
Proceedings of the 1st Workshop for Research on Agent Language Models (REALM 2025), pages 367–385
July 31, 2025 ©2025 Association for Computational Linguistics

StateAct: Enhancing LLM Base Agents via Self-prompting and
State-tracking

Nikolai Rozanov
Imperial College London
Department of Computing

nikolai.rozanov13@imperial.ac.uk

Marek Rei
Imperial College London
Department of Computing

marek.rei@imperial.ac.uk

Abstract

Large language models (LLMs) are increas-
ingly used as autonomous agents, tackling tasks
from robotics to web navigation. Their perfor-
mance depends on the underlying base agent.
Existing methods, however, struggle with long-
context reasoning and goal adherence. We in-
troduce StateAct, a novel and efficient base
agent that enhances decision-making through
(1) self-prompting, which reinforces task goals
at every step, and (2) chain-of-states, an ex-
tension of chain-of-thought that tracks state
information over time. StateAct outperforms
ReAct, the previous best base agent, by over
10% on Alfworld, 30% on Textcraft, and 7% on
Webshop across multiple frontier LLMs. We
also demonstrate that StateAct can be used as a
drop-in replacement for ReAct with advanced
LLM agent methods such as test-time scaling,
yielding an additional 12% gain on Textcraft.
By improving efficiency and long-range rea-
soning without requiring additional training or
retrieval, StateAct provides a scalable founda-
tion for LLM agents. We open source our code
to support further research at https://github.
com/ai-nikolai/stateact.

1 Introduction

Leveraging the in-built world and commonsense
knowledge1 of large language models (LLMs),
such as GPT, Gemini, DeepSeek,and Mixtral
(Brown et al., 2020; Anil et al., 2023; DeepSeek-
AI et al., 2025; Jiang et al., 2024) to perform in-
teractive reasoning tasks has become a frontier in
AI research. “AI Agents” are now able to solve
a range of multi-modal complex tasks (Durante
et al., 2024). These include simulated robotics
tasks (Puig et al., 2018; Shridhar et al., 2021) and
digital tasks, such as online shopping (Yao et al.,
2023a), navigating operating systems (Liu et al.,

1Commonsense- and world- knowledge as explored by
Lauscher et al. (2020), for example.

2023), and playing a variety of games (Côté et al.,
2019; Liu et al., 2023; Prasad et al., 2024).

At the core of an LLM agent is the base agent2,
such as Act (Huang et al., 2022a), ReAct (Yao
et al., 2023c), and AdaPlanner (Sun et al., 2023).
Existing efforts to improve LLM agents build on
top of base agents and are usually quite resource-
intensive: Wu et al. (2024) require human expert
annotations of rules; Sun et al. (2023) require a
code execution environment with carefully crafted
code-based prompts; Fu et al. (2024) use additional
training data together with retrieval augmented gen-
eration (RAG) to help the AI agent; Yang et al.
(2024) use additional training data to fine-tune the
LLM; Shinn et al. (2023) and Prasad et al. (2024)
use test-time computation to produce better results.
Notably, most of the current state-of-the-art meth-
ods use ReAct as the base agent.

In our work, we propose a new base agent, called
StateAct. Starting with the observation that: i)
LLM agents fail to follow the original instruction
and goal in longer interactions; and ii) LLMs strug-
gle with long context despite longer available con-
texts (Li et al., 2023b; Coelho et al., 2024), we
propose two main contributions for improving the
base agent. To address the first issue, we propose
a mechanism for the agent to ‘self-prompt’ at ev-
ery turn of the interaction to improve staying on
track with the main goal. Concretely, our agent
‘reminds’ itself of the final goal at every turn. To
address the second issue, we propose ‘chain-of-
states’, an extension of chain-of-thought based on
state tracking to help the agent stay on track with
the current interaction and context. Using this, the
agent keeps track of its state in the environment
(such as location and inventory).

Our experiments show that StateAct achieves

2Base agents are the core building block of LLM agents.
These are LLM agnostic and usually consists of prompts and
communication between components such as LLMs and other
systems.

367

https://github.com/ai-nikolai/stateact
https://github.com/ai-nikolai/stateact


near state-of-the-art performance without using ad-
ditional training data or additional tools. StatAct
also significantly outperforms ReAct across multi-
ple tasks and eight frontier LLMs of varying sizes.
Specifically, StateAct improves performance over
ReAct by more than 10% on Alfworld (Shridhar
et al., 2021), 30% on Textcraft (Prasad et al., 2024),
and 7% on Webshop (Yao et al., 2023a).

Additionally, we validate that StateAct can serve
as a drop-in replacement for existing extension
methods. Using test-time computation (Prasad
et al., 2024), we achieve a further 12% performance
gain with StateAct on Textcraft using ADaPT.

2 Background

Due to recent advances, LLMs are now being used
as autonomous agents in interactive environments
as an alternative to traditional reinforcement learn-
ing (RL) (Sutton and Barto, 2018; Yao et al., 2023c;
Li et al., 2022; Nottingham et al., 2023). LLM
agents now tackle tasks in simulated environments
such as Alfworld, Webshop, and Textcraft. LLM
agents consist of the base agent and a possible
extensions, such as fine-tuning (FT), retrieval aug-
mented generation (RAG), test-time scaling (TTS),
repeated attempts (REPS) or tools; see Table 1.
StateAct is a base agent that can be used in com-
bination with extensions.

2.1 Base agents

Huang et al. (2022a,b) were among the first to use
LLMs directly to act in an interactive environment;
their method produces agent actions as output after
receiving environment observations as input. Re-
Act (Yao et al., 2023c) takes this work further by
combining acting (Huang et al., 2022a) and chain-
of-thought (Wei et al., 2023). Progprompt and Ada-
Planner (Singh et al., 2022; Sun et al., 2023) use
code-based prompts to interact with environments.
Notably, ReAct is the base agent of modern state-
of-the-art approaches. Our method, StateAct,
falls in the category of base agents and is there-
fore most comparable to ReAct.

2.2 Extensions of base agents: RAG,
fine-tuning, test-time-scaling

ExpeL (Zhao et al., 2023) extend ReAct by using
additional training data to generate success trajec-
tories during training. At inference time, they look
up the closest success trajectories as few-shot ex-
amples to the agent. Follow-on work, AutoGuide

(Fu et al., 2024), uses ReAct as the base agent
with additional training data to create state-aware
text-based guidelines. This ‘knowledge’ of the en-
vironment is then used with retrieval augmented
generation (RAG) to guide the decision-making
process. While AutoGuide achieves the best re-
sult among RAG approaches, the complexity of the
setup makes it less scalable in practice.

Chen et al. (2023); Yao et al. (2023c) introduce
fine-tuning of ReAct with marginal improvements.
KnowAgent (Zhu et al., 2025) compiles knowledge
of the environment and distills this into the LLM to
produce better results. The best approach, ActRe
(Yang et al., 2024), achieves successful fine-tuning
of ReAct by annotating successful trajectories with
CoT before fine-tuning. While fine-tuning yields
the best performance for a specific task, it also
requires additional training, which is costly, and
does not allow for generalisation.

ADaPT (Prasad et al., 2024) and THREAD
(Schroeder et al., 2024) use test-time computa-
tion to achieve better results. This approach is
in line with works such as tree-of-thought (Yao
et al., 2023b), where the AI agent proposes several
thoughts or actions in one go during test-time in-
ference and another model (often the same LLM)
evaluates these; the top k promising thoughts or
actions are then expanded upon in a beam-search
manner. These methods produce strong results and
are very easy to setup, albeit they often require
more compute budget compared to base agents. In
our work we combine ADaPT with StateAct.

2.3 Alternative methods: tools, hand-crafted
rules, multi-agent

ProgPrompt (Singh et al., 2022) and follow-on
work AdaPlanner (Sun et al., 2023) introduce code-
based prompts (Li et al., 2023a). They use code-
execution as an additional tool, by executing LLM-
generated code and feeding the results into the next
LLM generation. The shortcoming of such code-
based prompts is that they require human experts
to annotate very long prompts3. This can be hard
to scale to new environments and requires an addi-
tional step of code-execution.

