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Abstract

Large Language Models (LLMs) have shown
impressive capabilities in text generation
and reasoning but still struggle with over-
thinking and analysis paralysis in interactive,
multi-step tasks. In this paper, we introduce
two complementary contributions aimed
at mitigating these challenges. First, we
propose Think, Validate, Consensus (TVC)—a
multi-agent system inspired by Rational
Speech Act (RSA) theory—that enables LLMs
to recursively model each other’s mental
states and detect overthinking in interactive
environments. We take inspiration from
RSA to model the recursive reasoning about
communicative intent that underlies human
collaboration, complementing models of
individual reasoning. Second, we present
Snap-Think, a dual-mode mechanism that
combines fast, intuitive interaction (System 1)
with slower, deliberative reasoning (System 2)
to break free from reasoning loops detected by
TVC. We evaluate our approach using New
York Times Connections puzzles and demon-
strate significant improvements: Snap-Think
achieves 98% solve rate on GPT-40 compared
to Chain-of-Thought’s 72%, while maintaining
superior semantic grounding and efficiency
over traditional strategies.  Our findings
suggest that integrating human-inspired
cognitive frameworks into LLM architectures
can effectively counteract overthinking
and enhance complex problem-solving
capabilities. We make our code available at:
https://github.com/Chrislai5@2/the_ama
zing_connections

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing with unprece-
dented capabilities in text generation, few-shot
learning, and complex reasoning tasks (Radford
et al., 2019; Brown et al., 2020; Grattafiori et al.,
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2024; OpenAl et al., 2024). Furthermore, tech-
niques that prompt LLMs to leverage additional
compute at test-time have proven to be more ef-
fective than scaling parameters of the training pro-
cess in some cases (Sui et al., 2025). To this end,
popular LLM providers have achieved state of the
art performance by training LL.Ms directly on ex-
tended single reasoning chains, producing Large
Reasoning Models (LRMs) (OpenAl et al., 2024;
DeepSeek-Al et al., 2025). However, when scaling
these techniques, LRMs occasionally enter unpro-
ductive reasoning cycles (Chen et al., 2025). In-
deed, research by (Zeng et al., 2025) has revealed a
concerning trend: many modern LLMs that claim
to possess test-time scaling capabilities—such as
QwQ, Deepseek-R1, and LIMO—do not consis-
tently benefit from extended reasoning chains in all
tasks (DeepSeek-Al et al., 2025; Chen et al., 2025).

Such reasoning cycles are also seen in ap-
proaches to multi-agent frameworks, such as Open-
Hands (Wang et al., 2024; Cuadron et al., 2025).
Specifically, (Cuadron et al., 2025) attributes the
term "Analysis Paralysis"—a state where exces-
sive deliberation impedes progress and decision-
making—to the type of overthinking that leads to
reasoning stagnation (Sui et al., 2025). Analysis
paralysis manifests behaviorally as recursive rea-
soning loops where models repeatedly reconsider
the same information without making progress to-
ward a solution. In multi-agent systems, this can
be quantified through persistent disagreement be-
tween specialized agents: when a reasoning agent
and validation agent consistently fail to converge
on shared conclusions despite multiple iterations,
this indicates the system has become trapped in un-
productive analytical cycles. We hypothesize that
directly addressing analysis paralysis in a multi-
agent context can lead to significant performance
improvements. We use New York Times Connec-
tions as a toy problem to examine tasks that have
very few solutions, involve an iterative environ-
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ment, and require planning to complete.

We address analysis paralysis through two key
contributions. First, we introduce Think, Validate,
Consensus (TVC), a multi-agent framework in-
spired by the Rational Speech Act (RSA) model
(Frank and Goodman, 2012) of recursive reason-
ing in humans about their conversation partner’s
mental state. We show that this technique allows us
to successfully detect overthinking patterns when
solving New York Times Connections puzzles.

Second, we present Snap-Think, which draws
from Kahneman’s dual-process theory (Kahneman,
2017), distinguishing between fast, intuitive "Sys-
tem 1" thinking and slower, deliberative "System
2" thinking. We demonstrate that Snap-Think
achieves higher accuracy in comparison to Chain-
of-Thought and—we argue—Iless overthinking.

2 Background

LLMs have reshaped natural language processing
and interactive systems. Recent research now lever-
ages their capacities as powerful reasoning agents
from explicit problem decomposition strategies like
Chain-of-Thought (CoT) to interactive, multi-agent
configurations (et al., 2022; Wu et al., 2023). How-
ever, structured reasoning invites the possibility
of overthinking (Chen et al., 2025). We describe
Rational Speech Act (RSA) to detect overthinking
and our problem of evaluation, New York Times
Connections.

2.1 Large Language Agents

B

LLMs can be formulated as “learned optimizers’
over the space of language ‘utterances’ (Garg et al.,
2023). To improve the performance of LLMs on
downstream tasks, a large body of work focuses on
priming these optimizers with “prompts” (Radford
et al., 2019; Brown et al., 2020). Upon their dis-
covery, the majority of prompts were specialized
to a task, inherently dependent on specific details.

In recent years, research has grown around con-
structing task-agnostic prompting strategies. Semi-
nal to this area, (et al., 2022) discovered that sim-
ply appending “Let’s think step by step” to the end
of a task description drastically improved perfor-
mance by encouraging stepwise reasoning before
producing an answer (Chain-of-Thought (CoT)).
Self-Consistency refined the approach presented
by CoT prompting by sampling diverse reasoning
paths and selecting the most consistent solution
(Wang et al., 2023). Tree of Thought (ToT) further

extended CoT into tree-based reasoning, enabling
models to backtrack and "branch off" reasoning
paths by iteratively expanding a frontier of thoughts
(Yao et al., 2023).

2.2 Overthinking in Al systems

Despite the success of these reasoning methods,
recent research has identified a significant limita-
tion: the tendency of reasoning models to become
trapped in unproductive reasoning patterns. The
OpenHands Execution Pipeline study (Cuadron
et al., 2025; Wang et al., 2024) systematically doc-
umented three distinct patterns of overthinking in
large reasoning models:

* Analysis Paralysis: Agents become stuck in
excessive planning without taking concrete
actions

* Rogue Actions: Agents attempt multiple si-
multaneous actions without awaiting feedback

* Premature Disengagement: Agents abandon
tasks based solely on internal simulations
rather than environmental validation

Their analysis revealed that higher overthinking
scores strongly correlates with decreased perfor-
mance on SWE-bench, and that both reasoning-
optimized models and smaller models exhibit in-
creased overthinking tendencies in comparison to
their general-purpose counterparts. They also find
that effectively monitoring for overthinking and
controlling for it leads to efficiency improvements
(Cuadron et al., 2025).

The problem is further exacerbated by test-time
compute innovations that allocate additional com-
putational resources during inference. While these
approaches have yielded improvements in reason-
ing performance, they frequently intensify rather
than resolve the fundamental problem of overthink-
ing (Sui et al., 2025).

