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Abstract

Embodied agents performing complex tasks are
susceptible to execution failures, motivating the
need for effective failure recovery mechanisms.
In this work, we introduce a conditional multi-
stage failure recovery framework that employs
zero-shot chain prompting. The framework is
structured into four error-handling stages, with
three operating during task execution and one
functioning as a post-execution reflection phase.
Our approach utilises the reasoning capabili-
ties of LLMs to analyse execution challenges
within their environmental context and devise
strategic solutions. We evaluate our method
on the TfD benchmark of the TEACH dataset
and achieve state-of-the-art performance, out-
performing a baseline without error recovery
by 11.5% and surpassing the strongest existing
model by 19%.

1 Introduction

In embodied AI settings, autonomous agents are
required to perform complex tasks within environ-
ments such as homes or offices. In these settings,
Large Language Models (LLMs) have been em-
ployed to decompose natural language instructions
(e.g., make breakfast) into a plan of executable ac-
tions (e.g., pick_up(Cup)), with the objective of
ensuring successful task completion (Huang et al.,
2022b; Ahn et al., 2022; Huang et al., 2022a; Wang
et al., 2023b). Prior research has explored gen-
erating plans that are robust to failures through
few-shot prompting, utilizing an underlying mem-
ory of demonstrations (Zhao et al., 2023; Song
et al., 2023; Wang et al., 2023a; Sarch et al., 2023,
2024; Fu et al., 2024). However, the initial LLM-
generated plan does not inherently ensure success-
ful task completion, as (a) the plan may contain
errors, such as missing or incorrect steps, and (b)
the agent may encounter unforeseen challenges
within the environment that are difficult to antic-
ipate in the planning phase. Thus, grounding the

plan within the environmental context and integrat-
ing error recovery mechanisms are essential for
enabling the agent to adapt and re-plan to address
execution challenges.

This motivates incorporating feedback from the
environment for more robust planning and error re-
covery. For example, existing approaches incorpo-
rated visual information represented through image
embeddings (Pashevich et al., 2021; Singh et al.,
2022; Brohan et al., 2023; Driess et al., 2023; Sarch
et al., 2023) or structured scene descriptions1(Min
et al., 2021; Zhang et al., 2022; Liang et al., 2023;
Singh et al., 2023; Kim et al., 2023; Liu et al.,
2023b). Other work used human feedback to cor-
rect the agent’s behavior (Abramson et al., 2022;
Huang et al., 2022b; Philipov et al., 2024). Another
form of feedback involves verifying action precon-
ditions, which can either be explicitly encoded
within the execution module, requiring domain-
specific expertise (Zheng et al., 2022b; Zhang et al.,
2022; Sarch et al., 2023; Fu et al., 2024), or learned
via reinforcement learning methods (Ahn et al.,
2022). However, prior research has not system-
atically examined the structured process of error
recovery or devised strategic frameworks for how
agents should handle execution challenges.

We propose a Conditional Multi-stage Failure
Recovery (CMFR) approach for embodied agents
that uses zero-shot chain prompting.2 Chain
prompting decomposes a complex task into a se-
quence of interdependent prompts, where the out-
put of one prompt serves as input for the next (Wu
et al., 2022). Our method leverages LLMs to assess
execution challenges in the given environmental
context and devise strategic solutions. CMFR is
structured across four distinct stages utilised both
during and after task execution. Our approach
stands out by leveraging the reasoning abilities of

1such as the list of observed objects along with their prop-
erties and locations

2https://github.com/Youmna-H/CMFR_TEACH
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LLMs in a zero-shot manner without relying on
external modules, such as example-based memory
or domain-specific precondition checks.