StateFlow (Wu et al., 2024) uses Finite State
Machines (FSMs) combined with LLMs to solve
Alfworld. These FSMs are human expert-crafted

3For example, in the case of ReAct or StateAct the prompt
for Alfworld can be annotated by most humans quite easily;
while annotating it using the AdaPlanner paradigm would
require the human to know python programming.

368



Figure 1: Overview of LLM-agent methods and their components.

states, transitions and rule-based heuristics, where
the LLM is asked to perform limited tasks in each
of the given states. While this method can achieve a
very high score, it is limited, as it requires a human
expert to design the FSM.

Another approach is to use multiple LLMs to
‘chat’ to one another to produce a result. So far,
multi-agent frameworks Wu et al. (2023) only
achieve minor improvements over using a single
agent.

2.4 State tracking in LLM-based agents

Chen et al. (2024) propose state-tracking as a way
to help the agent solve the task without training
data. The difference of their method to StateAct
is two-fold. Firstly, they employ a complex se-
quence of components working together, which are
an LLM-based attention over the observations, an
LLM-based compilation of a complex state and a
prediction of a program. Secondly, their system in-
volves execution of actual programs. StateAct, on
the other hand, requires a straightforward extension
of CoT and uses a single LLM call to produce the
state, thought and action. Additionally, it does not
require program execution. Statler (Yoneda et al.,
2024) also introduce state-tracking for LLM agents.
While the state has similarity to StateAct, there
are notable differences. Firstly, Statler is aimed at
lower level robotics execution and works with do-
main specific functions. Secondly, Statler produces
and requires code to update and read from the state.
This complex construction of the state is difficult
to scale to new environments.

3 Method

StateAct is an LLM-based AI agent that works on
top of pre-trained LLMs. It takes the textual ‘obser-
vation’ from the environment and, after a single call
to the pre-trained LLM, returns the ‘action’ back

to the environment, without the use of additional
tools or resources.

StateAct utilises in-context learning (Brown
et al., 2020; Wei et al., 2023) to make the agent
interact with the environment. At the core of the
approach is a prompt that consists of few-shot ex-
amples of successful interaction traces as well as
the current interaction trace up to the current step
in the environment. An interaction trace consists of
alternating observations from the environment and
desired (or actual) outputs from the LLM. In the
case of StateAct, the LLM is tasked to generate the
‘goal’, ‘state’, ‘thought’ and ‘action’. The action
is then extracted and passed to the environment to
produce the next observation, see Figure 2. This
renders StateAct similar to ReAct and therefore an
easy replacement for extension methods.

3.1 Self prompting

We found that with long input sequences and multi-
ple turns LLMs can get distracted and lose track of
their main goal. One of the key ideas of State-
Act to overcome this ‘haystack’ challenge for
long prompts and therefore long horizon problems
(Coelho et al., 2024) is to introduce a mechanism
for the LLM to pass an instruction to itself. By
having the language model remind itself the goal
at every turn, this objective is brought into recent
context and reinforced through repetition.

To make it work in practice, instead of copying
the goal manually, we teach the model to repeat
the goal (or summarise it) by showing it few shot
examples.

This approach can be applied in many settings
and to alleviate various problems (including goal
reminding and formatting). In our setting, we focus
on keeping the Agent on track with the main goal
and so the LLM reminds itself of this goal at every
turn.

369



3.2 Chain of states as state-tracking

The idea of state-tracking is to introduce ‘structured
thoughts’ into the reasoning part of the LLM Agent,
specifically by giving the agent small intermediate
predictions that can be inferred from the environ-
ment and actions. This method is different to ex-
isting methods such as ReAct (Yao et al., 2023c),
where CoT is taken to mean verbal ‘thoughts’. The
inspiration comes from the original CoT paper (Wei
et al., 2023) where the LLM is tasked with produc-
ing intermediate calculations. For StateAct, the
LLM agent is tasked with predicting very specific
intermediate steps, such as the current location or
the inventory of the agent.

3.3 Formalising StateAct

Let us denote by π the policy of an AI-agent, in
the standard case at time step t, the policy predicts
action at, given the history of observations and
actions [ot, at−1, ..., a0, o0].

π(at|ot, at−1, ..., a0, o0) (1)

Where at is the action produced by the agent at
time step t and ot is the observation produced by
the environment at time step t after receiving ac-
tion at as input. Usually, the first observation o0
also contains the ‘goal’ description for the given
environment.

For our case, we need to enhance the policy to
incorporate the ‘state’. Similar to previous work
(Yao et al., 2023c), we introduce the context vector,
ct. The context vector contains the action, as well
as the additional predictions of the agent , i.e. ct =
(g0, st, rt, at). Where g0 is the goal and it always
remains the same (for a given environment) and
uses the goal extracted from o0; st represents the
predicted state at time step t; rt represents ‘chain-
of-thought’-style ‘reasoning’ at time step t; and at
represents the action at time step t, as before. The
new policy π then becomes:

πcontextual(ct|ot, ct−1, ..., c0, o0) (2)

In our case, the LLM acts as πcontextual and
produces the context vector at every time step.

3.4 An example trace

An example of the trace for step n in Alfworld is:

Observation n:
On the countertop 2, you see a tomato 1.

Figure 2: Example of StateAct outputs in Alfworld.

LLM Output n:
>Goal: Put a clean tomato in fridge
Current Location: countertop 2
Current Inventory: None
Locations Visited: table 1, countertop 1
Thought: I find the tomato, now I need to
take it.
Action: take tomato 1

In this example, the agent produces the action
‘take tomato 1’ in response to the observation
‘On the countertop 2, you see a tomato 1’.

4 Experimental setup

Our aim is to study reasoning capabilities of LLM-
based agents. In line with previous work, we
use Alfworld (Shridhar et al., 2021), a house-
hold robotics environment; Webshop (Yao et al.,
2023a), an online shopping environment; and Tex-
craft (Prasad et al., 2024), a text-based tool crafting
game, as our evaluation environments. We mainly
evaluate StateAct as the base agent. However, we
also show that StateAct can be used as a drop-in
replacement for ReAct and validate it on test-
time scaling. RAG (AutoGuide) and fine-tuning
(ActRe)-based extensions are left for future work,
as these are expensive and complex to run due to
training on additional data and use of additional
tools.

4.1 Alfworld

Alfworld (Shridhar et al., 2021) is based on a 3D
visual household robotics environment called Al-
fred (Shridhar et al., 2020), which was translated
into a text-based environment for ease of use for

370



Figure 3: An example textual interaction in Alfworld
(right) and corresponding 3D rendering (left).

Figure 4: An textual interaction in Webshop (right) and
correspondingwebsite rendering (left).

language-based AI models, see Figure 3. Alfworld
has a total of 134 test-set examples and six environ-
ment types. It features long-time horizons, partial
observability, an out-of-distribution evaluation set
and text-based interactions. Alfworld simulates a
household environment with a household assistant
robot tasked with solving problems, e.g. clean an
apple and put it on a table. The robot (or
agent) then needs to perform a series of high-level
operations to accomplish the tasks, e.g. ‘go to
fridge 1’, ‘open fridge 1’. At every step, the
environment provides either a textual observation
or the feedback that the command has failed, e.g.
‘You open the fridge 1’, ‘You see apple 1’.
The underlying text engine is based on Textworld
(Côté et al., 2019), see Appendix A for a complete
list of the commands and details of the environ-
ments.

4.2 Webshop
Webshop (Yao et al., 2023a) is a simulation of an
online shopping experience. Given a task, e.g. “I
want a blue water-proof winter jacket,
less than $100”, the agent needs to search a
product catalogue, browse through the search re-

sults, select the most fitting product, select the at-
tributes, e.g. colour, size, and then buy the prod-
uct. In line with previous work, we use the text-
based version of Webshop, where all descriptions
of the website are given in text form, see Figure
4. Webshop features a realistic large-scale product
catalogue, a search engine, and very varied product
attributes depending on the category of product,
see Appendix B for more details. In total, the test
set consists of 100 examples and each one is of the
type “search and buy a product”. Overall, Webshop
has a maximum of fifteen steps and two commands:
1. search[<query>], 2. click[<button>].

4.3 Textcraft

Textcraft (Prasad et al., 2024) is an environment
based on the popular game Minecraft, where the
task of the agent is to craft items. The environment
is fully text-based. We use prompts and implemen-
tations based on the ADaPT paper (Prasad et al.,
2024) that introduced this environment. We also
use this environment to analyse whether StateAct
performs well in combination with other methods
such as ADaPT. See Appendix C for more details.