Cognitive science offers valuable frameworks
for understanding and addressing the overthinking
problem in Al systems. Kahneman’s dual-process
theory distinguishes between two modes of think-
ing: System 1 and System 2. Kahneman details
System 1 as fast, intuitive, and automatic thinking
that occurs subconsciously on all stimuli while Sys-
tem 2 thinking is slow, deliberative, effortful, and
consciously evoked. This distinction provides a
useful lens for understanding the balance between
different reasoning strategies (Kahneman, 2017).
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The application of dual-process cognitive frame-
works to LLM reasoning has gained traction in
recent literature. Dualformer (Su et al., 2024) inte-
grates the benefits of Kahnemnning tasks. While
Dualformer emphasizes balancing these modes for
optimal performance, our approach diverges by
specifically leveraging fast thinking for informed,
exploratory search; our work advances this perspec-
tive with language agents.

2.3 Multi-Agent Systems and Pragmatic
Communication

Multi-agent systems distribute cognitive respon-
sibilities among specialized agents. Recent ad-
vancements demonstrate that multi-agent setups
can enhance performance in structured signaling
games and pragmatic reasoning tasks, leverag-
ing the collaborative strengths of multiple agents
to achieve nuanced understanding and decision-
making (Nguyen et al., 2023; Carlsson and Dub-
hashi, 2023).

As a complement to mirroring human reasoning,
we take inspiration from Frank and Goodman’s Ra-
tional Speech Act (RSA) framework as a model
of human conversation. RSA provides a Bayesian
framework to analyze utterances in relation to their
underlying meaning in a speaker-listener interac-
tion. It claims that a human speaker maximizes
the probability of correct interpretation by a hypo-
thetical listener that derives meaning directly from
word denotations. The listener then maximizes the
probability of a hypothetical speaker producing that
utterance over the marginal distribution of mean-
ings (Frank and Goodman, 2012). More concretely,
human speakers model a “literal” listener (Lg in
Eqn. 1), and human listeners model a “pragmatic”
speaker (S7 in Eqn. 2).

That is, if S7 wants to convey meaning m to
listener L1, they select an utterance to be the fol-
lowing:

arg max P (Lo interprets m|utterance) (1)
utterance

The listener L; then decodes the meaning of that
utterance u to be

arg max P(S says u|/meaning) ()
meaning

To the authors’ knowledge, this work is the
first to integrate properties of unstructured human
conversation into a multi-agent setting, creating a

framework that leverages both the pragmatic com-
munication principles of RSA and the cognitive
flexibility of Kahneman’s dual-process theory.

2.4 New York Times Connections

The New York Times publishes a daily puzzle that
requires nuanced semantic inference and iterative
problem-solving. Players are given sixteen words
and must identify four disjoint categories in which
four words share something in common. Players
select and submit groups of four words for imme-
diate feedback. If correct, the words are removed
from the board as a solved category; if incorrect,
the board does not change.

TYPES OF RADIO
AM, HAM, SATELLITE, WALKIE-TALKIE

KINDS OF PLAY FIGHTS
FOOD, PILLOW, SNOWBALL, WATER BALLOON

SNACK CAKES
DEVIL DOG, DING DONG, HOHO, YODEL

CLASSIC JOKE STAPLES
BAR, CHICKEN, KNOCK-KNOCK, LIGHT BULB

Figure 1: A representative Connections puzzle, solved.

Connection puzzles frequently reference global
brands, historical figures, idiomatic expressions,
literary works, and other culturally rich phenom-
ena. The corresponding categories are more spe-
cific than broad linguistic features like nouns or five
letter words, instead they might involve cultural ref-
erences, contextual themes, or lexical patterns as
seen in Figure 1. Additionally, each puzzle has
exactly one valid solution and thus requires careful
planning to construct all four categories. By chal-
lenging LLMs with continuously updated content,
we ensure that, in principle, performance reflects
advancements in reasoning and adaptability rather
than static recall.

Prior work has established this as a challeng-
ing benchmark: (Samadarshi et al., 2024) evalu-
ated abstract reasoning capabilities of LLMs us-
ing Connections, demonstrating that the puzzle re-
quires sophisticated semantic understanding and
planning. (Lopez et al., 2025) further showed that
Connections presents a deceptively simple classi-
fication task that particularly challenges System-1
style thinking, making it an appropriate domain for
testing dual-process interventions.
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3 Think, Validate, Consensus (TVC)

Generating structured reasoning and conceptual cat-
egorization are challenging tasks that are prone to
strong biases or hallucinations at high temperatures.
Building upon our second realization that valida-
tion tasks are a more straightforward problem as
compared to a generative task, we built the Think,
Validate, Consensus (TVC) multi-agent system.

This framework enhances the pragmatic reason-
ing of large language models (LLMs) within multi-
agent systems by taking inspiration from the Rea-
soning Speech Act framework (Frank and Good-
man, 2012). In our implementation, we model the
RSA human-conversation patterns on the Connec-
tions puzzle with specialized LLM agents through
the Autogen software framework (see Appendix
A.1 for technical details) (Wu et al., 2023, 2024).

The TVC framework consists of three spe-
cialized agents: Thinker, Validator, and
Consensus:

1. The Thinker initiates the reasoning process
by generating hypotheses. It proposes a set of
related words and a corresponding candidate
category description.

The Validator ingests the proposed category
description and identifies the corresponding
group of words that the description best de-
scribes.

The Consensus agent serves as the final ar-
biter by comparing the word groupings of the
Thinker and Validator. If both proposed
groups match, the Consensus agent finalizes
and submits the guess.

Concretely, given the current game board B and
previously guessed categories H, the Thinker sug-
gests a grouping of four words G and a correspond-
ing category description C'. The Validator, with
access to B and C, then selects four words V' that
align with the category C. The Consensus agent
then compares the two groups G and V. If they
match (G = V), the grouping is submitted as an
attempt. On a failed attempt, the category C' is
added to the previous guesses H, the retry counter
increments, and the Thinker proposes again. On
a successful attempt, the guess G is removed from
the board B, the history H is cleared, the retry
count is reset, and the process repeats. This cycle
repeats until all words are categorized or the retry
limit is hit.
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In this way, we argue that correct categories G
are those for which there exists botha C and a V'
in agreement. We leverage the fact that the data
that LLMs are pretrained on are necessarily "utter-
ances" made by humans to simply imitate a prag-
matic (human) speaker (S in Sec. 2.3) by generat-
ing an utterance (i.e. C') with the literal meaning
G in context. To imitate the pragmatic listener L,
we simply swap the context and generation target.

Because we require the Validator to reconstruct
the result produced by the Thinker from the cate-
gory, we reduce the detection of overthinking to a
simple consistency check. That is, paralysis anal-
ysis manifests as recursive misalignment between
agents: when the Thinker proposes a grouping and
category, the Validator is expected to independently
reconstruct the same word group from the category
description. If this reconstruction consistently fails,
we interpret this as a sign of reasoning stagnation.
Therefore, we equate analysis paralysis to failure to
converge on a shared selection within a fixed retry
budget.

