we focus
on harnessing the potential of ICRL. While previ-
ous studies have established that transformers can
be finetuned using reinforcement learning to solve
novel problems, our work advances this integration
by uncovering and demonstrating several novel ad-
vantages of ICRL that have not been previously
explored. Specifically, we show:

e In-Context Behavior Stitching: ICRL-
trained transformers can combine learned
skills in novel ways to solve complex tasks.
This ability indicates that the models have
internalized principles akin to dynamic pro-
gramming, allowing them to piece together
previously acquired knowledge to tackle new
challenges effectively.

* Robustness to Suboptimal Training Data:
We find that ICRL reduces sensitivity to

the presence of suboptimal trajectories in
the training set. Transformers trained using
ICRL can learn effectively even from failed
episodes, exhibiting strong generalization abil-
ities despite imperfections in the training data.

* Adaptation to Non-Stationary Environ-
ments: Our experiments show that ICRL-
trained transformers maintain high perfor-
mance in changing environments by dynam-
ically adjusting to new information. They
prioritize recent interactions over outdated
data, enabling them to adapt quickly to non-
stationary settings and maintain robust perfor-
mance.

These findings suggest that ICRL offers signifi-
cant advantages in developing versatile Al systems
capable of human-like adaptability.

3 Methodology

To explore the capabilities of ICRL, we employ the
open-source large language model (LLM) called
Llama 3.1 8B Instruct (Dubey et al., 2024). We
finetune this model using the Deep Q-Network
(DON) reinforcement learning algorithm (Mnih
et al., 2013), which enables the model to learn
optimal actions through trial and error.

Our training data are collected from the paramet-
ric game Frozen Lake (Farama Foundation, 2022),
a dynamic environment where the game param-
eters can be changed between episodes. Rather
than focusing on solving a single, specific version
of Frozen Lake, our objective is to enhance the
model’s performance across multiple episodes with
varying game configurations. By doing so, we aim
to improve the model’s ability to generalize and
find better solutions over time, thus highlighting
the benefits of the ICRL approach.

This section aims to provide a clear understand-
ing of our experiments and results. We begin by
explaining the general problem formulation for a
Partially Observable Markov Decision Process
(POMDP). Then, we review how reinforcement
learning is applied to solve a POMDP. Next, we
demonstrate how reinforcement learning can be ap-
plied to a pre-trained transformer model. Finally,
we document our environment setup and data col-
lection procedures.
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Figure 2: Fine-tuning Llama 3.1 8B Instruct with IA3 Adapters and a reinforcement learning objective. The model is
fed sequences of states, actions, and (if nonzero) rewards, with every episode prefixed by the <|begin_of_text|>
(BOT) token and terminated by the <|end_of_text|> (EOT) token. Tokens like <|start_header_id|> (SHI),
<|end_header_id|> (EHI), and <|eot_id|> (EID) separate the state, action, and reward, mirroring how instruct
models delineate user and assistant roles. The model predicts the Q-value of the current state for every action,
updating the Q-values during training using the Bellman backup equation.

3.1 Partially Observable Markov Decision
Process

A Markov Decision Process (MDP) is a mathe-
matical framework used to model decision-making
problems where an agent interacts with a pro-
cess whose next state depends solely on the previ-
ous state and action. In a Partially Observable
Markov Decision Process (POMDP), the state is
not fully observable. In such settings, the agent
does not have direct access to the true state of the
environment but must make decisions based on
imperfect observations.

Formally, a POMDP is defined by the tuple
(S, A, T,R,Q,0,~), where:

* S is a finite set of states representing all pos-
sible configurations of the environment.

e A is a finite set of actions available to the
agent.

* T(s' | s,a) is the state transition probabil-
ity, the probability of transitioning to s’ given
action a in state s.

* R(s,a) is the reward function, the immediate
reward received after taking action a in state
s.

* () is a finite set of agent perceivable observa-
tions.

* O(o | ¢,a) is the observation probability,
the probability of observing o after arriving at
state s’ and taking action a.