We evaluate the CMFR approach on the TEACH
benchmark (Padmakumar et al., 2022), which en-
compasses a diverse set of long-horizon house-
hold tasks. Our experimental results demonstrate
that our CMFR approach enhances task success by
11.5%, achieving state-of-the-art results and sur-
passing existing models by a significant margin. In
addition, we integrate and evaluate an LLM-based
object search mechanism that leverages object lo-
cations mentioned in task dialogues. Finally, we
conduct an ablation study to highlight the contri-
bution of each stage in CMFR. Our approach pro-
vides a structured framework for reasoning about
and overcoming execution challenges, contributing
to research on embodied agents designed to assist
humans in household tasks.

2 Related Work

Embodied AI A substantial body of research has
focused on developing embodied agents capable of
translating natural language instructions into exe-
cutable actions, leveraging various simulators and
benchmarks designed to support such tasks (Kolve
et al., 2017; James et al., 2020; Manolis Savva*
et al., 2019; Shridhar et al., 2020; Padmakumar
et al., 2022; Zheng et al., 2022a; Gao et al., 2022;
Li et al., 2023a). Some approaches have focused
on fine-tuning multimodal models to encode lin-
guistic and visual inputs for predicting low-level
actions (Anderson et al., 2018; Shridhar et al., 2020;
Ku et al., 2020; Min et al., 2021; Pashevich et al.,
2021; Singh et al., 2022; Brohan et al., 2022; Pad-
makumar et al., 2022; Zheng et al., 2022b; Shridhar
et al., 2022; Zheng et al., 2022a; Driess et al., 2023;
Brohan et al., 2023). Other work has leveraged
prompting techniques to use LLMs as planners
for embodied tasks (Huang et al., 2022a,b; Ahn
et al., 2022; Liang et al., 2023; Wang et al., 2023b;
Singh et al., 2023; Liu et al., 2023b; Song et al.,
2023; Sarch et al., 2023, 2024; Fu et al., 2024).
While LLMs excel at reasoning and decomposing
complex tasks into actionable steps, they require
environmental grounding to address execution chal-
lenges. To achieve this, various approaches have
been proposed to integrate environmental feed-
back into LLM-based planning. Some studies
utilize perception models or ground-truth simu-
lator data to generate scene descriptions, which

are then incorporated into LLM prompts (Huang
et al., 2022b; Wang et al., 2023b; Song et al., 2023;
Singh et al., 2023; Liang et al., 2023; Liu et al.,
2023b). Others employ vision-language models
to classify scene images based on predefined fail-
ure categories (Sarch et al., 2023, 2024; Fu et al.,
2024), while additional research explores learning
affordance functions through reinforcement learn-
ing (Ahn et al., 2022).

Chain Prompting Prior research has applied
chain prompting to various tasks including sum-
marization (Zhang et al., 2023; Sun et al., 2024),
information extraction (Kwak et al., 2024), classi-
fication (Trautmann, 2023), and language genera-
tion (Firdaus et al., 2023; Maity et al., 2024). How-
ever, to the best of our knowledge, chain prompting
has not been explored in the context of embodied
AI for enabling agents to address execution chal-
lenges. Moreover, our proposed approach employs
a conditional chain prompting mechanism, where
the activation of each stage is contingent upon the
output of the preceding stage.

3 Problem Definition

Task-driven embodied agents that chat
(TEACH) (Padmakumar et al., 2022) is a
dataset focused on long-horizon tasks in house-
hold environments. It comprises over 3, 000
gameplay episodes built on top of AI2-THOR
simulator (Kolve et al., 2017). An episode consists
of a human–human interactive dialogue between a
Commander that has oracle information about the
task and a Follower (agent) that tries to complete
the task by navigating and interacting with objects
in the simulated environment. TEACH comprises
12 household tasks with varying granularity
(Appendix D).3 Furthermore, TEACH includes
three benchmarks: (1) Trajectory from Dialog
(TfD): where given the full dialogue history of the
task, the agent predicts the sequence of actions
that completes the task successfully. (2) Execution
from Dialogue History (EDH): where the task
dialogue in TfD is segmented into sessions and the
agent is asked to predict the actions that lead to the
next session, and (3) Two-Agent Task Completion
(TATC) where both the commander and follower
are modeled to perform the task.