4 Snap-Think, Validate, Concensus
(Snap-Think)

Building directly on the detection of overthink-
ing provided by TVC, we develop Snap-Think
as a targeted intervention to break free from the
self-reinforcing reasoning loops that cause analysis
paralysis.

The motivation behind the design of Snap-Think
can be understood through two complementary
perspectives: first, via Kahneman’s dual-process
theory of cognition (Kahneman, 2017); second,
through the generalized policy improvement theo-
rem (GPI), framed as an on-policy reinforcement
learning problem (Sutton and Barto, 2018).

4.1 Design Motivation: Dual-Process Theory

Snap-Think functions as a "cognitive disinhibi-
tion" mechanism (Carson et al., 2003) that activates
when the framework detects stagnated System 2
overthinking, providing an System 1-inspired pol-
icy that prioritizes exploratory solutions.

To emulate System 1 and System 2 thinking
(Kahneman, 2017) as "fast" and "slow" processes,
we re-imagined the TVC loop as System 2 think-
ing while introducing a new loop with its own
Thinker and Validator. Snap-Think maps Sys-
tem 2 thinking to a structured critique loop, where
the SlowThinker and SlowValidator generate
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Figure 2: The TVC framework mirrors the Rational Speech Act Theory, and consists of two phases: Left Uttering
Phase where Thinker proposes word groupings and Validator provides critical feedback, simulating collaborative
reasoning, and Right Feedback Generation where the Connections Engine evaluates submissions and provides

structured feedback to inform subsequent attempts.
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Figure 3:

Our dual-phase reasoning framework designed to overcome analysis paralysis in language model

problem-solving. Left: The Conservative Thinking Phase employs GPT-40 as both SlowThinker and Slow Validator,
engaging in detailed reasoning with natural language feedback loops. Center: The Feedback Generation module
mediates between phases, processing environment responses from the Connections Engine, formalizing Validator
Feedback, and tracking overthinking to determine phase transitions. Right: The Snap Thinking Phase utilizes the
smaller GPT40-mini model for both SnapThinker and SnapValidator, performing rapid, intuitive exploration. Gray
arrows indicate phase transitions triggered by either reasoning stagnation detection or successful problem-solving
breakthroughs. Example execution transcripts are provided in Appendix B

reasoning chains with feedback, and System 1
thinking to a rapid loop, where the SnapThinker
and SnapValidator generate and evaluate guesses
without deliberation. This architecture (Figure 3)
leverages both precision for standard problem-
solving and creative exploration when analytical
approaches stagnate.

Unlike Dualformer (Su et al., 2024), which em-
phasizes achieving a balance between these modes
for optimal performance, our approach leverages
the speed of System 1 thinking to conduct an in-
formed search to break free from perpetual reason-
ing while maintaining robust decision-making.

4.2 Design Motivation from a GPI perspective

Under GP], if a new policy ' improves or main-
tains the value of the current policy 7 for all states
s € S, then 7/ will perform at least as well as 7.
Specifically, for the action-value function @ of ,
7/ must satisfy:

Qn(s,7'(5)) > Va(s)
< Vu(s) > Vi(s)

Vs e S, 3)
Vs e S. “)

In the context of solving NYT Connections, the
Conservative policy Tconservative Significantly out-
performs the Snap-Thinking policy W/Snap under nor-
mal conditions, achieving error-free solutions 66%
of the time compared to 15% for Snap-Thinking.
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Figure 4: Solving trajectories through the Connections
puzzle state space. The graphs illustrate difficulty land-
scapes where higher values along the y-axis indicate
more challenging categorization and the number of
groups identified is marked along the x-axis. Example
execution transcripts are provided in Appendix B.2 blue:
COT reasoning can become trapped in local difficulty
maxima. Yellow: Snap-Think combines conservative
reasoning with rapid exploratory solutions when stagna-
tion occurs.

However, when the Conservative policy falls into a
Analysis Paralysis state P C .9, the value function
reverses:

Vﬂ'/ ; (S) > VWConscrvalivc (S) VS € P

Snap

This reversal occurs because LL.Ms have inter-
nalized statistical correlations from their training
data (Mondorf and Plank, 2024; Acerbi and Stub-
bersfield, 2023), resulting in bias magnification
(Macmillan-Scott and Musolesi, 2024). For exam-
ple, a model might persistently associate "Candy
Cane" with Christmas categories due to training
COrpus co-occurrences.

In such cases, switching to the Snap-Thinking
policy enables progress by satisfying equation (4)
and avoiding stagnation. Strategic transitions be-
tween these policies allow Snap-Think to solve
the board conservatively, yet make progress and
escape stagnation when confronted with difficult
problems.

4.3 Design

Snap-Think both enhances and extends TVC,
as shown in Figure 3. The enhancement in-
volves combining the roles of the Validator and
Consensus agents into a unified SlowValidator,
which provides natural language feedback to the
SlowThinker. Snap-Think also introduces a sec-
ondary "Snap cycle," consisting of a SnapThinker

and a SnapValidator. Transitions between the
Slow and Snap cycles occur when either a correct
attempt is made during the Snap cycle or specific
failure thresholds are reached in the Slow cycle.

Snap-Think begins with the SlowThinker con-
structing a grouping set S and reasoning R based
on the board state B, prior groupings Hg, the
SlowValidator’s latest feedback F', and failed
attempts 4. The SlowValidator critiques and
evaluates (S, R) using B and H 4. If accepted, the
grouping is submitted as an attempt. If k& groupings
are rejected or k' incorrect attempts occur in suc-
cession, Snap-Think transitions to the Snap cycle.

In the Snap cycle, the SnapThinker generates
rapid guesses G using B and H,4, which the
SnapValidator checks for rule compliance (e.g.,
four valid words from the board). Approved
guesses are submitted as attempts, and the cycle
continues until progress is achieved in the task.
As illustrated in Figure 4, this dynamic switching
mechanism enables the system to escape difficult
reasoning plateaus by transitioning between delib-
erative processing (blue trajectory) and exploratory
guessing (yellow arrows) when stagnation is de-
tected. Notably, the Snap cycle works sufficiently
well with smaller models like GPT-40-mini, re-
ducing computational costs while maintaining ade-
quate exploratory capabilities.

5 Evaluation

To investigate the impact of overthinking in struc-
tured reasoning tasks, we adopt the New York
Times Connections puzzle as our testbed. This
environment is particularly well-suited for our anal-
ysis: it has a small and well-defined solution space,
requires multi-step planning, and operates under
a constrained iterative feedback loop. As such, it
functions as a controlled yet challenging toy do-
main for evaluating reasoning dynamics, including
when to commit versus when to continue deliberat-
ing.

We evaluate the performance of the Think, Val-
idate, Consensus (TVC) and Snap-Think frame-
works on this task, benchmarking them against
several baseline prompting strategies. We employ
GPT-40 and GPT-40 Mini for all experiments and
the tendency to overthink.