» v € [0, 1) is the discount factor used to prior-
itize immediate rewards over future rewards.

Upon taking an action, the environment transi-
tions to a new state s¢y1 according to the transi-
tion probabilities 7. The agent receives a reward
r¢+4+1 given by the reward function R and observes

the next observation o441 based on the observation
probabilities O.
We define the trajectory up to time ¢ as:

7t = {00,70,Q0,01,71,a1,...,0t—1,0¢, 7} (1)

In practice, the agent does not have access to the
true state s at any time. Instead, it maintains a be-
lief about the probability distribution over possible
states given the history 7;.

3.2 Reinforcement Learning

Reinforcement learning involves an agent interact-
ing with an environment to maximize cumulative
rewards over time. The agent observes the environ-
ment, takes actions, and receives rewards based on
those actions.

We define the action-value function (or Q-
function) Q™ (T, a) as the expected cumulative dis-
counted reward obtained by taking action a given
the history 7, and thereafter following a policy .
In deep-RL, the Q-function is normally a parame-
terized neural network denoted Qg or Q) where 6
or ¢ are the network’s parameters. Formally, the
action-value function is defined as:

o
k
E YV Tt+k+1

k=0

Qg(ﬂ CL) = ]Ea~7r

T = T] 2

The agent’s objective is to find an optimal pol-
icy 7* that specifies the best action to take based
on the history, maximizing the expected cumula-
tive discounted rewards. The optimal action-value
function Q*(7, a) corresponds to the maximum ex-
pected return achievable from history 7 by taking
action a and thereafter following the optimal pol-
icy:

Qz (7—7 a) = m;tx Qg(Ta a) (3)

The optimal policy can be recovered for the op-
timal Q-function by taking the action that has the
maximum value:

7p (1) = argmax Qp(7¢, a) 4
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An important property of Qj(7,a) is that it sat-
isfies a recursive relationship analogous to the Bell-
man optimality equation (Bellman, 1966):

Qy(e,a¢) = Erepr +vQp(Te41, arr1)]  (5)

Reinforcement learning algorithms aim to esti-
mate QQ; (7, a) by iteratively applying this recursive
relationship. A common approach is value itera-
tion, where the action-value target y is calculated:

y(12,at) = E [re1 + yQp (i1, 15 (7e41))] (6)

The Q-network is trained by minimizing the dis-
tance to the target:

L=E [(y(r,a0) = Qolr,a)’] ()

To facilitate fast convergence, several techniques
are typically employed. Gradient flow through the
target is stopped so that the current Q-value con-
verges to the target while the target is fixed. How-
ever, because the target depends on the Q-network’s
own predictions from the previous iteration, this
creates a moving target scenario. This can be miti-
gated by keeping a delayed copy of the Q-network
(i.e. Qg) from which we estimate the target and
slowly update its parameters to follow the current
Q-network (i.e. (Qg) (van Hasselt et al., 2015). This
process is called Polyak averaging

¢t+1:oz><0t—l—(1—a)><¢t (8)

and is controlled by a constant a.

Thus far, we have described the infinite horizon
case. However, many games are episodic, so the
action value is the expected sum of rewards until
the game terminates, rather than extending to in-
finity. This is easily incorporated by defining the
target function of the last action in a sequence to
be equal to the reward alone.

By iteratively updating the Q-network parame-
ters using optimization methods like stochastic gra-
dient descent, the agent learns to approximate the
optimal action-value function based on histories.
This enables the agent to make informed decisions
that maximize cumulative rewards, even in partially
observable environments where the true state is not
directly accessible.

In traditional reinforcement learning, only the
last observation is provided to the network. How-
ever, when trying to induce the transformer to learn
in-context, we provide the entire history of interac-
tions. Thus, the transformer conditions its output
on the whole trajectory 7. Only action tokens con-
tribute to the training loss defined in Equation 7.