In this work, we focus on the TfD benchmark
3For example, some tasks such as Prepare Breakfast in-

cludes other tasks such as Make Coffee or Make a Plate of
Toast.
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Figure 1: System components: planning, the four CMFR stages, execution, object search and scene representation.
The output of one component serves as input for another (e.g., ‘Plan’ and ‘Task’ from planning are used in all
CMFR stages, and ‘subgoal importance’ from stage 1 is used as input for stages 2 and 3).

as it poses several challenges. For instance, unlike
other datasets that give a single instruction or a
high-level task to the agent (Huang et al., 2022a,b;
Ahn et al., 2022; Song et al., 2023; Singh et al.,
2023; Lin et al., 2023; Liu et al., 2023a), the input
in TfD is a noisy dialogue that contains informa-
tion about the task, making it more challenging
for the agent to extract relevant task information
and convert that to a sequence of executable steps.
Moreover, in TfD, the average number of actions
the human agent takes to solve a task is 117, demon-
strating the complexity and long-horizon nature of
the tasks. For evaluation, we use the following
metrics (Shridhar et al., 2020). Success Rate (SR)
which is the fraction of episodes in which all task
goal-conditions are fulfilled.4 Goal-Condition
Success (GC) which is the ratio of the completed
goal-conditions to those necessary to succeed in the
task. Path Length Weighted (PLW) where both
SR and GC metrics have a path length weighted
counterpart which penalises the agent for taking
more steps than the human-annotated reference
path. More details about the dataset are presented
in Appendix A. The task fails if the agent exceeds
1000 actions or 30 failed actions.

4 Approach

We depict the components of our approach in Fig-
ure 1 and detail them in this section.

4All object positions and state changes have to correspond
correctly to the task goal-conditions (e.g., the task Make Coffee
has two goal-conditions: a cup has to be clean and it has to be
filled with coffee).

4.1 Planning

The initial phase of our system is planning, where
the LLM is prompted to generate a plan of the sub-
goals necessary to succeed at the task. As demon-
strated in Figure 1, we prompt the LLM with the
input dialogue, list of subgoals/actions the agent is
able to execute in the environment, list of TEACH
tasks and list of object categories available in AI2-
THOR (full lists are included in Appendix D). The
LLM is asked to generate a plan using the sub-
goals and object categories specified in the prompt.
Along with generating the plan, the LLM classifies
the dialogue into one of the tasks provided in the
prompt and extracts object locations if any are men-
tioned in the dialogue to be used by other system
components (Sections 4.3 and 4.5). We include fur-
ther details about planning in Appendix B and the
initial planning prompt in Appendix G Listing 1.

4.2 Execution

The subgoals generated by the LLM planner are
passed to the Executor module to be executed one
by one in the simulated environment. As the agent
moves around and interacts with objects to execute
the plan, it maintains a memory of the objects ob-
served at each time step along with their properties
and locations. Perception models could be used for
object detection (Dong et al., 2021) and depth esti-
mation (Bhat et al., 2023). However, as we do not
aim in this work to develop or test perception mod-
els, we use ground-truth information about objects
provided by the simulator (Wang et al., 2023b; Liu
et al., 2023b). It is worth noting that working with
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simulated environments presents certain challenges
particularly in positioning the agent to interact with
an object. Following prior research, we employ
heuristics to adjust the agent’s position before in-
teracting with an object (Padmakumar et al., 2023;
Sarch et al., 2023; Fu et al., 2024). However, while
these techniques enhance interaction success, they
are not entirely fail proof. More details about the
executor are included in Appendix C.