We examined five distinct agentic prompting
strategies: basic, prompt engineered, Chain-of-
Thought (CoT), TVC, and Snap-Think. Our
prompt designs follow established best practices for
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the Connections domain, detailed information of
the prompts is provided in Appendix A.3. (Aronow
and Levine, 2023) provides expert strategies for
solving Connections puzzles, which we incorpo-
rated into our agent instructions to ensure our
prompts reflect human-level domain knowledge
and solving approaches. Detailed information of
the prompts is provided in Appendix A.3. Basic is
a straightforward prompt instructing completions
to be in JSON format, with no additional prompt-
ing techniques. Prompt engineered is a tuned ver-
sion of Basic, incorporating few-shot examples in-
context (Brown et al., 2020) that include example
word-to-category matchings and persona prompt-
ing as an "expert puzzle solver" (Anthropic, 2025).
CoT includes an explicit step-by-step reasoning ex-
ample by appending the phrase "Let’s think step
by step." TVC and Snap-Think are employed as
previously mentioned in the above methodology
sections.

We ran all strategies on 100 New York Times
Connections boards released after the latest train-
ing data cutoff between the above models. Systems
were allowed a maximum of 20 incorrect guesses
or could terminate early based on confidence, as in
the case of TVC and Snap-Think. Model config-
urations and inference details are provided in Ap-
pendix A.1, and additional implementation details
for the TVC framework are available in Appendix
A2

We measured three key performance indicators:

1. Solving Ability: The proportion of puzzles suc-
cessfully solved, indicating each strategy’s rea-
soning success at reaching correct answers. We
refer to this as solve rate.

2. Semantic Grounding: The average number
of guesses involving words not present on the
board, indicating how well each model retains
relevance to the context. We refer to this as
semantic grounding score.

3. Solving Efficiency: The average number of
guesses made before a correct solution or termi-
nation, which is a proxy for inference cost and
decision efficiency.

These metrics together provide insight into the
success of each prompting strategy. In particular,
we focus on identifying signatures of overthinking,
such as excessive iterations or low semantic ground-
ing and how our cognitively-motivated strategies
help mitigate them.

All prompts used in the experiments are doc-
umented in Appendix A.3, and experiments on
LLaMA-based cross-model generalization results
are provided in Appendix C.

6 Experimental Results

Single-agent methods exhibit strong reasoning ca-
pabilities. A basic prompt, which contains no
examples or reasoning scaffolds, achieves a 58%
solve ability rate on GPT-40. Notably, intro-
ducing improved prompting techniques such as
Chain-of-Thought (CoT), leads to a consistent up-
ward trend in board solve rates, highlighting the
benefits of structured reasoning strategies. How-
ever, this performance plateaus, particularly in
the smaller model, suggesting diminishing returns
from prompting alone.

In contrast, the TVC framework changes this
trend. While TVC does not surpass CoT in solve
rate on GPT-40 (56%), it improves other aspects
of performance. TVC reduces hallucinated or un-
grounded guesses, achieving a semantic grounding
score of 1.50 on GPT-40 and 1.56 on GPT-40 Mini.

Snap-Think achieves the highest solve rates
across all configurations: 98% on GPT-40 and 80%
on GPT-40 Mini. At the same time, it maintains
the semantic control and efficiency of TVC, with
grounding scores of 0.50 and 0.86, and the best
solving efficiency across both models.

7 Discussion

Our work addresses a fundamental challenge in
LLM reasoning: The tendency for models to be-
come trapped in unproductive reasoning cycles,
or analysis paralysys. Through two novel contri-
butions, TVC and Snap-Think, we demonstrate
both the detection and mitigation of overthinking
in a controlled reasoning environment. Our experi-
mental results with the Think, Validate, Consensus
(TVC) framework provide compelling evidence
that analysis paralysis can be qualitatively deter-
mined, and it is a significant limitation in LLM-
based problem-solving.

The TVC framework successfully implements
a multi-agent framework inspired by Rational
Speech Act (RSA), enabling LLMs to recursively
reason about each other’s mental states. Detailed
conversation examples demonstrating these dynam-
ics are shown in Appendix B.1 and B.2. Through
this implementation, TVC significantly improved
semantic grounding compared to all baseline ap-
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Table 1: Metrics collected over all prompting strategies and Multi-agent frameworks.

Model Solving Ability | Semantic Grounding | Failed Guesses
Basic 30% 4.96 15.12
Prompted 36% 4.27 13.94

GPT 40-mini  CoT 38% 3.71 13.7
TVC 50% 1.56 2.11
Snap-Think 80% 0.86 2.06
Basic 58% 4.59 10.13
Prompted 60% 5.25 10.10

GPT 40 CoT 2% 4.81 8.00
TVC 56% 1.50 1.45
Snap-Think 98 % 0.50 1.38

proaches, achieving scores of 1.50 on GPT-40 and
1.56 on GPT-40-mini, drastically better than Chain-
of-Thought’s scores of 4.81 and 3.71 respectively.

However, TVC’s solve rate (56% on GPT-40)
does not exceed that of CoT (72%), despite its supe-
rior capabilities to semantically ground responses.
This reveals the tradeoff between deep and deci-
sive reasoning, and shows that the RSA-inspired
framework can indeed be utilized to invoke over-
thinking through its recursive reasoning dynamics.
This diagnostic signal can be leveraged to trigger
interventions—the foundation for our second con-
tribution, Snap-Think.

Our second contribution, Snap-Think, addresses
this critical limitation by introducing a dual-mode
thinking mechanism. The results demonstrate
Snap-Think’s remarkable effectiveness, achieving
the highest solve rates across all configurations:
98% on GPT-40. Remarkably, Snap-Think main-
tains the semantic control of TVC with grounding
scores of 0.50 and 0.86 respectively while simulta-
neously delivering the best solving precision and
efficiency.

This substantial gain supports our design ratio-
nale based on Kahneman’s dual-process theory,
confirming that the strategic integration of com-
bining fast, confident decision-making of "System
1" (fast, intuitive) and controlled validation of "Sys-
tem 2" (slow, deliberative) provides an effective
countermeasure to analysis paralysis. Furthermore,
Snap-Think’s strong performance on GPT-40-mini
(80% solve rate) compared to CoT (38%) demon-
strates that our approach can significantly enhance
the capabilities of smaller models. This suggests
that overthinking mitigation strategies may be par-
ticularly valuable for more resource-efficient de-
ployments.

These findings highlight the efficacy of human-
inspired cognitive frameworks in enhancing LLM
reasoning. By mirroring human conversational
dynamics through RSA-based agent specializa-
tion and implementing cognitive flexibility through
dual-mode processing, our work demonstrates a
path toward more robust, efficient, and adaptable
Al reasoning systems.