4.4 In-context learning

Since ReAct (Yao et al., 2023c) forms the under-
lying agent for many current (Zhao et al., 2023)
and state-of-the-art approaches (Fu et al., 2024;
Yang et al., 2024; Prasad et al., 2024), we use the
same few-shot interaction traces as ReAct. The
main reason is to have a fair comparison and to iso-
late additional effects, such as performance change,
from different in-context examples. Alfworld, for
example, has six types of tasks and ReAct uses
two in-context examples per task type to prompt
the language models. On average, each ReAct ex-
ample ranges from 352 words to 591 words (590
tokens to 935 tokens). For our study, we reuse
the observations, thoughts and actions, and anno-
tate these examples further with the goal and state,
which results in a range from 484 to 911 words
(807 tokens to 1458 tokens) per example. Dur-
ing our annotation, we discovered minor errors
in the ReAct prompts and fixed them as well. In
comparison, AdaPlanner (Sun et al., 2023), uses a
different code-based approach and the prompt has
1104 words (2015 tokens) on average. We use the
two-shot examples from ReAct for Alfworld, the
one-shot example from ReAct for Webshop and
the few-shot prompts of ReAct from ADaPT for
Textcraft in all our experiments.

371



4.5 Models

In our work, we compare our method using newer
state-of-the-art models, architectures and sizes to
show that our method generalises. Specifically, we
use Mistral-Small-24B-Instruct (Jiang et al., 2023),
Qwen-2.5-7B,14B,32B-Instruct (Qwen et al., 2025)
and Gemma2-27B-Instruct (Team et al., 2024).
We note that api-based models such as Ope-
nAI’s models are generally very expensive4 and
lack rigorous reproducibility standards5. Nonethe-
less, we include experiments using gpt-3.5 and
gpt-4o-mini. We use temperature 0 for all ex-
periments and sample only the top 1 response; we
use vllm for inference (Kwon et al., 2023), see
Appendix D & E for details.

5 Results

We present results of state-of-the-art methods such
as ActRe and ADaPT, as well as the underlying
base agent ReAct. In Table 1 we see that while
methods that rely on ReAct + extensions, such as
ActRe and AutoGuide outperform StateAct over-
all, they also rely on additional training data and
computation. Furthermore, StateAct achieves the
best result among base agents, outperforming Re-
Act between 7% and 30%. Additionally, StateAct
achieves comparable result with the state-of-the-
art methods, while not using any additional tools
or data. For example, AutoGuide, a best-in-class
method, uses ReAct and RAG and gets 0.79, while
StateAct gets 0.77.

5.1 Base agent comparison

Since ReAct is the previous best base agent and
forms the basis of state-of-the-art approaches, we
compare against it in detail. The results in Table
2 show that StateAct outperforms ReAct across
three different benchmarks and five different mod-
els. Sometimes the difference is substantial, with
StateAct outperforming ReAct by more than 10
points. Across all 15 experiments only in two Re-
Act performs better than StateAct: in Webshop,
where the 7B model is likely overwhelmed by the
amount of textual input it receives, as Webshop has
a lot of verbal input; and in the case of Gemma2-
27B ReAct slightly outperforms StateAct on Alf-
world; our hypothesis is that Gemma has a limited

4A single evaluation run on Alfworld costs approx. $8
using gpt-3.5 and ReAct, whilst gpt-4 costs 10+ times more.

5Since we do not have access to weights and inference
settings and models become regularly deprecated.

Method Score
State-of-the-art methods
AdaPlanner (Code-prompt + exec.)1 0.75
AutoGuide (ReAct + RAG)2 0.79
ActRe (ReAct + fine-tuning)3 0.83
ADaPT (ReAct + test time scaling)4 0.72
Base agents
Act (few-shot only) 0.41
ReAct (few-shot only) 0.64
AdaPlanner (Code-prompt only)1 0.45
StateAct (ours, few-shot only) 0.77

Table 1: Results on the 134 test samples of Alf-
world using gpt-3.5. ReAct and StateAct scores are
single run with greedy decoding and gpt-3.5-1106.
1=code-execution (Sun et al., 2023), 2=(Fu et al., 2024),
3=(Yang et al., 2024), 4=(Prasad et al., 2024).

context length of 8192, while Alfworld requires
long traces due to the longer step length.

We further validate our results with additional
LLMs that are too large to fit on a single GPU or
are closed source. In Table 3 we see a significant
performance increase. Using gpt-3.5, gpt-4o-mini
and Mixtral-8x22B6 (Jiang et al., 2024) on Alf-
world, ReAct achieves 63.7, 68.15 and 72.59, while
StateAct achieves 77.04 (+13.3), 71.85(+3.7) and
83.70(+11.2) respectively.

5.2 Base agents + test time scaling

An important contribution is to validate that State-
Act can be used as a drop-in replacement with ad-
vanced methods. To this end we validate StateAct
using test-time scaling using the ADaPT method.
Starting with ADaPT, which is based on ReAct,
as the starting point(Prasad et al., 2024), we en-
hance their method using StateAct. In Table 4 we
can clearly see that StateAct scales well with test
time scaling jumping in performance by 39% and
surpassing ADaPT+ReAct by 12%.

5.3 Summary of results

StateAct establishes itself as the best-performing
base agent, surpassing ReAct by 7–30% across
multiple benchmarks while requiring no additional
training data or external tools. Although advanced
methods like ActRe and AutoGuide achieve higher
scores, they rely on costly training and retrieval.
We also validate StateAct as a drop-in replacement

6Mixtral-8x22b-instruct-v0.1 was queried using Nvidia’s
NIM API https://developer.nvidia.com/nim [Last Ac-
cessed March 2025].

372

https://developer.nvidia.com/nim


Agent Name Mistral-24B Qwen-7B Qwen-14B Qwen-32B Gemma-27B Average ↑
Alfworld*
ReAct 0.44 0.10 0.75 0.89 0.71 0.58
StateAct 0.49 0.46 0.78 0.90 0.68 0.66
Webshop**
ReAct 0.34 0.19 0.22 0.27 0.26 0.26
StateAct 0.35 0.12 0.33 0.32 0.29 0.28
Textcraft***
ReAct 0.33 0.02 0.31 0.31 0.18 0.23
StateAct 0.40 0.04 0.37 0.40 0.34 0.31

Table 2: Base agent performance across different models and environments. *=134 Test Environments from
Alfworld. **=100 Test Environments from Webshop. ***=100 Test Environments from Textcraft. M=Mistral-
Instruct-2501, Q=Qwen2.5-Instruct, G=Gemma 2-Instruct. We use greedy decoding (temperature=0).

Method Model Success Rate %
ReAct Gpt-3.5 0.64
StateAct Gpt-3.5 0.77
ReAct Gpt-4o-mini 0.68
StateAct Gpt-4o-mini 0.72
ReAct Mixtral-8x22B 0.73
StateAct Mixtral-8x22B 0.84

Table 3: Results on the 134 test examples from Alfworld.
Results are single run and greedy. Models used: gpt-3.5-
1106, gpt-4o-2024-07-18, mixtral-8x22b-instruct-v0.1.

for ReAct in test-time scaling. These results high-
light the performance and usability of StateAct as
a robust foundation for LLM-based agents.

6 Analysis and Ablations

In the results section, we discovered that our meth-
ods outperform the previous state-of-the-art base
agent, ReAct. StateAct shows strong performance
with in-context learning without resorting to ad-
ditional tools or data. In this section, we analyse
our results further and also show that self prompt-
ing and state-tracking help with long-range rea-
soning. For most ablation studies, we focus on
Alfworld as it has two favourable properties over
Webshop and Textcraft. Firstly, Alfworld has a
longer time horizon (50 steps vs. 15 in Webshop,
40 in Textcraft). Secondly, Alfworld is more real-
istic than Textcraft, as Alfworld is a robotics envi-
ronment, while Textcraft is based on a game. For
completeness, we include ablation results in Table
6 and full results in Appendix K,L,M.