4.3 Object Search

During execution, the agent looks up its memory to
find information about target objects required for
interaction. If the object is not found, object search
is triggered by prompting the LLM (Appendix G
Listing 7) to generate steps to find the object using
the object locations generated at the planning stage,
if any (as depicted in Figure 1). For instance, if
the dialogue mentions that a potato is inside the
fridge and this information is extracted by the plan-
ner (i.e., generating (Potato_1,inside,Fridge_1), the
search module should accordingly generate the
steps to locate the potato (e.g., Go_to(Fridge_1),
Open(Fridge_1)). This module, therefore, depends
on whether (1) the dialogue contains information
about object locations and (2) this information was
extracted successfully by the planner. Previous
work on TEACH have used random search (Zhang
et al., 2022), transformer models trained on train-
ing data (Zheng et al., 2022b), or the commonsense
knowledge of LLMs to locate objects (Sarch et al.,
2023; Fu et al., 2024). We do not rely on the com-
monsense knowledge of LLMs for object search as
in TEACH, objects are initialised at random posi-
tions and therefore may appear in implausible or
nonsensical locations (e.g., a potato being placed in
the garbage bin or a saltshaker placed in the sink).
That is why we only use object locations mentioned
in the dialogue.

4.4 Scene Representation

When the agent fails to perform an action, visual
information from the environment is crucial to iden-
tify the reason and determine the solution. For ex-
ample, without visual cues, the agent might not
realize that an object placement failed because the
receptacle is full and needs to be emptied before
retrying the action. Therefore, we build a scene
representation that stores visual information about
the environment (Min et al., 2021; Zhang et al.,
2022; Kim et al., 2023; Singh et al., 2023; Liu
et al., 2023b) and utilise that for error recovery (as

will be elaborated in Section 4.5).
As mentioned in Section 4.2, the agent maintains

a memory of observed objects. Scene representa-
tion is a pruned version of this memory in order to
keep prompts at a reasonable length. Specifically,
we only extract from the memory the relevant ob-
jects mentioned in the plan and only keep (1) their
properties that are relevant to TEACH tasks,5 (2)
the parent objects that contain them and (3) the
child objects they enclose, if any. Furthermore, we
add information about what object the agent is cur-
rently holding in hand, if any. Examples of scene
representations are included in Appendix E.

4.5 Conditional Multi-stage Failure Recovery

The initial plan generated in 4.1 does not guarantee
task success due to missing or incorrect steps in
the plan or newly observed input from the environ-
ment that must be taken into account. Therefore,
the agent may encounter execution failures trigger-
ing the need for failure recovery. We propose a
conditional multi-stage failure recovery (CMFR)
approach to enable the agent to assess its current sit-
uation by considering its objectives, progress made
thus far, and the surrounding environment (see Fig-
ure 1). Accordingly, the agent can formulate an
effective strategy to resolve the current situation.
CMFR is divided into four stages. The first three
stages operate at the subgoal level, addressing sub-
goal failures as they occur during execution. The
final stage functions at the task level when the agent
finishes plan execution yet fails at the task. All the
stages use zero-shot prompts and are detailed in
the remainder of this section. The prompts used for
CMFR are added in Appendix G Listings 3, 4, 5
and 6.

Stage 1: Subgoal Importance This stage is the
entry point to failure recovery and is triggered when
the agent fails in executing one of the plan sub-
goals. Minimizing failures is essential in embodied
settings to ensure both efficiency and safety. In
TEACH, task evaluation is constrained by a limit
of 1, 000 execution steps or 30 failed actions, be-
yond which the agent is considered unsuccessful.
This constraint motivates efficient task completion
and effective action execution. Therefore, the agent
must avoid redundant actions that do not contribute
meaningfully to task completion. For instance, if
the agent is trying to prepare coffee and it fails

5We only use: is toggled, is sliced, is filled with water, is
clean, is open and is cooked.
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to clean a mug that is already clean, it should not
persist in attempting to resolve this failure but in-
stead proceed to the next step in its plan. To that
end, in the first stage of CMFR, the LLM answers
the question of whether the current failing subgoal
is important for the task and explicates its answer.
It is prompted with the task the agent is trying to
achieve and the plan (both predicted at the plan-
ning stage in Section 4.1), the current subgoal it is
failing at and the scene representation (Section 4.4).
If the subgoal is marked as important, CMFR goes
to the second stage, otherwise, the agent skips this
subgoal and moves to the next one in the plan.