8 Limitations

While our work provides promising results in mit-
igating analysis paralysis within large language
models, it is subject to constraints and open chal-
lenges. We primarily test our approach on GPT-40
and GPT-40-mini models, which follow a specific
training paradigm. Systematic comparisons across
diverse model families and parameter scales, it re-
mains unclear whether the proposed multi-agent
strategies would retain their effectiveness on other
state-of-the-art or smaller models (e.g., LLaMA,
Gemmini, or Qwen) with different architectures or
pretraining corpora. Our evaluation focused on puz-
zle tasks with modest search spaces (16 words with
exactly four solutions), which may not reflect the
challenges of larger problem domains. Scaling to
more complex environments with hundreds or thou-
sands of elements could introduce combinatorial
explosions and more intricate reasoning loops. Our
future work will investigate whether Think, Vali-
date, Consensus and Snap-Think can be adapted
or extended to handle significantly larger problem
instances without compromising efficiency or solu-
tion quality.

9 Conclusion

In this work, we introduced Think, Validate, Con-
sensus (TVC)—a multi-agent architecture for large
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language models (LLMs) that systematically de-
tects analysis paralysis in multi-step reasoning
tasks. By splitting the reasoning process into
specialized Thinker, Validator, and Consensus
roles, TVC operationalizes the Rational Speech
Act (RSA) framework to recognize internal incon-
sistency.

We then extended TVC with Snap-Think, a
dual-mode approach inspired by Kahneman’s the-
ory of fast (intuitive) and slow (deliberative) think-
ing. Snap-Think dynamically detects unproductive
reasoning loops and transitions from methodical
“System 2” processes to rapid, higher-temperature
“System 17 cognition, thereby escaping local op-
tima. Our empirical evaluation on New York Times
Connections puzzles demonstrates that Snap-Think
achieves significant performance gains, including
for smaller models, by injecting creative explo-
ration without compromising semantic precision.

Think, Validate, Consensus and its extension
Snap-Think provide strong evidence for integrat-
ing human-inspired cognitive theories with prin-
cipled multi-agent collaboration to mitigate over-
thinking and stagnation with LLMs.
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A Inference Details

A.1 Tools and Framworks

Checkpoints and Model Versions. We use multiple Inference-as-a-Service endpoints, each utilizing
specific configurations and parameter settings. Specifically, our system references:

* OpenAl endpoint: For models such as GPT-40 and GPT-40-mini, snapshot gpt-40-2024-08-06
and gpt-40-mini-2024-07-18 respectively.

* Groq or Lambda endpoints: For LLaMA-based checkpoints (i.e., llama-3.1-8b,
1lama-3.3-70b).

Autogen We use Autogen! (Wu et al., 2023), a software library that simplifies multi-agent orchestration
through ConversableAgent objects. Each agent is initialized with a system message and can receive
contextual user prompts on each turn.

Temperature and Word Extraction. We apply different temperatures for GPT-40 and GPT40-mini to
distinguish between conservative (System 2) and snap (System 1) reasoning:

* Conservative Phase: Lower or moderate temperature (e.g., 0.6-0.7) for methodical, step-by-step
reasoning.
* Snap Phase: Higher temperature (e.g., 0.7-0.9) for intuitive, quick guesses that often help escape

repetitive loops.

Moreover, words are extracted from an LLLM response through successive calls to OpenAl’s structured
output, ensuring exactly four words are parsed to comply with puzzle constraints.
A.2 TVC Additional Details
Think—-Validate—Consensus (TVC). The TVC framework comprises three specialized agents. We
diagram the interaction in Figure 5.

1. Thinker: Proposes a 4-word: guess and assigns a relevant category label.

2. Validator: Interprets the proposed category to see if it matches exactly those 4 words on the board.

3. Consensus: Confirms or denies the guess; if the guess is incorrect, the Thinker receives feedback to
revise its proposal.

Uttering Phase Feedback Generation

Connections
Engine
I think™

Validator

Feedback
-*) validator

1 Thinker
Understanding

)

Thinker

A A Whata

4

Figure 5: Flowchart of the multi-agent reasoning approach in TVC. The Thinker proposes a group, the Validator
checks consistency, and the Consensus agent finalizes or rejects the guess.

"https://microsoft.github.io/autogen/stable/
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A.3 Prompt Templates

System and Message Prompts. We employ a multi-agent architecture in which each agent is governed
by a distinct system prompt implemented through Mustache? templates. Specifically, we use:

 system.mustache: (A.3.1) The System prompt provided to Basic, Prompted, and CoT techniques.
* basic.mustache: (A.3.2) The instructions given to the Basic prompting technique.

 fewshot.mustache: (A.3.3) The prompt with examples and persona prompting. Corresponds to the
Promted technique.

* cot.mustache: (A.3.4) The fewshot chain of thought prompt used for the CoT technique.

* thinker_agent.mustache: (A.3.5) Describes the role of proposing a 4-word grouping and a suitable
category name. Used in the 7VC framework.

» validator_agent.mustache: (A.3.6) Describes how to verify whether a given category legitimately
corresponds to the same 4 words. Used in the TVC framework.

» consensus_agent.mustache (A.3.7) Decides if the guess is finalized or returned for further iteration.
Used in the TVC framework.

» snap_agent.mustache: (A.3.8) Used during the “Snap-Think” phase to produce higher-temperature,
intuition-driven guesses when the conservative approach stalls. Used in the Snap-Think framework.

* grounding_agent.mustache: (A.3.9) Used during the “Snap-Think” phase to provide feedback and
verify that guesses are well formed. Used in the Snap-Think framework.

A.3.1 system.mustache

You are an expert puzzle solver. You understand literature and you are well
versed on word play. I want you to solve a daily word puzzle that finds
commonalities between words.

A.3.2 basic.mustache

{{#instructions}?}

Rules:

- Here are some words: {{words}}.

- You are grouping words into the category '{{category}}'.

- Group four words from this list that belong to the category of '{{category}}'.

- Provide the result in this JSON format: { "groups”: [ { "reason”: "Connection
between words"”, "words": ["wordl”, "word2", "word3", "word4"] } 1 }
{{/instructions}?}

Here are some words: {{current_words}}.

Task: Create one logical grouping that uses 4 words.

A.3.3 fewshot.mustache

{{#instructions}}

Here is the puzzle:

There are {{num_words}} words, which form a groups of 4 words each. Each group
has some common theme that links the words.

- Your task is to group the words based on these themes. Come up with **one
guess**x each round and **stick with it*xx*.

*https://mustache.github.io
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- You must use each of the {{num_words}} words, and use each word only once.
- Each group of 4 words are linked together in some way.
- An example of a connection would be {"reason”:'types of fish',

"words"”:["Bass", "Flounder"”, "Salmon"”, "Trout"]}.
- The results should be in JSON format as following: {"groups”:
[{"reason":"reason why words are grouped”, "words":["word1"”, "word2", "word3",

"word4"1}, ...]1} -
**Be concise.**
{{/instructions}?}

{{#examples}}

Here are some words: {{words}}.

{{#category}} You are grouping words into the category '{{category}}'. Group
four words from this list that belong to the category of '{{category}}'.
{{/category}}{{”category}} Group four words from this list based on their
similarities. {{/category}}

{{#response}} Example Response: {{response}} {{/response}?}
{{/examples}}

Here are some words: {{current_words}}.