Model/Agent Name Normal +ADaPT
Mistral-24B
ReAct 0.33 0.53
StateAct 0.40 0.64
Qwen2.5-7B
ReAct 0.02 0.09
StateAct 0.04 0.11
Qwen2.5-14B
ReAct 0.31 0.55
StateAct 0.37 0.53
Qwen2.5-32B
ReAct 0.31 0.64
StateAct 0.40 0.62
Gemma-2-27B
ReAct 0.18 0.19
StateAct 0.34 0.35
Average
ReAct 0.23 0.4
StateAct 0.31 0.45

Table 4: Comparison of test-time scaling performance
on 100 test samples from Textcraft. Normal refers to
using just the base agent. +ADaPT means running the
respective base agent with test time scaling using the
ADaPT method. ADaPT code is adapted to run ReAct
and StateAct. We use greedy decoding and dmax = 2.

6.1 Does self-prompting help with long-range
tasks?

For this purpose, we compare the original ReAct
(thought + action) with the self-prompting included,
i.e. StateAct (goal + thought + action). In Figure
5 we can see that, while the performance of both
ReAct and StateAct goes down as there are more
steps, the goal tracking has better relative perfor-
mance as the number of steps increases and is able

373



Method Avg. Steps ↓
ReAct 31.49
StateAct (goal, state, thought) 19.11
- w/o goal (self-prompt) 20.09
- w/o state 22.50
- w/o thought 23.76

Table 5: Average number of steps (Avg. Steps) [lower is
better] on the test set of Alfworld, using gpt-3.5-1106.

to solve longer tasks of 40 to 50 steps. This finding
is in line with our original motivation, that LLM
agents deteriorate in performance as the prompts
and interactions get longer.

To verify that this actually means that goal track-
ing helps with performance, as opposed to just
increasing the number of steps it takes to solve a
task, we calculate the average number of steps for
ReAct7 and StateAct. Table 5 clearly shows that
ReAct, with an average of 31.49 steps to solve an
environment, is the least efficient whilst StateAct,
with an average of 19.11 steps to solve an environ-
ment, is the most efficient. This shows that not
only does self-prompting help with longer range
tasks, it also helps with efficiency, by shortening
the tasks. See Appendix G for more discussion.

6.2 What effects does state-tracking have?

We also analyse whether state-tracking helps with
long-range reasoning and efficiency. We compare
the full StateAct against StateAct without state-
tracking, as well as comparing ReAct (thought +
action) against StateAct with state-tracking (state
+ thought + action). In Figure 5 we see that state-
tracking also helps with long-range reasoning. In
fact, we can see that reasoning alone is unable to
solve tasks longer than 40 steps, while with both
state tracking and goal-tracking longer-range tasks
can be solved. Concretely, ReAct has 24/134 ex-
amples that are in the bucket ‘40-50’ and solves 0,
while StateAct has 6/134 examples and solves 4.
Also, looking at Table 5 we see that state-tracking
makes the model the most efficient8 with StateAct
being almost twice as fast to solve problems as Re-
Act. Therefore, we find that explicit state-tracking
helps with long-range tasks and to solve the tasks
more efficiently.

7We ignore ‘thought’ turns for ReAct as otherwise ReAct
would have even more steps.

8Despite StateAct using a twice-longer prompt, our cost
remains similar to ReAct, at around $8 for the full Alfworld
run, since we solve tasks more efficiently and use fewer steps.

Figure 5: State vs. No State, on the 134 test examples
from Alfworld, using gpt-3.5-turbo-1106

Figure 6: State-tracking accuracy for StateAct on 134
test examples of Alfworld, using gpt-3.5-1106.

6.3 Does the model perform actual
state-tracking?

We investigate whether the model is actually per-
forming state-tracking. For that purpose, we look
at Alfworld and construct a self-verification algo-
rithm that is able to track the state heuristically9

based on the actions the agent takes. For example,
if the agent produces the action go to fridge 1
and the environment accepts this action, we update
the state with current location: fridge 1.
We compare the ‘gold’ state against the predicted
state. Figure 6 shows that StateAct achieves a state-
tracking accuracy of 88%. We also observe that
thoughts and goals help the state-tracking.

6.4 Do ‘thoughts’ help?

While ‘verbal’ ‘thoughts’ (i.e. thoughts from Re-
Act) are mainly helpful in Alfworld and Textcraft.

9See Appendix F for details.

374



Surprisingly, we see that in Webshop thoughts ac-
tually harm overall performance across different
agent and model types, see Table 6. Our hypoth-
esis is the verbosity of the Webshop environment
is confusing for the model if prompted with verbal
thoughts.

Agent Name AW WS TC
Baselines
Act 0.51 0.19 0.27
Thought+Act (ReAct) 0.58 0.26 0.23
Our Methods
State+Act 0.51 0.31 0.22
State+Thought + Act 0.58 0.18 0.34
Goal+Act 0.63 0.24 0.26
Goal+Thought + Act 0.65 0.18 0.30
Goal+State+Act 0.56 0.29 0.21
Goal+State+Thought+Act 0.66 0.28 0.31

Table 6: Ablation table. Averaged results across Mistral,
Qwen, Gemma on AW=Alfworld, WS=Webshop and
TC=Textcraft. Goal=Self-prompt.

7 Conclusion

Our work is driven by the fundamental challenge
that LLM agents struggle with long context and
keeping on track with instructions. The current
state-of-the-art to overcome such challenges pro-
pose extensions on top of the base agent, ReAct. In
contrast, we introduced a novel base agent, State-
Act, an in-context learning method that leverages
chain-of-states and self-prompting to significantly
enhance the capabilities of LLM agents. By re-
thinking how agents track and utilize state infor-
mation, StateAct establishes a new state-of-the-art
for base agents, surpassing ReAct by 9% to 20%
across different models and tasks. Furthermore,
we demonstrate that StateAct scales effectively
when combined with advanced techniques such
as ADaPT, reinforcing its usability.

Beyond raw performance, our analysis uncov-
ers a crucial insight: StateAct not only improves
reasoning but also enhances efficiency, allowing
agents to achieve better results with fewer steps.
This suggests that integrating structured state-
tracking and self-prompting cues helps mitigate
the well-documented long-context issue in LLMs.

Our findings suggest that methods like StateAct
can serve as a practical and efficient way to improve
LLM-based agents without the need for additional
data, tools or other extensions. By enabling agents

to manage their own state explicitly, StateAct pro-
vides a scalable approach to improving reasoning
and decision-making across a range of tasks. This
makes StateAct a viable drop-in solution for cur-
rent systems, offering both better performance and
greater efficiency in LLM agent tasks.

8 Acknowledgement

We want to thank Imperial College London Re-
search Computing Services (RCS)10 for the gen-
erous contribution of computational resources to
this project. We also thank Kyle Richardson, Joe
Stacey and Lisa Alazraki for the careful review and
thoughts on the work.

9 Ethical Considerations

9.1 Computational footprint

Running many of the experiments presented in
this paper can have a significant computational
footprint. We should consider the environment
and financial resources for reproduciblity of our
work. We aimed to address this concern by models
that are less computationally demanding such as
gpt-3.5-turbo level models or open source mod-
els that fit on a single GPU (A100, 80GB), report-
ing costs and minimising the cost of our method.

9.2 Hallucinations in LLMs

As LLM-based agents become more powerful and
therefore more pervasive in our daily lives, ‘hal-
lucinations’ in LLMs can be very harmful (Wei
et al., 2024). We hope that explicit state-tracking
presented in this work can also lead to future work
to reduce ‘hallucinations.’

10 Limitations

10.1 Languages and evaluation benchmarks

We evaluated our method only in the English lan-
guage and on three evaluation benchmarks. While
we do not expect major changes in other languages,
this is something that should be investigated.

10.2 Reasoning traces that rely on human
judgement

Our prompts require human annotations; as such,
there is a natural bias present. This can have both
task-performance implications as well as ethical
implications.

10https://doi.org/10.14469/hpc/2232

375

https://doi.org/10.14469/hpc/2232


References
Gemini Team Google Rohan Anil, Sebastian Borgeaud,

Jeffrey Dean, and Oriol Vinyals. 2023. Gemini: A
family of highly capable multimodal models. ArXiv,
abs/2312.11805.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,
Karthik Narasimhan, and Shunyu Yao. 2023. Fire-
act: Toward language agent fine-tuning. Preprint,
arXiv:2310.05915.