Stage 2: Preconditions For some actions to suc-
ceed, there are preconditions that need to be sat-
isfied in the environment. For instance, the agent
needs to be holding a knife before slicing an ob-
ject and have an empty hand before picking up an
object.6 Previous work has hard-coded those pre-
conditions along with their recovery mechanisms
in the executor (Zheng et al., 2022b; Zhang et al.,
2022; Sarch et al., 2023; Fu et al., 2024), learned
them via reinforcement learning (Ahn et al., 2022)
or enumerated them in the prompts (Wang et al.,
2023b), which requires specific domain knowledge.
We propose another generalizable approach where
we leverage the reasoning abilities of LLMs to cap-
ture the absence of those preconditions and find
solutions by reflecting on the environment and ex-
ecution history. Specifically, if a failing subgoal
is labeled as important by the first stage, it passes
to stage 2, where the LLM is prompted with the
task, plan of execution, failing subgoal, reason for
subgoal importance from the first stage and scene
representation. The LLM assesses whether any
prerequisite subgoals are missing, generates them
then passes them for execution before the original
subgoal is attempted again. If no preceding steps
are required, error recovery advances to stage 3.

Stage 3: Workaround A failed subgoal that
reaches this stage is deemed significant (by stage
1), but there is no evident indication in the envi-
ronment for any missing preceding steps (as deter-
mined by stage 2). As a result, the LLM tries to
find a workaround of one or more subgoals to sub-
stitute the failing subgoal while achieving the same
objective. For instance, the LLM might suggest to
use an alternative object if the intended object is
not found. In this workaround stage, the LLM is

6More examples are included in Appendix J.

given the same information as in the second stage
(the task, plan of execution, failing subgoal, reason
for subgoal importance and scene representation).

Stage 4: Post Execution The previous three
stages happen during execution to assist the agent
when it is stuck. They provide a more localized
perspective, as the agent focuses on a single step of
execution and attempts to complete it successfully.
However, even if the agent manages to recover
from failures this does not necessarily guarantee
task success. This can occur in situations where,
for example, the LLM have missed generating im-
portant steps in the original plan. To handle such
situations, if the agent finishes executing the whole
plan and the task is still unsuccessful, it is given
one final opportunity to reflect on the task and the
environment and identify what is missing to suc-
ceed. The prompt in stage 4 consists of the task,
plan of execution and scene representation. Unlike
the first three stages, this stage takes a more global
view on the task, aiming to identify the discrepancy
between the task requirements and the current state
of the scene.

5 Experiments

We assess our approach on both the seen and un-
seen splits of the TfD benchmark in TEACH and
present the evaluation results using the SR, GC,
and PWL metrics (Section 3). All experiments use
the same initial plans generated by GPT-4o (Hurst
et al., 2024), allowing a focused assessment of er-
ror recovery. We evaluate four LLMs for CMFR
and object search: GPT-4o, o3-mini, Qwen2.5-
7B (Yang et al., 2024) and Llama-3.1-8B (Dubey
et al., 2024). Our CMFR method is compared
against a baseline where no failure recovery is in-
cluded. We also conduct an experiment where we
apply Chain-of-thought (CoT) reasoning (Wei et al.,
2022) in error recovery (CoT-GPT-4o).7

Additionally, we compare our results to the fol-
lowing previous models. HELPER (Sarch et al.,
2023) uses GPT-4 for planning, error recovery
and object search, supported by a memory that
is expanded with successful examples for few-shot
prompting. HELPER explicitly encodes subgoal
preconditions within the executor module and relies
on previously established perception models (Dong

7GPT-4o is prompted using same information provided in
CMFR, but asked to perform CoT reasoning to recover from
the current failure.