3.3 Transformer Network

We selected Llama 3.1 8B Instruct because it is
a pre-trained transformer that has a demonstrated
ability to perform ICL. We use an IA3 (Liu et al.,
2022) adapter to decrease the computational load
and memory requirements.

To train the network, we use a discount factor
v = 0.9 and scale the reward by multiplying it
by 30. The delayed target adapter’s weights are
updated using Polyak averaging with a factor of
a = 0.1 (except when specified). Additionally,
we use a learning rate of 1 x 10~2, warmed from
zero over the first ten batches, each consisting of
10 slices of data, with each slice being 4,096 tokens
long.

During evaluation, as discussed in Section 4.6,
deploying the transformer without forced explo-
ration results in poor performance. Thus, for each
evaluation trial, we use an epsilon-greedy-style
warmup. In the first twenty episodes, epsilon
(which represents the probability of using an ac-
tion predicted by the transformer) is gradually de-
creased from 1 to 0, which corresponds to gradually
increasing the probability of letting the transformer
choose the next action. When the transformer does
not get to choose the action, we randomly select it
from a uniform distribution. After twenty episodes,
we let epsilon remain 0, so the transformer always
chooses the next action.

3.4 Environment

Since LLMs process discrete data, our chosen envi-
ronment must have discrete state and action spaces,
along with a broad parametric space to simulate
non-stationarity. Frozen Lake meets these criteria,
making it an ideal setting to showcase the effective-
ness of ICRL.

We represent states numerically, corresponding
to tile numbers, and actions using the words up,
down, left, and right. This choice leverages Llama’s
existing understanding of these terms, enhancing
adaptability. Each parameterization of Frozen Lake
generates a unique map with randomized starting
points, goal points, and holes. The model learns
the environment through interaction without direct
map visibility, striving to maximize rewards. Play-
ers receive a reward of 1.0 upon reaching the goal
state, and 0.0 otherwise. Episodes terminate upon
reaching the goal, falling into a hole, or after 100
steps.
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Figure 3: Mean cumulative reward over 50 trials as an
ICRL-trained transformer improves its score on unseen
environments. Maps (i.e. environment parametrization)
have never been trained on but are chosen from the same
distribution as training examples. Significant improve-
ment can be observed as the agent demonstrates that
it has learned to solve unseen maps. Also, a = 0.1
significantly outperforms o = 0.01.

3.5 Data

Data are generated by training a traditional rein-
forcement learning algorithm on 250 different pa-
rameterizations of our chosen environment and col-
lecting the data. It is extremely important to note
that, unlike algorithmic distillation, we randomly
mix episodes so that there is no inherent order to
the data.

Our data are formatted in conversational form.
Unlike the Llama instruct template, instead of the
roles user and assistant, we use the roles of action,
observation, and reward as seen in Figure 2.

We concatenate episodes of data together. Every
20 to 40 episodes, the environment parameteriza-
tion (i.e., map in Frozen Lake) is changed so that
the network can practice adapting to non-stationary
environments. We call the 20 to 40 episodes with
the same parameterization a set. Approximately 2
to 3 sets are combined together until 4,096 tokens
are reached.

4 Experiments

Having finetuned Llama 3.1 with the generated
data, in this section, we evaluate its performance
across a variety of tasks to demonstrate its capabili-
ties as a general-purpose problem solver. We exam-
ine its ability to solve both in-distribution and out-
of-distribution examples, its capacity for in-context

Unseen Out-Of-Distribution Environments
1 I T
- a=0.1
—— o = 0.01

Cumulative Reward

O | |

0 10 20 30
Episode

Figure 4: Mean cumulative reward over 50 trials as an
ICRL-trained transformer improves its score on unseen
and out-of-distribution environments. Generated maps
are larger than anything ever seen during training. Im-
provement can be observed (though not as significant
as in the in-distribution case) as the agent demonstrates
that it has learned useful behaviors even for environ-
ments outside the distribution of its training data.

behavior stitching, its robustness to low-quality
training data, and its adaptability to non-stationary
environments. We also discuss the challenges asso-
ciated with exploration in ICRL settings.