Siwei Chen, Anxing Xiao, and David Hsu. 2024. Llm-
state: Open world state representation for long-
horizon task planning with large language model.
Preprint, arXiv:2311.17406.

João Coelho, Bruno Martins, João Magalhães, Jamie
Callan, and Chenyan Xiong. 2024. Dwell in
the beginning: How language models embed
long documents for dense retrieval. Preprint,
arXiv:2404.04163.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Ruo Yu Tao, Matthew Hausknecht, Layla El Asri,
Mahmoud Adada, Wendy Tay, and Adam Trischler.
2019. Textworld: A learning environment for text-
based games. Preprint, arXiv:1806.11532.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,

Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,
W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An,
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen,
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu,
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan-
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu,
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong,
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix-
uan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi-
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z.
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi-
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi
Gao, and Zizheng Pan. 2025. Deepseek-v3 technical
report. Preprint, arXiv:2412.19437.

Zane Durante, Qiuyuan Huang, Naoki Wake, Ran Gong,
Jae Sung Park, Bidipta Sarkar, Rohan Taori, Yusuke
Noda, Demetri Terzopoulos, Yejin Choi, Katsushi
Ikeuchi, Hoi Vo, Li Fei-Fei, and Jianfeng Gao. 2024.
Agent ai: Surveying the horizons of multimodal in-
teraction. Preprint, arXiv:2401.03568.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull
Sohn, Lajanugen Logeswaran, Kyunghoon Bae, and
Honglak Lee. 2024. Autoguide: Automated genera-
tion and selection of state-aware guidelines for large
language model agents. ArXiv, abs/2403.08978.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022a. Language models as zero-
shot planners: Extracting actionable knowledge for
embodied agents. Preprint, arXiv:2201.07207.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tomp-
son, Igor Mordatch, Yevgen Chebotar, Pierre Ser-
manet, Noah Brown, Tomas Jackson, Linda Luu,
Sergey Levine, Karol Hausman, and Brian Ichter.
2022b. Inner monologue: Embodied reasoning
through planning with language models. Preprint,
arXiv:2207.05608.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,

376

https://api.semanticscholar.org/CorpusID:266361876
https://api.semanticscholar.org/CorpusID:266361876
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2311.17406
https://arxiv.org/abs/2311.17406
https://arxiv.org/abs/2311.17406
https://arxiv.org/abs/2404.04163
https://arxiv.org/abs/2404.04163
https://arxiv.org/abs/2404.04163
https://arxiv.org/abs/1806.11532
https://arxiv.org/abs/1806.11532
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2401.03568
https://arxiv.org/abs/2401.03568
https://api.semanticscholar.org/CorpusID:268385171
https://api.semanticscholar.org/CorpusID:268385171
https://api.semanticscholar.org/CorpusID:268385171
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2207.05608
https://arxiv.org/abs/2207.05608


and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. Preprint, arXiv:2401.04088.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Anne Lauscher, Olga Majewska, Leonardo F. R. Ribeiro,
Iryna Gurevych, Nikolai Rozanov, and Goran Glavaš.
2020. Common sense or world knowledge? in-
vestigating adapter-based knowledge injection into
pretrained transformers. In Proceedings of Deep
Learning Inside Out (DeeLIO): The First Workshop
on Knowledge Extraction and Integration for Deep
Learning Architectures, pages 43–49, Online. Asso-
ciation for Computational Linguistics.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen,
Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-
Fei, Fei Xia, and Brian Ichter. 2023a. Chain of code:
Reasoning with a language model-augmented code
emulator. Preprint, arXiv:2312.04474.

Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan
Zhang. 2023b. Loogle: Can long-context lan-
guage models understand long contexts? ArXiv,
abs/2311.04939.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clin-
ton Wang, Linxi Fan, Tao Chen, De-An Huang, Ekin
Akyürek, Anima Anandkumar, Jacob Andreas, Igor
Mordatch, Antonio Torralba, and Yuke Zhu. 2022.
Pre-trained language models for interactive decision-
making. Preprint, arXiv:2202.01771.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu-
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang
Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang,
Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun,
Minlie Huang, Yuxiao Dong, and Jie Tang. 2023.
Agentbench: Evaluating llms as agents. Preprint,
arXiv:2308.03688.

Kolby Nottingham, Yasaman Razeghi, Kyungmin Kim,
JB Lanier, Pierre Baldi, Roy Fox, and Sameer Singh.
2023. Selective perception: Optimizing state descrip-
tions with reinforcement learning for language model
actors. ArXiv, abs/2307.11922.

Archiki Prasad, Alexander Koller, Mareike Hartmann,
Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. 2024. Adapt: As-needed decomposi-
tion and planning with language models. Preprint,
arXiv:2311.05772.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba.
2018. Virtualhome: Simulating household activities
via programs. Preprint, arXiv:1806.07011.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Philip Schroeder, Nathaniel Morgan, Hongyin Luo, and
James Glass. 2024. Thread: Thinking deeper with
recursive spawning. Preprint, arXiv:2405.17402.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning. Preprint, arXiv:2303.11366.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. Alfred: A bench-
mark for interpreting grounded instructions for every-
day tasks. Preprint, arXiv:1912.01734.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2021. Alfworld: Aligning text and
embodied environments for interactive learning.
Preprint, arXiv:2010.03768.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2022. Prog-
prompt: Generating situated robot task plans using
large language models. Preprint, arXiv:2209.11302.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai,
and Chao Zhang. 2023. Adaplanner: Adaptive plan-
ning from feedback with language models. ArXiv,
abs/2305.16653.

Richard S. Sutton and Andrew G. Barto. 2018. Rein-
forcement Learning: An Introduction, second edition.
The MIT Press.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam

377

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/2020.deelio-1.5
https://doi.org/10.18653/v1/2020.deelio-1.5
https://arxiv.org/abs/2312.04474
https://arxiv.org/abs/2312.04474
https://arxiv.org/abs/2312.04474
https://api.semanticscholar.org/CorpusID:265067352
https://api.semanticscholar.org/CorpusID:265067352
https://arxiv.org/abs/2202.01771
https://arxiv.org/abs/2202.01771
https://arxiv.org/abs/2308.03688
https://api.semanticscholar.org/CorpusID:260125969
https://api.semanticscholar.org/CorpusID:260125969
https://api.semanticscholar.org/CorpusID:260125969
https://arxiv.org/abs/2311.05772
https://arxiv.org/abs/2311.05772
https://arxiv.org/abs/1806.07011
https://arxiv.org/abs/1806.07011
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2405.17402
https://arxiv.org/abs/2405.17402
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2209.11302
https://arxiv.org/abs/2209.11302
https://arxiv.org/abs/2209.11302
https://api.semanticscholar.org/CorpusID:258947337
https://api.semanticscholar.org/CorpusID:258947337
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html


Roberts, Aditya Barua, Alex Botev, Alex Castro-
Ros, Ambrose Slone, Amélie Héliou, Andrea Tac-
chetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Christian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Bren-
nan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin
Mao-Jones, Katherine Lee, Kathy Yu, Katie Milli-
can, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon,
Machel Reid, Maciej Mikuła, Mateo Wirth, Michael
Sharman, Nikolai Chinaev, Nithum Thain, Olivier
Bachem, Oscar Chang, Oscar Wahltinez, Paige Bai-
ley, Paul Michel, Petko Yotov, Rahma Chaabouni,
Ramona Comanescu, Reena Jana, Rohan Anil, Ross
McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith,
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas,
Shree Pandya, Siamak Shakeri, Soham De, Ted Kli-
menko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao
Gong, Tris Warkentin, Ludovic Peran, Minh Giang,
Clément Farabet, Oriol Vinyals, Jeff Dean, Koray
Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani,
Douglas Eck, Joelle Barral, Fernando Pereira, Eli
Collins, Armand Joulin, Noah Fiedel, Evan Senter,
Alek Andreev, and Kathleen Kenealy. 2024. Gemma:
Open models based on gemini research and technol-
ogy. Preprint, arXiv:2403.08295.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Jiaheng Wei, Yuanshun Yao, Jean-Francois Ton, Hongyi
Guo, Andrew Estornell, and Yang Liu. 2024. Mea-
suring and reducing llm hallucination without gold-
standard answers. Preprint, arXiv:2402.10412.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran
Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan
Awadallah, Ryen W White, Doug Burger, and Chi
Wang. 2023. Autogen: Enabling next-gen llm ap-
plications via multi-agent conversation. Preprint,
arXiv:2308.08155.