204



Seen Unseen
Model SR (PWL) GC (PWL) SR (PWL) GC (PWL)

CMFR-GPT-4o 36.46 (20.64) 50.14 (28.30) 31.20 (19.96) 44.16 (27.03)

CMFR-o3-mini 35.35 (21.17) 50.68 (29.93) 29.90 (17.20) 45.21 (23.70)

CMFR-Qwen2.5-7B 28.72 (17.80) 41.92 (25.50) 24.67 (15.07) 37.42 (21.78)

CMFR-Llama-3.1-8B 28.72 (18.21) 42.27 (25.50) 24.18 (15.17) 37.57 (23.02)

No Failure Recovery 24.86 (15.61) 39.33 (25.72) 22.05 (14.46) 35.31 (22.55)

CoT-GPT-4o 30.93 (17.11) 47.34 (26.03) 27.45 (13.99) 42.58 (21.16)

HELPER* 17.12 (5.5) 29.01 (16.4) - -
DANLI* 4.41 (2.6) 15.05 (14.2) - -
HELPER 12.15 (1.79) 18.62 (9.28) 13.73 (1.61) 14.17 (4.56)

DANLI 4.97 (1.86) 10.50 (10.27) 7.98 (3.20) 6.79 (6.57)

MSI 12.70 (2.60) 13.66 (8.72) 14.54 (3.70) 10.08 (6.35)

Table 1: Results on the TEACH TfD benchmark. Results of HELPER, DANLI and MSI are copied from their
respective papers, while HELPER* and DANLI* are results of replicating their models with ground-truth perception.

et al., 2021; Bhat et al., 2023). To ensure a fair com-
parison, we reproduce their results using ground-
truth perception on the seen split (HELPER*).
DANLI (Zhang et al., 2022) fine-tunes a BART-
Large model (Lewis et al., 2020) to predict high-
level subgoals that are translated to low-level ac-
tions using a PDDL planner (Lamanna et al., 2021).
In DANLI, all preconditions and error recovery
mechanisms are hardcoded and perception mod-
els (Dosovitskiy et al., 2021) are used. We replicate
their experiments using ground-truth perception on
the seen split (DANLI*). MSI (Fu et al., 2024)
builds on top of HELPER and enhances the perfor-
mance by collecting the agent’s experiences and
leveraging them later for future task executions.8

Furthermore, we conduct experiments using few-
shot learning in CMFR, where we incorporate a
fixed set of examples across the stages.9 Finally,
we conduct an ablation study to demonstrate the
impact of each CMFR stage and the object search
module. The main results and the ablations are
shown in Tables 1 and 2 respectively.

6 Results

Table 1 illustrates the efficacy of the CMFR ap-
proach which sets new state-of-the-art results on
the TfD benchmark of TEACH on both the seen
and unseen data splits. The results show that our
model outperforms previous models with a substan-
tial margin even when we incorporate ground-truth
perception in those models to match our evaluation
setup (HELPER* and DANLI*). However, as dis-

8We copy the results reported in their paper as they do not
provide detailed replication instructions.

9We use three examples in the first stage, four in the second,
five in the third, and four in the final stage.

cussed in Section 4.2, each of the previous work
and our work has included different heuristics in the
executor (e.g., for agent positioning) and therefore
this comparison should be interpreted with caution.
A more indicative comparison that highlights the
effectiveness of CMFR is its evaluation against the
no failure recovery scenario as both models use the
same executor and even start from the same ini-
tial LLM-generated plan. This comparison shows
that adding CMFR improves the success rate by
11.6% and 9.15% on seen and unseen splits re-
spectively. Additionally, CMFR outperforms CoT
reasoning (CoT-GPT-4o)10 which further demon-
strates the strength of our structured prompting
approach. The effectiveness of the approach is also
validated with other LLMs (Qwen2.5 and Llama-
3.1), and although performance drops compared
to GPT-4o and o3-mini, it remains superior to the
no failure recovery scenario. We detail per-task
performance in Appendix F.