4.1 Solving Unseen In-Distribution Examples

To assess the transformer’s ability to generalize to
unseen but in-distribution examples, we evaluated
its performance on new parameterizations of the
Frozen Lake environment that were not included in
the training set but were generated from the same
distribution.

Setup: We generated 50 new Frozen Lake maps
with widths and heights ranging from 3 to 5 tiles
and randomly placed holes throughout the map,
similar to the training data. The agent was not pro-
vided with any explicit map information and had
to learn the optimal path solely through interaction
with the environment. Each evaluation consisted
of multiple episodes, allowing the transformer to
learn and improve its policy through ICRL. We also
examine the Polyak averaging constant’s effect by
testing both & = 0.1 and 0.01.

Results: As shown in Figure 3, the transformer
effectively learned to navigate the new environ-
ments. During early episodes, the agent fell into
holes, only reaching the goal 10% of the time, but
as it gained more experience, it achieved a 90%
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Figure 5: Example of how ICRL combines different experiences to generate improved solutions. Subfigures (a) and
(b) show two example trajectories provided as context to the ICRL transformer. The inference trials in subfigures
(c), (d), and (e) display the paths predicted by the transformer, which leverages information from both examples to

develop an optimal solution.

win rate (when o = 0.1). This demonstrates that
ICRL can successfully generalize to new, unseen
maps within the same distribution, improving its
performance over time without additional weight
updates. We also notice a significant dependence
on the Polyak constant, which suggests that al-
lowing the target network to update quickly (i.e.
a = 0.1) outweighs the benefits of increased stabi-
lization (i.e. o = 0.01).

Critical Observation: As we explored specific
failure examples, a pattern became clear: in the
large majority of cases, the reason that the trans-
former fails to find the goal is that it fails to explore
the whole map. We noticed that the agent almost
always avoids holes but would get caught in loops
where it traversed the same path repeatedly until it
exceeded the number of allowable steps in Frozen
Lake. We discuss this more in Section 4.6.

4.2 Solving Out-of-Distribution Examples

To evaluate the model’s ability to generalize beyond
the training distribution, we tested it on Frozen
Lake maps with configurations not encountered
during training.

Setup: We created 50 out-of-distribution envi-
ronments by using larger map sizes (e.g., widths
and heights of 6 to 7 tiles). These maps are not
only larger; they are also much harder, as a longer
sequence of actions must be learned to reach the
goal state. As before, the transformer had to learn
to navigate these new and more complex environ-
ments solely through interaction. We also ablate
the Polyak averaging constant by setting o equal
to 0.1 and 0.01.

Results: The transformer showed remarkable

adaptability to these out-of-distribution environ-
ments. While performance was initially lower com-
pared to in-distribution tests, the agent was able
to achieve limited success and, most importantly,
demonstrated improvement over time (see Figure
4). This indicates that the model can transfer its
learning to novel scenarios, suggesting that the
meta-learning ability acquired in a restricted do-
main can generalize to unseen environments. Just
as in the in-distribution case, o = 0.1 significantly
outperforms o« = 0.01. For the rest of our experi-
ments we choose a = 0.1.

4.3 In-Context Behavior Stitching

Humans can compose solutions from individual
experiences and acquire expertise in a piecemeal
manner (Langley, 2022). This permits significantly
more efficient usage of experiential information.
One of the key advantages of the ICRL-trained
transformer is its ability to likewise combine ex-
periences in novel ways to solve complex tasks, a
phenomenon we refer to as in-context behavior
stitching.

Setup: We generated ten grid-world maps, each
containing two paths that cross with only one lead-
ing to a goal. The agent needs to walk part of one
path and then switch to the other to get a reward,
requiring it to combine multiple paths (i.e. skills)
to solve the game.