{{#current_category}} Group four words that fit the category
"{{current_category}}'. Come up with one guess and stick with it.
{{/current_category}} {{*current_category}} Group four words based on their
similarities. Come up with one guess and stick with it.
{{/current_category}}

A.3.4 cot.mustache

{{#instructions}}

### Task Overview:

You are given a set of words. Your job is to group them into categories based on
a shared theme. Each group will contain exactly four words, and the connection
between the words should be clear. You need to identify the relationships
between the words and use those connections to form the correct groups.

### Step-by-Step Guide:

1. **xAnalyze the Words** - Look for any immediate connections. These could be: -
Categories (e.g., animals, cities, foods) - Types of things (e.g., colors,
instruments, professions) - Shared contexts (e.g., famous characters,

geographical locations)

2. *xIdentify the Connectionxx - For each set of four words, consider what they

have in common. - Examples of possible connections: - **Animals*x (e.g.,
"Lion,"” "Tiger") - x*Countries** (e.g., "France,” "Japan") - **Fruits**x (e.g.,
"Apple,” "Banana") - *xInstruments*x (e.g., "Piano,” "Guitar")

3. *xGroup the Words** - After identifying the connection, group a set of 4

words accordingly. - Here is a list of some possible category names:
"CONTORTED', 'CUT THE ___"', 'KINDS OF PICKLES', 'ESCAPADE', 'PUBLIC STANDING',
"GROUNDBREAKING', 'THINGS WITH SHELLS', 'INDIVIDUALITY', 'WORDS WITH APOSTROPHES
REMOVED', 'EQUIP', 'EASY ___"', 'LEGAL SESSION', 'HEARTWARMING', 'CORE EXERCISES'
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4. xxProvide Your Answerx* - Return your answer in **JSON formatx*. Example:
“TTjson

{ "groups": [ { "reason": "types of fish"”, "words”: ["Bass”, "Flounder"”, "Salmon",
"Trout"] } 1 }

Key Tips: Each word is used only once.

The connections might be broad (e.g., animal types) or specific (e.g., types of
pasta).

Trust your reasoning — if you're unsure, try a broad connection and see if it
works for the majority of words.

{{/instructions}?}

{{#examples}} Here are some words: {{words}}.

{{#category}} Group four words from this list that belong to the category
"{{category}}'. {{/category}} {{*category}} Group four words based on their
similarities. Come up with one guess and stick with it. {{/category}}
{{#response}} Example Response: {{response}} {{/response}}

{{/examples}}

Here are some words: {{current_words}}.

{{#response}} Example Response: {{response}} {{/response}}
{{#current_category}} Group four words that fit the category
"{{current_category}}'. Come up with one guess and stick with it.
{{/current_category}} {{"current_category}} Group four words based on their
similarities. Come up with one guess and stick with it. {{/current_category}}

A.3.5 thinker_agent.mustache

You are an expert thinker agent playing an ongoing game of *New York Times
Connections* within an agentic software framework.

**About the Game (Connections):**

Connections is a word game where you must organize a set of words into groups of
{{group_size}}. The goal is to identify all groups based on their categories
and make strategic guesses.

### xxExample Connections Game With solutions*x*
Here’s an example of a "Connections”" board to show how words can be grouped into
specific categories.

| **Categoryx*x* | **Wordsx* |

R R — |
| BIOLOGICAL BUILDING BLOCKS | ATOM, CELL, MOLECULE, PROTEIN |
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| PURCHASES FOR A BABY | BOTTLE, CRIB, MOBILE, RATTLE |
| OBJECTS PLAYED AS INSTRUMENTS | JUG, SAW, SPOONS, WASHBOARD |
| ___ TAG | DOG, FREEZE, PHONE, PRICE |

Since the categories are very creative, they could scemantically be related,
visually, socially, culturally, or wordplay related. Think out of the box for
the categories. Here are more examples of Connection Solutions:

Category -> Words: [list of relevant words]

CARTOON MICE -> Words: ['ITCHY', 'JERRY', 'PINKY', 'SPEEDY']

EXTINCT ANIMALS -> Words: ['DODO', 'MAMMOTH', 'MASTODON', 'TRILOBITE']
FAILURES -> Words: ['BUSTS', 'FLOPS', 'MISSES', 'TURKEYS']

SLANG FOR CLOTHES -> Words: ['DUDS', 'GETUP', 'OUTFIT', 'THREADS']

KISS -> Words: ['PECK', 'SMACK', 'SMOOCH', 'X']

KINDS OF SNAKES -> Words: ['ADDER', 'BOA', 'MAMBA', 'MOCCASIN']

SEEN IN “CINDERELLA” -> Words: ['BALL', 'PRINCE', 'PUMPKIN', 'SLIPPER']
PASTA SHAPES -> Words: ['BOWTIE', 'ELBOW', 'TUBE', 'WHEEL']

GIFT-GIVING ACCESSORIES -> Words: ['BOW', 'BOX', 'CARD', 'WRAPPING']
DATING APP ACTIONS -> Words: ['BLOCK', 'MATCH', 'MESSAGE', 'SWIPE']
COOL, IN SLANG -> Words: ['FIRE', 'LIT', 'SICK', 'TIGHT']

LUCKY ___ -> Words: ['BREAK', 'CHARM', 'DUCK', 'STRIKE']

BOOKSTORE SECTIONS -> Words: ['FICTION', 'HUMOR', 'POETRY', 'TRAVEL']
TV SHOWS WITH HAPPY-SOUNDING NAMES -> Words: [ 'CHEERS', 'EUPHORIA', 'FELICITY', 'GLEE']
_ CRANE -> Words: ['CONSTRUCTION', 'FRASIER', 'PAPER', 'WHOOPING']

### *xxYour Role:**

In each round, you might or might not:

1. Receive the remaining list of words to be guessed in the **Remaining Words**
section.

2. See guess response from the game engine in the **Game Engine Feedbackxx*
section, showing prior failed guesses (if it’s your first round, feedback will
be empty).

3. Receive reasoning or feedback from a Validator Agent in the **Validator
Feedback** section, if they reject your guess for the last round. Perhaps, try
something different.

4. Review your previous understanding from the xxYour Last Understandingxx
section (if it’s your first round, this will be empty).

5. *xTHINK CREATIVELY** Sometimes the groups that have already been guessed
simply won’t work. Try thinking outside the box—explore different topics,
genres, clever wordplay, or unconventional ideas to make progress.

**Guidelines for Guesses:**

- Make guesses for all groups at once. Include a step-by-step reasoning process
explaining how you arrived at your guesses.

- You may not group words using similar categories you've considered in the last
round. Think of the box this round.

- At the end of your response, you can make a guess.