Yiran Wu, Tianwei Yue, Shaokun Zhang, Chi Wang,
and Qingyun Wu. 2024. Stateflow: Enhancing llm
task-solving through state-driven workflows. ArXiv,
abs/2403.11322.

Zonghan Yang, Peng Li, Ming Yan, Ji Zhang, Fei Huang,
and Yang Liu. 2024. React meets actre: When lan-
guage agents enjoy training data autonomy. Preprint,
arXiv:2403.14589.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2023a. Webshop: Towards scalable
real-world web interaction with grounded language
agents. Preprint, arXiv:2207.01206.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023b. Tree of thoughts: Deliberate
problem solving with large language models. ArXiv,
abs/2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023c.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

Takuma Yoneda, Jiading Fang, Peng Li, Huanyu Zhang,
Tianchong Jiang, Shengjie Lin, Ben Picker, David
Yunis, Hongyuan Mei, and Matthew R. Walter. 2024.
Statler: State-maintaining language models for em-
bodied reasoning. Preprint, arXiv:2306.17840.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu
Lin, Yong-Jin Liu, and Gao Huang. 2023. Ex-
pel: Llm agents are experiential learners. Preprint,
arXiv:2308.10144.

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng,
Shiwei Lyu, Yue Shen, Lei Liang, Jinjie Gu, Hua-
jun Chen, and Ningyu Zhang. 2025. Knowa-
gent: Knowledge-augmented planning for llm-based
agents. Preprint, arXiv:2403.03101.

378

https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2402.10412
https://arxiv.org/abs/2402.10412
https://arxiv.org/abs/2402.10412
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://api.semanticscholar.org/CorpusID:268513153
https://api.semanticscholar.org/CorpusID:268513153
https://arxiv.org/abs/2403.14589
https://arxiv.org/abs/2403.14589
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://api.semanticscholar.org/CorpusID:258762525
https://api.semanticscholar.org/CorpusID:258762525
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2306.17840
https://arxiv.org/abs/2306.17840
https://arxiv.org/abs/2308.10144
https://arxiv.org/abs/2308.10144
https://arxiv.org/abs/2403.03101
https://arxiv.org/abs/2403.03101
https://arxiv.org/abs/2403.03101


A Alfworld

A.1 Environment Types

Alfworld has six different environment types: 1.
clean, 2. heat, 3. cool, 4. examine, 5. put, 6.
puttwo.

The ‘clean’ task, e.g. Task: Put a clean
apple on table, requires the agent to first find
the apple, then clean it (in the sink/basin) and then
put it on a table.

The ‘heat’ task, e.g. Task: Put a hot pie on
table, requires the agent to first find the pie, then
heat it (on the stove/burner) and then put it on a
table.

The ‘cool’ task, e.g. Task: Put a cool tomato
on table, requires the agent to first find the tomato,
then cool it (with the fridge) and then put it on a
table.

The ‘examine’ task, e.g. Task: Examine the
mug with the desklamp, requires the agent to
first find the mug, then find the desk lamp, and then
use the desk lamp.

The ‘put’ task, e.g. Task: Find some apple
and put it in sidetable, requires the agent to
first find an apple, and then put it on the side table.

The ‘puttwo’ task, e.g. Task: Put two
cellphone in sofa, requires the agent to first
find one cellphone, and then put it on the sofa, and
then to find the second one and put it on the sofa.

A.2 Action Types

Alfworld has the following valid actions: 1. go to,
2. open, 3. close, 4. put, 5. take, 6. cool, 7. heat, 8.
use.

go to <place>
Example: go to table 1

open <object>
Example: open door 1

close <object>
Example: close door 1

put <object> in/on <place>
Example: put apple 1 in/on table 1

take <object> from <place>
Example: take apple 1 from table 1

cool <object> with <place>
Example: cool apple 1 with fridge 1

heat <object> with <place>
Example: heat apple 1 with fire 1

use <object>
Example: use desklamp 1

A.2.1 Alfworld correction
In our research, we identified that Alfworld has
a specific syntactic feature for the put command,
namely put <object> in/on <place>, where
“in/on” needs to be written exactly this way. Using
only “in” or only “on” produces a failed command.
We observed this issue with LLMs in this envi-
ronment and we propose a simple fix for it. We
map: 1. “put <object> in <place>” and 2.
“put <object> on <place>” to the command
accepted by Alfworld, namely “put <object>
in/on <place>”.

Note: In the latest release of Alfworld (Decem-
ber 2024) this was fixed by replaceing the put
<obj> in/on <place> command with move <obj>
to <place> command. In our work we report re-
sults on the latest version of alfworld.

A.3 License
Alfworld has the permissible MIT license; we used
it in line with the license.

B Webshop

B.1 Commands and environment
Webshop has one environment type: ‘search &
buy’, as well as two commands: 1. search, 2. click.
click[<button>]

Example: click[< Back to Search]

search[<query>]
Example: search[interesting book]

B.2 Prodcuts and attributes
Webshop has over 1 million real-world products
across 5 main categories (fashion, makeup, elec-
tronics, furniture and food) and 113 sub-categories.

B.3 License
Webshop has the permissible Princeton license; we
used it in line with the license.

C Textcraft

C.1 Commands and environment
Textcraft has one environment type: ‘craft’, as well
as three commands: 1. inventory, 2. craft, 3. get

379



C.2 Crafting Recipes

Textcraft has crafting recipes that range from easy
to hard. Where hardness is measured by the ‘depth’
of the crating recipe. Specifically, depths of 2, 3
and 4 are present in the dataset.

C.3 License

Textcraft is published under the permissible MIT
license.

D Compute Requirements for local LLMs

The exact code will be released upon publication.
However, to help reproducibility we ran all exper-
iments on single A100 80GB GPUs. In terms of
software we used: vLLM for inference. The hyper-
parameters were set to: max model length 16000
(except for Gemini, where we used 8192), tem-
perature = 0, datatype="auto" (which results in
bfloat16).

E Code

E.1 Code Snippet to call Local LLMs

from vllm import LLM , SamplingParams
self.llm = LLM(

model=model ,
tensor_parallel_size=
tensor_parallel_size ,
gpu_memory_utilization =0.95,
max_model_len=max_model_len ,
dtype ="auto"

)

messages = [
# {"role": "system", "content ": "You
are a helpful assistant ."},
{"role": "user", "content ": prompt[-
self.max_model_len :]}

]
text = self.tokenizer.

apply_chat_template(
messages ,
tokenize=False ,
add_generation_prompt=True

)

sampling_params = SamplingParams(
temperature=self.temperature ,
top_p =1.0,
repetition_penalty =1.00,
max_tokens=min(2000, self.
max_model_len),
stop = self.stop_sequences ,
seed = self.seed

)
outputs = self.llm.generate ([text],

sampling_params)
return outputs [0]. outputs [0]. text

E.2 Code Snippet to call OpenAI / GPT-3.5

client = openai.OpenAI(
# Defaults to os.environ.get("

OPENAI_API_KEY ")
# api_key=OPENAI_KEY ,

)

full_prompt = [{
"role": "user",
"content ": prompt

}]

chat_completion = client.chat.
completions.create(
model="gpt -3.5-turbo -1106" ,
messages=full_prompt ,
temperature =0.0,
stop = ["\n\n"]

)

A prompt is given in Appendix J.

F Heuristic State-tracking Explained

Heuristic state tracking is based on the idea that the
state can be inferred automatically if one follows
the actions of the agent and observations of the
environments. Specifically, the state at time t for
StateAct depends on the state at time t-1 and the
action at−1 and observation ot. For example, if the
state at time t the ‘current location’ of the state is
set to table 1 and the action is go to fridge 1
and the observation is successful, then the ‘current
location’ can be updated to be fridge 1 automat-
ically. This rule based ‘state-tracking’ is how the
heuristics work.