Results: On all ten maps (100% of trials), the
transformer reached the goal by splicing together
the relevant segments of its prior experiences. Fig-
ure 5 shows sample trajectories: the model assem-
bles novel action sequences—never seen together
in the same episode—and achieves near-optimal
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Figure 6: Unlike imitation learning, ICRL is largely
impervious to data quality. Here we plot the average
return achieved over 50 runs when the network is RL-
trained on optimal data, suboptimal data, and a mixture
of both. This graph shows that a mixture optimal and
suboptimal data actually achieves the highest average
cumulative reward.

behavior consistent with dynamic programming.

This ability to assemble experiences suggests
that ICL acquires expertise in a piece-meal manner,
an open question regarding the relationship of ICL
to human-like learning (Roberts, 2024).

4.4 Robustness to Suboptimal Training Data

To understand the model’s ability to learn from
low-quality data with suboptimal actions, we inves-
tigated performance when trained on data having
varying average cumulative returns.

Setup: We created several training datasets with
different levels of reward:

* Optimal data: Trajectories from episodes
that achieved mostly high rewards. We sam-
pled our data, making it five times more likely
to select a successful episode that reached the
goal than an unsuccessful episode.

* Mixed data: A combination of high-reward
and low-reward trajectories. No sampling
weight was given to either successful or un-
successful episodes.

* Suboptimal data: Trajectories from episodes
that mostly ended with low rewards. We sam-
pled our data, making it five times more likely
to select an episode that did not reach the goal
than a successful episode.

Adaptation to Non-Stationary Environment
1 T T i T T

Cumulative Reward

;
0 10 20 30 40 50 60
Episode

Figure 7: Even when the environment changes, an ICRL-
trained transformer can detect and adapt without any
explicit signal of the change. The plot shows the average
over 50 trials. At episode 30 the environment is changed
without any warning to the agent. The agent detects this
change and increases its reward through ICRL.

We then trained separate instances of the trans-
former on each dataset and evaluated their perfor-
mance on unseen Frozen Lake environments.

Results: One might expect the transformer’s per-
formance to degrade proportionally with the ratio
of high-reward to low-reward data as in pure imita-
tion learning (Ghosh et al., 2024) - a form of super-
vised fine-tuning. However, as shown in Figure 6,
our results indicate that varying the quality of the
training data had a non-linear impact on the final
cumulative reward. Remarkably, the transformer
learned effective policies even when trained on
suboptimal data, which consisted largely of unsuc-
cessful episodes. In fact, training on optimal data
slightly reduced performance compared to mixed
data. We hypothesize that ICRL benefits from ex-
posure to a diverse range of experiences, including
both successful and unsuccessful trajectories. Our
findings demonstrate that the transformer’s perfor-
mance is not proportional to the quality of the train-
ing data, allowing it to learn effectively without the
need for extensive data curation or filtering.

4.5 Adaptation to Non-Stationary
Environments

We tested the transformer’s ability to adapt to en-
vironments that change over time, reflecting non-
stationary conditions that can occur in real-world
scenarios.

Setup: We presented the transformer with se-
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quences of environments where the map configu-
ration changed after 30 episodes. The agent was
allowed to experiment in the new environment, but
was not informed of the change. The changes in-
cluded alterations in the position of holes, the size
of the map, and the start and goal locations. This
was repeated 50 times, and the average was plotted
in Figure 7.

Results: The transformer adapted to the chang-
ing environments. It prioritized recent interactions
in its decision-making process, effectively disre-
garding outdated information from previous envi-
ronments. In Figure 7, the agent’s performance
drops when the environment changes and then re-
covers, rising to almost the same level as previously.
The agent learned to adjust its policy based on new
information! This adaptability is a key advantage
of the ICRL approach, enabling operation in non-
stationary environments.

4.6 The Challenge of Exploration

Despite the promising performance of the trans-
former model, we observed challenges related to
exploration. Specifically, during evaluation, if the
transformer is not encouraged to take random ac-
tions at the beginning of each new episode, it tends
to settle into suboptimal trajectories. Even when we
enforce exploration, many failures occur because
the model has never seen an example of reaching
the goal before.