- Format your response as follows:
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Start off by providing as much reasoning as you need to solve the problem, and
then at the end, just include the following:

An indicator for your understanding of all the remaining words in the board,
denoted by the "<UNDERSTANDING_OF_BOARD>" tag. You must include all the
remaining words in groups of {{group_size}}, using each word ONLY ONCE, as
formatted:

<UNDERSTANDING_OF_BOARD>
Groupl: wordl, word2, word3, word4
Group2: wordl, word2, word3, word4

(other groups of {{group_size}})
<END_UNDERSTANDING_OF _BOARD>

Immediately followed by your guess for this round as follows. Remember that the
groups specified in

**Game Engine Feedbackx* section should not be repeated. Remember that a valid
*guess must be of size {{group_size}}:

<GUESS_FOR_THIS_ROUND>

Group: wordl, word2, word3, word4
Category: category_name
<END_GUESS_FOR_THIS_ROUND>

A.3.6 validator_agent.mustache

You are an expert validator agent that evaluates another agent's guesses in an ongoing
game of *New York Times Connections* within an agentic software framework.

### **About the Game (Connections):**

Connections is a word game where you must organize a set of words into groups of
{{group_size}}. - Each group consists of words that share a specific,
unambiguous relationship. - The goal is to identify all groups and name their
precise categories.

#i## **Example Connections Game with Solutions:**
Here is an example of a "Connections” board to show how words can be grouped
into specific categories:
| **Categoryx*x* | **Wordsxx |
I
BIOLOGICAL BUILDING BLOCKS | ATOM, CELL, MOLECULE, PROTEIN
PURCHASES FOR A BABY | BOTTLE, CRIB, MOBILE, RATTLE
OBJECTS PLAYED AS INSTRUMENTS | JUG, SAW, SPOONS, WASHBOARD
___ TAG | DOG, FREEZE, PHONE, PRICE
Here are more examples of Connections Category-Words solutions: Since Figuring
out the categories are going to be hard, here are more examples:
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Category -> Words: [list of relevant words]

CARTOON MICE -> Words: ['ITCHY', 'JERRY', 'PINKY', 'SPEEDY']

EXTINCT ANIMALS -> Words: ['DODO', 'MAMMOTH', 'MASTODON', 'TRILOBITE']
FAILURES -> Words: ['BUSTS', 'FLOPS', 'MISSES', 'TURKEYS']

SLANG FOR CLOTHES -> Words: ['DUDS', 'GETUP', 'OUTFIT', 'THREADS']

KISS -> Words: ['PECK', 'SMACK', 'SMOOCH', 'X']

KINDS OF SNAKES -> Words: ['ADDER', 'BOA', 'MAMBA', 'MOCCASIN']

SEEN IN “CINDERELLA” -> Words: ['BALL', 'PRINCE', 'PUMPKIN', 'SLIPPER']
PASTA SHAPES -> Words: ['BOWTIE', 'ELBOW', 'TUBE', 'WHEEL']

GIFT-GIVING ACCESSORIES -> Words: ['BOW', 'BOX', 'CARD', 'WRAPPING']
DATING APP ACTIONS -> Words: ['BLOCK', 'MATCH', 'MESSAGE', 'SWIPE']
COOL, IN SLANG -> Words: ['FIRE', 'LIT', 'SICK', 'TIGHT']

LUCKY ___ -> Words: ['BREAK', 'CHARM', 'DUCK', 'STRIKE']

BOOKSTORE SECTIONS -> Words: ['FICTION', 'HUMOR', 'POETRY', 'TRAVEL']
TV SHOWS WITH HAPPY-SOUNDING NAMES -> Words: ['CHEERS', 'EUPHORIA', 'FELICITY', 'GLEE']
___ CRANE -> Words: ['CONSTRUCTION', 'FRASIER', 'PAPER', 'WHOOPING']

### **Your Role:**

As the validator, your job is to assess the thinker agent's response for
accuracy, confidence, and correctness. In each round, you may receive the
following:

1. *xContext:*x Previous responses from the thinker agent, which includes their
understanding of the remaining words to group and their final guess.

2. **Remaining Words:** A list of words yet to be guessed.

3. xxGame Engine Feedback:*x Information from the game engine about previous
failed guesses. This may be empty in the first round.

#i## **Guidelines for Evaluation Response:xx

- *xAgreement Decision:** Decide whether you agree with the thinker's proposed
next guess. Your decision should aim to minimize inaccurate guesses while still
progressing the game.

- xxProviding Feedback:** Provide clear and specific feedback to the thinker,
focusing on areas to improve based on their last understanding of the board.
Since the thinker agent will not have access to previous chat history, include
enough context in your response to ensure the feedback is fully understandable
on its own.

### **Response Format:xx*

- Start by providing reasoning for your decision, clearly explaining your
analysis of the thinker's proposed guess.

- Then, include the following format at the end of your response to indicate
your decision:

Reasoning. ..
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Immediately followed by:

<VALIDATION_REPORT_FOR_THIS_ROUND>

Agreement to Perform the Guess: True / False
Feedback for Thinker Agent:
<END_VALIDATION_REPORT_FOR_THIS_ROUND>

A.3.7 consensus_agent.mustache

You are an expert consensus agent finding the best {{group_size}}-word group
guess for a round of *New York Times Connectionsx within an agentic software
framework.

### **About the Game (Connections):**

Connections is a word game where you must organize a set of words into groups of
{{group_size}}.

- Each group consists of words that share a specific, unambiguous relationship.
- The goal is to identify all groups and name their precise categories.

### xxExample Connections Game with Solutions:**
Here is an example of a "Connections” board to show how words can be grouped
into specific categories:
| *xxCategoryx* | **Wordsxx |
I
BIOLOGICAL BUILDING BLOCKS | ATOM, CELL, MOLECULE, PROTEIN
PURCHASES FOR A BABY | BOTTLE, CRIB, MOBILE, RATTLE
|
I

OBJECTS PLAYED AS INSTRUMENTS JUG, SAW, SPOONS, WASHBOARD
DOG, FREEZE, PHONE, PRICE

### xxYour Role:=*x*

As the consensus agent, your job is to assess the validator's assessment of the
game, and pick one best available {{word_groups}}-word group as the final guess
from the remaining words that has the highest chance of yielding a success. If
there are no guesses that are of size {{word_groups}}, create your own guess
based on the given information. In your round, you may receive the following:
1. xxContext:*xx Previous prompt and response from the thinker agent and
validator agent, which includes their previous understanding of the remaining
words to group and their assesment of it.

2. **Remaining Words:*x A list of words yet to be guessed.

3. xxGame Engine Feedback:*x Information from the game engine about previous
failed guesses with their categories. This may be empty in the first round.

**Guidelines for Final Guess:**
- Format your response as follows, strictly.: Start off by providing as much
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reasoning as you need to solve the problem. Immediately followed by your guess
for this round as follows. Remember that a valid guess must be of size
{{group_size}}: <GUESS_FOR_THIS_ROUND> Group: wordl, word2, word3, word4
Category: category_name

A.3.8 snap_agent.mustache

Rules:

- You will see some words.

- You are grouping words into their categories.

- Group {{group_size}} words from this list that belong to a visually similar,
logical, or wordplay group.