G ‘Step Length Analysis’ Discussion

An alternative to calculating and comparing step
length could be ‘gold solutions’ to measure opti-
mal step length and optimality of an agent. We see
two issues. Firstly, the annotation cost of creating
gold solutions. Secondly, it is not clear what the
gold solution should be. Concretely in Alfworld,
an ‘oracle’ solution could have very few steps as it
would immediately go to the location of the ‘hid-
den’ object, while a ‘non-oracle’ expert solution
would have more steps as more locations would
be searched. Thus a ‘difficulty’ measure would be
needed instead, but it is ambiguous.

H Potential Future Work Directions

We found that ‘thoughts’ or explicit reasoning do
not always help performance. It would be very in-
teresting to systematise ‘thought’ and ‘states’ and
to understand what contributes positively and the

380



reasons why. Also, inspired by the positive re-
sults of StateAct, it is interesting to see what other
improvements can be made without resorting to
training, larger models or external tools. Finally,
problems related to domain-specific syntax are also
an interesting avenue for future work.

I Does JSON structure help StateAct
performance?

We also investigated whether adding a structured
format like json would help. For this purpose, we
re-ran StateAct on Alfworld, but translated the state
into a json format, see section I.1 for more details.
Surprisingly, we found that the json format hinders
performance, see Table 7.

Method SR% SR (+json)%
ReAct 63.70 62.96(-0.74)
StateAct (complete) 77.04 58.52(-18.5)

Table 7: No-json vs. json. Success Rate (SR) on the test
set of Alfworld, using gpt-3.5-1106.

I.1 JSON prompt

We translate the text-based StateAct prompt:

>goal: put a hot apple in fridge
current location: starting location
current inventory: None
thought: To solve the task , I need to

find and take an apple , then heat it
with microwave , then put it in

fridge. First I need to find an
apple. An apple is more likely to
appear in fridge (1), diningtable
(1), coffeetable (1), drawer (1),
cabinet (1-13), garbagecan (1). I
can check one by one , starting with
fridge 1.

action: go to fridge 1

Into the following json format:

>{"goal": "put a hot apple in fridge",
"current_location ": "starting location",
"current_inventory ": None ,
"thought ": "To solve the task , I need to

find and take an apple , then heat
it with microwave , then put it in
fridge. First I need to find an
apple. An apple is more likely to
appear in fridge (1), diningtable
(1), coffeetable (1), drawer (1),
cabinet (1-13), garbagecan (1). I
can check one by one , starting with
fridge 1."

"action ": "go to fridge 1"
}

J StateAct Prompts

J.1 Example Alfworld prompt for the ‘heat’
task

Interact with a household to solve a
task.

Here are 2 examples:

You are in the middle of a room. Looking
quickly around you , you see a

cabinet 13, a cabinet 12, a cabinet
11, a cabinet 10, a cabinet 9, a
cabinet 8, a cabinet 7, a cabinet 6,
a cabinet 5, a cabinet 4, a cabinet
3, a cabinet 2, a cabinet 1, a

coffeemachine 1, a countertop 1, a
diningtable 1, a drawer 1, a fridge
1, a garbagecan 1, a microwave 1, a
shelf 3, a shelf 2, a shelf 1, a
sinkbasin 1, a stoveburner 4, a
stoveburner 3, a stoveburner 2, a
stoveburner 1, and a toaster 1.

Your task is to: put a hot apple in
fridge.

>goal: put a hot apple in fridge
current location: starting location
current inventory: None
thought: To solve the task , I need to

find and take an apple , then heat it
with microwave , then put it in

fridge. First I need to find an
apple. An apple is more likely to
appear in fridge (1), diningtable
(1), coffeetable (1), drawer (1),
cabinet (1-13), garbagecan (1). I
can check one by one , starting with
fridge 1.

action: go to fridge 1

The fridge 1 is closed.

>goal: put a hot apple in fridge
current location: fridge 1
current inventory: None
thought: None
action: open fridge 1

You open the fridge 1. The fridge 1 is
open. In it, you see a cup 1, and a
egg 1.

>goal: put a hot apple in fridge
current location: fridge 1
current inventory: None
thought: None
action: go to diningtable 1

On the diningtable 1, you see a apple 1,
a bread 1, a fork 3, a fork 2, a

fork 1, a mug 2, a peppershaker 3, a
plate 2, a pot 1, a soapbottle 3, a
spatula 1, a spoon 3, a spoon 2, a

spoon 1, a winebottle 3, and a
winebottle 2.

>goal: put a hot apple in fridge

381



current location: diningtable 1
current inventory: None
thought: Now I find an apple (1). Next ,

I need to take it.
action: take apple 1 from diningtable 1

You pick up the apple 1 from the
diningtable 1.

>goal: put a hot apple in fridge
current location: diningtable 1
current inventory: apple 1
thought: Now I take an apple (1). Next ,

I need to go to a microwave (1) and
heat it.

action: go to microwave 1

The microwave 1 is closed.

>goal: put a hot apple in fridge
current location: microwave 1
current inventory: apple 1
thought: None
action: heat apple 1 with microwave 1

You heat the apple 1 using the microwave
1.

>goal: put a hot apple in fridge
current location: microwave 1
current inventory: apple 1
thought: Now I heat an apple (1). Next ,

I need to put it in/on fridge 1.
action: go to fridge 1

The fridge 1 is open. In it, you see a
cup 1, and a egg 1.

>goal: put a hot apple in fridge
current location: fridge 1
current inventory: apple 1
thought: None
action: put apple 1 in/on fridge 1

You are in the middle of a room. Looking
quickly around you , you see a

cabinet 10, a cabinet 9, a cabinet
8, a cabinet 7, a cabinet 6, a
cabinet 5, a cabinet 4, a cabinet 3,
a cabinet 2, a cabinet 1, a

coffeemachine 1, a countertop 3, a
countertop 2, a countertop 1, a
diningtable 1, a drawer 6, a drawer
5, a drawer 4, a drawer 3, a drawer
2, a drawer 1, a fridge 1, a
garbagecan 1, a microwave 1, a
sinkbasin 1, a stoveburner 4, a
stoveburner 3, a stoveburner 2, a
stoveburner 1, and a toaster 1.

Your task is to: heat some egg and put
it in diningtable.

>goal: heat some egg and put it in
diningtable

current location: starting location
current inventory: None
thought: To solve the task , I need to

find and take an egg , then heat it

with microwave , then put it in
diningtable. First I need to find an
egg. An egg is more likely to

appear in fridge (1), countertop
(1-3), diningtable (1), stoveburner
(1-4), toaster (1), garbagecan (1),
cabinet (1-10). I can check one by
one , starting with fridge 1.

action: go to fridge 1

The fridge 1 is closed.

>goal: heat some egg and put it in
diningtable

current location: fridge 1
current inventory: None
thought: None
action: open fridge 1

You open the fridge 1. The fridge 1 is
open. In it, you see a lettuce 2, a
mug 2, and a potato 3.

>goal: heat some egg and put it in
diningtable

current location: fridge 1
current inventory: None
thought: None
action: go to countertop 1

On the countertop 1, you see a bread 1,
a fork 1, and a saltshaker 1.

>goal: heat some egg and put it in
diningtable

current location: countertop 1
current inventory: None
thought: None
action: go to countertop 2

On the countertop 2, you see nothing.

>goal: heat some egg and put it in
diningtable

current location: countertop 2
current inventory: None
thought: None
action: go to countertop 3

On the countertop 3, you see a bowl 1, a
butterknife 1, a egg 2, a kettle 2,
a plate 1, a sink 1, and a spatula

2.

>goal: heat some egg and put it in
diningtable

current location: countertop 3
current inventory: None
thought: Now I find an egg (2). Next , I

need to take it.
action: take egg 2 from countertop 3

You pick up the egg 2 from the
countertop 3.

>goal: heat some egg and put it in
diningtable

current location: countertop 3
current inventory: egg 2
thought: Now I take an egg (2). Next , I

382



need go to a microwave (1) and heat
it.

action: go to microwave 1

The microwave 1 is closed.

>goal: heat some egg and put it in
diningtable

current location: microwave 1
current inventory: egg 2
thought: None
action: heat egg 2 with microwave 1

You heat the egg 2 using the microwave
1.

>goal: heat some egg and put it in
diningtable

current location: microwave 1
current inventory: egg 2
thought: Now I heat an egg (2). Next , I

need to put it in/on diningtable 1.
action: go to diningtable 1

On the diningtable 1, you see a apple 2,
a bread 3, a egg 1, a kettle 1, a

knife 1, a mug 1, a papertowelroll
1, a peppershaker 2, a potato 1, a
soapbottle 1, and a spatula 1.