We believe that part of the problem is related to
the distributional shift between offline training and
online evaluation (Levine et al., 2020). During of-
fline training, the model is provided with a random
mixture of successful and unsuccessful episodes.
However, at the start of online evaluation, there is
a very high proportion of unsuccessful episodes.

The following solutions may address these chal-
lenges:

1. Online Training: Train the model in an on-
line manner, allowing it to experience low-
reward trajectories initially and adapt over
time.

2. Model-Based Reinforcement Learning
(MBRL): Train the model to predict tokens
in the environment and roll out experiences
based on the chosen actions, effectively
simulating online learning.

3. Cross-Episode Reward Function: Train the
network with a reward function where the

reward an action receives is based on the
expected value of future rewards in future
episodes. This approach could potentially re-
ward the model for exploration, even if an ac-
tion does not contribute to attaining the goal
in the current episode.

5 Conclusion

In this study, we have demonstrated that fine-tuning
Llama 3.1 with reinforcement learning enables it
to function as a general-purpose problem solver.
Within the Frozen Lake environment, it is capable
of adapting to situations it has never encountered
before. While in-context reinforcement learning
(ICRL) may not always find the perfect solution,
it can enhance performance in unforeseen scenar-
ios. This progress indicates that agents capable of
human-like adaptability and continuous improve-
ment are within reach.

Limitations

This study explores the potential of reinforce-
ment learning (RL)-fine-tuned transformer models,
specifically focusing on their adaptability through
in-context reinforcement learning (ICRL). While
our results demonstrate promising capabilities, sev-
eral limitations should be noted:

First, our experiments are conducted exclu-
sively within the simplified grid-world environ-
ment, Frozen Lake. Although this setup effectively
demonstrates the capabilities of ICRL, the complex-
ity and uncertainty inherent to real-world environ-
ments may present significantly greater challenges.
Therefore, the generalization of these findings to
more complex scenarios, such as continuous state-
action spaces or high-dimensional observations, re-
mains uncertain.

Second, the exploration challenge identified dur-
ing our evaluations reveals a critical limitation re-
garding the initial policy performance when ex-
posed to new or dramatically changed environ-
ments. As noted, without enforced exploration
strategies, the model tends to settle into suboptimal
trajectories. While we proposed several theoretical
solutions (e.g., online training, model-based RL),
the practical implementation and effectiveness of
these methods remain untested within the scope of
this paper.

Third, despite demonstrating robustness to low-
quality training data within our experimental condi-
tions, our findings may not universally generalize
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to all forms of noisy or biased data, particularly in
larger or more complex environments.

Finally, computational constraints limited our
experiments to relatively small maps and short tra-
jectories. Scaling this approach to significantly
larger models or datasets may introduce unfore-
seen challenges in training stability, computational
cost, and inference speed.

Future research addressing these limitations is
necessary to further validate the efficacy and gener-
alizability of reinforcement fine-tuned transformers
as general-purpose problem solvers.

Ethical Considerations

Extensive analyses have shown that risks to humans
escalate as systems become more autonomous;
essentially, when users surrender greater con-
trol, the potential dangers from the system in-
crease (Mitchell et al., 2025). These risks are fur-
ther amplified by adaptable agents that, in theory,
can learn to solve novel, unforeseen problems au-
tonomously. Consequently, we propose that agents
should not be deployed in unconstrained environ-
ments at this time. Instead, we recommend that
agents be confined within controlled "sandbox"
environments where they are unable to affect the
outside world, allowing for rigorous testing and
validation of their behaviors.

Some argue that, because of these risks, we
should cease the development of autonomous
agents (AAs) altogether. However, we contend that
the advancement of autonomous agents is both in-
evitable and essential due to the substantial benefits
associated with their capabilities. It is in human-
ity’s best interest to pursue the responsible devel-
opment of autonomous technologies before malev-
olent actors possibly exploit them. This approach
is further justified by the strong likelihood that the
most effective defense against harmful AAs will
be the deployment of benevolent AAs designed to
counteract malicious activities.
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