- Provide the result in this JSON format: { "groups”: [ { "reason”: "Connection
between words”, "words": ["wordl”, "word2", "word3", "word4"] } 1 }

A.3.9 grounding_agent.mustache

You are an expert grounding agent responsible for checking the correctness of
another agent's guesses in an ongoing game of #**New York Times Connectionsx*
within an agentic software framework.

### **Context Givenx*:

For each round, you may or may not be given:

1. A thinker’s final guess to be submitted to the Connections Game engine.
2. **Remaining Words** section: A list of words yet to be guessed.

3. xxGame Engine Feedback*x section: Information from the game engine about
previous failed guesses. This may be empty in the first round.

### *xxYour Rolexx*:

As the grounding agent, your role is to verify the correctness of the thinker's
response against the rules.

*xIf the thinker agent adheres to the rules stated below, you must return “True~.x*

#i#t## **Rules to Check:*x

1. The words in the thinker agent's guess must be selected exclusively from the
**Remaining Wordsxx section. If any word is outside this list, you must return
“False™.

2. The guess must not repeat any grouping previously flagged as incorrect in the
**Game Engine Feedback*x section. If a previously rejected grouping is
repeated, you must return “False~.

3. The guess must include exactly {{group_size}} words. If the number of words
in the guess does not match {{group_size}}, you must return “False".

### x*Response Guidelines*x:

- Always validate the guess based on the rules above. If the thinker agent’s
response violates even one rule, you must return “False . Otherwise, return
“True™.

- **Response Format**: Your response must always end with the following format:
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<VALIDATION_REPORT_FOR_THIS_ROUND>
Agreement to Perform the Guess: True / False
<END_VALIDATION_REPORT_FOR_THIS_ROUND>

B Example Execution Transcripts

We now provide more detailed conversations for both TVC (Think—Validate—Consensus) and Snap-Think,
demonstrating how the solver handles multiple feedback round.

B.1 Example TVC Conversation

Puzzle Setup (16 words):

1. BOW, RIBBON, BOX, TAPE

2. BASS, SALMON, TROUT, COD
3. LAMB, DOUBT, DEBT, COMB
4. BELIEF, FAITH, TRUST, CREDO

Correct Categories (Hidden from the Agents):

* Gift-Wrapping Items: BOW, RIBBON, BOX, TAPE

* Types of Fish: IBASS, SALMON, TROUT, CODI

¢ Words with Silent ‘B’: [LAMB, DOUBT, DEBT, COMBI

* Synonyms for “Faith”: IBELIEF, FAITH, TRUST, CREDOI

Round 1 (Successful Guess).

Thinker sees all 16 words and attempts a guess for one category:

<UNDERSTANDING_OF _BOARD>
Groupl: BOW, RIBBON, BOX, TAPE
Group2: BASS, SALMON, TROUT, COD
Group3: LAMB, DOUBT, DEBT, COMB
Group4: BELIEF, FAITH, TRUST, CREDO
<END_UNDERSTANDING_OF _BOARD>

<GUESS_FOR_THIS_ROUND>
Group: BOW, RIBBON, BOX, TAPE
Category: Gift-Wrapping Items
<END_GUESS_FOR_THIS_ROUND>

Validator (after reading the Thinker’s message) checks consistency:

Reasoning: "These four items (BOW, RIBBON, BOX, TAPE) are indeed commonly used
for gift wrapping.”

<VALIDATION_REPORT_FOR_THIS_ROUND>

Agreement to Perform the Guess: True

Feedback for Thinker Agent: "Yes, that set is correct.”
<END_VALIDATION_REPORT_FOR_THIS_ROUND>

Consensus sees matching sets, finalizes the guess. The environment says “Correct,” removing those
words.
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Round 2 (Another Success).

Thinker proposes:
Group: BASS, SALMON, TROUT, COD Category: Types of Fish

Validator agrees, environment confirms “Correct.”
Round 3 (Incorrect Guess).

Thinker tries:
Group: LAMB, DOUBT, BELIEF, FAITH Category: Words with B
Validator rejects:

Reasoning: "BELIEF and FAITH do not follow the silent-B pattern.”

<VALIDATION_REPORT_FOR_THIS_ROUND>

Agreement to Perform the Guess: False

Feedback for Thinker Agent: "Try focusing on words with a silent B."
<END_VALIDATION_REPORT_FOR_THIS_ROUND>

Consensus rejects, prompting a new guess from the Thinker.
Round 4 (Correcting Mistakes).

Thinker now attempts:
Group: LAMB, DOUBT, DEBT, COMB Category: Words with a Silent B

Validator returns True, environment says “Correct.”
Finally, the Thinker identifies the remaining synonyms for “Faith” in a similar manner.

B.2 Example Snap-Think Conversation

We illustrate how Snap-Thinking (fast, higher-temperature guesses) is triggered after multiple failures.
Assume the first two categories are solved, but the solver stalls on the final two.

Puzzle State Remaining words:

« LAMB, DOUBT, DEBT, COMB

e BELIEF, FAITH, TRUST, CREDO
Slow Phase Attempts

Thinker tries LAMB, DOUBT, BELIEF, TRUST, calling it “Words with B.” The Validator rejects
multiple times, as “BELIEF” and “TRUST” do not share the silent-B structure.

Threshold Reached After k repeated failures, the system transitions to Snap phase.
Snap Phase

SnapThinker uses snap_agent.mustache with higher temperature, quickly guessing:

{ "groups": [ { "reason": "Words with a silent B", "words": ["LAMB",
"DOUBT"”, "DEBT"”, "COMB"]1 } 1 }

SnapValidator checks if these words are valid. The environment confirms “Correct,” removing them
from the board.

Thus, Snap-Think overcame the analysis paralysis by injecting a more exploratory guess. Finally, the
solver returns to the slow approach (or continues snapping) to solve the last group for synonyms of “Faith.”
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C Experiments with LLaMa 3

To examine the truthfulness of our implementations of baselines, we also ran these experiments on LLaMa
3.1 8b and LLaMa 3.3 70b using the Groq chat completions endpoint (see Appendix A.1). We also repeat
our results from GPT-40 and GPT 40-mini for convenience.

Table 2: Metrics

Model Solving Ability | Semantic Grounding | Failed Guesses
Basic 24% 5.90 16.66
LLaMa 3.1 8b Prompted 28% 9.47 15.23
CoT 40% 7.04 15.69
Basic 54% 3.72 10.61
LLaMa3.370b  Prompted 62% 3.25 9.72
CoT 76 % 3.31 7.59
Basic 30% 4.96 15.12
GPT 40-mini Prompted 36% 4.27 13.94
CoT 38% 3.71 13.7
Basic 58% 4.59 10.13
GPT 4o Prompted 60% 5.25 10.10
CoT 72% 4.81 8.00

As Chain-of-Thought consistently outperformed other baselines and the number of failed guesses
seemed to be noticeably lower for the larger models, we determined that our implementation was indeed
faithful.
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