>goal: heat some egg and put it in
diningtable

current location: diningtable 1
current inventory: egg 2
thought: None
action: put egg 2 in/on diningtable 1

Here is the task.
<CURRENT TASK >

J.2 Example Webshop prompt

Webshop
Instruction:
i would like a 3 ounce bottle of bright

citrus deodorant for sensitive skin ,
and price lower than 50.00 dollars

[Search]

Goal: Buy a 3 ounce bottle of bright
citrus deodorant for sensitive skin ,
and price lower than 50.00 dollars

Current Location: Search Home Page
Current Selection: None
Thought: None
Action: search [3 ounce bright citrus

deodorant sensitive skin]

Observation:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama |

Natural and Safe for Sensitive Skin ,
Pregnancy and Breastfeeding ,

Contains Organic Calendula 3-Ounce
$10 .99

[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama |

Natural and Safe for Sensitive Skin ,
Pregnancy and Breastfeeding ,

Contains Organic Calendula 3-Ounce
$10 .99
[B08KBVJ4XN]
Barrel and Oak - Aluminum -Free Deodorant

, Deodorant for Men , Essential Oil -
Based Scent , 24-Hour Odor Protection
, Cedar & Patchouli Blend , Gentle on
Sensitive Skin (Mountain Sage , 2.7

oz, 2-Pack)
$15 .95

Goal: Buy a 3 ounce bottle of bright
citrus deodorant for sensitive skin ,
and price lower than 50.00 dollars

Current Location: Search Results Page ,
page 1

Current Selection: None
Thought: B078GWRC1J and B078GTKVXY are

bright citrus deodorant less then 50
dollars. I can check B078GWRC1J

first.
Action: click[B078GWRC1J]

Observation:
[Back to Search]
[< Prev]
scent [assorted scents ][ bright citrus ][

calming lavender ][ ginger fresh][
simply non -scents]

size [travel set (4-pack)][3 ounce (pack
of 1)][3-ounce (2-pack)]

Bright Citrus Deodorant by Earth Mama |
Natural and Safe for Sensitive Skin ,
Pregnancy and Breastfeeding ,

Contains Organic Calendula 3-Ounce
Price: $10.99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

Goal: Buy a 3 ounce bottle of bright
citrus deodorant for sensitive skin ,
and price lower than 50.00 dollars

Current Location: Item B078GWRC1J Page
Current Selection: None
Thought: For 3 ounce bottle of bright

citrus deodorant for sensitive skin ,
the item has options 'bright citrus

' and '3 ounce (pack of 1)' and
seems good to buy.

Action: click[bright citrus]

Observation: You have clicked bright
citrus.

Goal: Buy a 3 ounce bottle of bright
citrus deodorant for sensitive skin ,
and price lower than 50.00 dollars

Current Location: Item B078GWRC1J Page
Current Selection: bright citrus
Thought: None
Action: click [3 ounce (pack of 1)]

Observation: You have clicked 3 ounce (

383



pack of 1).

Goal: Buy a 3 ounce bottle of bright
citrus deodorant for sensitive skin ,
and price lower than 50.00 dollars

Current Location: Item B078GWRC1J Page
Current Selection: bright citrus , 3

ounce (pack of 1)
Thought: None
Action: click[Buy Now]

K Additional results for Alfworld

For Alfworld we can see that the full StateAct per-
forms best. Interstingly, adding state in does not
always help model performance. A potential expla-
nation for this can be that state-tracking itself is not
the challenge in this dataset. Rather self-prompting
is critical in Alfworld. Which indicates that long-
range reasoning depends on self-prompting.

L Additional results Webshop

For Webshop, we present the results for ReAct and
StateAct. Similarly to Alfworld, we also present
the results of StateAct in different forms, see Table
9.

We can see that our method again outperform
the base-agents. For most model we see big jumps
in improvement using ‘state’ in the Webshop envi-
ronment, indicating that the environment benefits
from additional structured prediction.

Interestingly in Webshop the results of Act-only
are very strong for many models. A hypothesis
might be that strong instruction tuning introduces
these kind of reasoning techniques into the mod-
els directly without the need for explicit prompt-
ing from the user. Additionally, we can see that
thoughts often harm performance on Webshop. A
hypothesis for this is that Webshop already has a
lot of textual content so verbose thoughts can be
harmful by confusing the model.

M Additional results for Textcraft

We can see that in Textcraft similar to Alfworld.
The results improve when thoughts are used. In-
terestingly, for Textcraft self-prompting does not
yield the highest result. A hypothesis for is because
the crafting recipe needs to followed very closesly
for successful completion therefore additional re-
minders are not necessary.

N Use of AI

We used coding assistants in small parts using con-
tinue.dev 11 and claude-sonnet-3.5. Small use of
ChatGPT was used for Latex advise and particular
phrasing of parts of the text.

11https://www.continue.dev/, last accessed March
2025.

384

https://www.continue.dev/


Agent Name M-24B Q-7B Q-14B Q-32B G-27B Average
Baselines
Act-only (action) 0.29 0.31 0.66 0.87 0.41 0.51
ReAct (thought + action) 0.44 0.10 0.75 0.89 0.71 0.58
Our Methods
StateAct (state+action) 0.09 0.57 0.75 0.76 0.40 0.51
StateAct (self-prompt+action) 0.36 0.52 0.77 0.90 0.62 0.63
StateAct (state+react) 0.21 0.44 0.76 0.77 0.73 0.58
StateAct (self-prompt+react) 0.53 0.39 0.80 0.91 0.64 0.65
StateAct (self-prompt+state+action) 0.14 0.60 0.71 0.86 0.51 0.56
StateAct (self-prompt+state+react) 0.49 0.46 0.78 0.90 0.76 0.68

Table 8: 135 Test Environments from Alfworld. Different Columns represent different models. In Bold: Best &
2nd Best Solution per Model. Light Green Background: Best Solution per Model. Dark Green Background: Best
Solution Overall. Decoding Strategy: Greedy (temperature=0). M=Mistral-Instruct-2501, Q=Qwen2.5; G=Gemma
2-Instruct.

Agent Name M-24B Q-7B Q-14B Q-32B G-27B Average
Baselines
act-only (action) 0.32 0.26 0.16 0.11 0.11 0.19
react (thought + action) 0.34 0.19 0.22 0.27 0.26 0.26
Our Methods
StateAct (state+action) 0.38 0.25 0.37 0.29 0.26 0.31
StateAct (self-prompt+action) 0.00 0.27 0.36 0.23 0.35 0.24
StateAct (state+react) 0.23 0.14 0.25 0.26 0.04 0.18
StateAct (self-prompt+react) 0.24 0.14 0.15 0.25 0.14 0.18
StateAct (self-prompt+state+action) 0.37 0.26 0.36 0.30 0.15 0.29
StateAct (self-prompt+state+react) 0.35 0.12 0.33 0.32 0.29 0.28

Table 9: 100 Test Environments from Webshop. Different columns represent different models. Average is the
average of all models. Decoding Strategy: Greedy (temperature=0). M=Mistral-Instruct-2501, Q=Qwen2.5;
G=Gemma 2-Instruct.

Agent Name M-24B Q-7B Q-14B Q-32B G-27B Average
Baselines
act-only (action) 0.37 0.05 0.26 0.42 0.25 0.27
react (thought + action) 0.33 0.02 0.31 0.31 0.18 0.23
Our Methods
StateAct (state+action) 0.34 0.06 0.09 0.36 0.25 0.22
StateAct (self-prompt+action) 0.42 0.01 0.25 0.41 0.23 0.26
StateAct (state+react) 0.45 0.12 0.38 0.42 0.34 0.34
StateAct (self-prompt+react) 0.41 0.09 0.35 0.37 0.29 0.30
StateAct (self-prompt+state+action) 0.29 0.01 0.16 0.35 0.23 0.21
StateAct (self-prompt+state+react) 0.40 0.04 0.37 0.40 0.34 0.31

Table 10: Performance across 100 Textcraft test environments with different models. Decoding Strategy: Greedy
(temperature=0). M=Mistral-Instruct-2501, Q=Qwen2.5; G=Gemma 2-Instruct.

385