We further conduct an ablation study on the seen
split to demonstrate the importance of each stage
of error recovery (Table 2). Our analysis indicates
that performance drops with the removal of each
of the four stages with preconditions (stage 2) and
post-execution (stage 4) having the greatest impact.
When each of those two stages is removed individ-
ually, success rate decreases to 32.04%. We also
examine ablating both stages simultaneously and
find that performance drops to 25.96%, which sug-
gests that the two stages are complementary, each
addressing distinct execution challenges. This find-
ing shows that taking a global perspective on the

10CoT-GPT-4o also starts from the same initial plan as
CMFR and uses same executor and object search modules.
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Seen
Model SR (PWL) GC (PWL)

CMFR-GPT-4o 36.46 (20.64) 50.14 (28.30)
w/o stage 1 33.70 (19.39) 47.83 (26.80)
w/o stage 2 32.04 (19.64) 45.61 (27.14)
w/o stage 3 35.35 (21.35) 49.60 (29.13)
w/o stage 4 32.04 (18.67) 46.76 (27.11)
w/o stage 2&4 25.96 (16.62) 40.81 (25.94)
w/o object search 31.49 (18.93) 47.00 (28.14)
with few shots 38.12 (21.71) 52.62 (29.55)

Table 2: Results of ablations to different components of
CMFR and the addition of few-shot prompting.

situation post-execution can successfully resolve is-
sues that remained unresolved during the execution
phase. Table 2 also demonstrates the importance of
the object search component as removing it results
in ∼ 5% drop in success rate. Finally, performance
improves further to 38.12% with few-shot prompt-
ing, despite utilizing only 3-5 fixed examples in the
prompts.

We further investigate subgoal failure reasons
for all the failures that occurred during execution
and report the most common reasons in Table 3.
The table clearly indicates that most failures are
caused by the inability to locate objects or precisely
position the agent for interaction (see Appendix H
for examples).11 This finding aligns with the fail-
ure analysis conducted by Zheng et al. (2022b).
As previously mentioned, and in line with prior
research, we employ heuristic-based adjustments
to refine the agent’s positioning. However, this
approach is not entirely reliable, and improper po-
sitioning remains a significant factor contributing
to interaction failures.

We depict in Figure 2 the fraction of subgoals
passed to each CMFR stage during execution. The
figure shows that 19.5% of all subgoals gener-
ated in the initial plan fail and hence are passed
to CMFR. In the remainder of this section, we fur-
ther examine the impact of each stage in CMFR in
addition to the importance of object search.

6.1 Stage 1: Subgoal Importance
Removing stage 1 reduces the success rate to
33.7%, demonstrating its effectiveness in filtering
out redundant steps. This stage is particularly im-
portant in scenarios where execution failures incur
penalties, such as in TEACH evaluation, where ex-
ceeding 30 failures results in task failure. Further

11Positioning challenges include being at an incorrect dis-
tance or angle for object interaction, as well as encountering
obstacles that impede access.

analysis reveals that subgoal importance assess-
ment decreases the proportion of games failing due
to exceeding this threshold from 8% to 6%, further
emphasizing its role in minimizing unnecessary
failures and improving overall task success. Inter-
estingly, we observe a notable difference in subgoal
importance assessment across different LLMs. For
example, the GPT-4o-based method classifies 66%
of subgoals as important, while Qwen2.5 identi-
fies only 25%. Llama-3.1 falls between the two,
marking 42% of failed subgoals as important (see
Appendix I). A possible explanation for this dis-
crepancy is that all the methods rely on initial plans
generated by GPT-4o, which inherently considers
its own plans effective unless external environmen-
tal information changes that.

6.2 Stage 2: Preconditions

Stage 2 plays a pivotal role in failure recovery by
ensuring that preconditions for subgoals are satis-
fied. We find that 93% of subgoals that reach this
stage are labeled as having unmet preconditions
and accordingly corrective steps are generated. Ad-
ditionally, 14% of subgoals addressed by this stage
succeed. We investigate a sample of 30 subgoals
where precondition steps were executed yet failure
persisted after stage 2 and find that: (1) in only
four cases, the LLM failed to predict the correct
preconditions based on scene information (e.g., not
recognizing the need to empty a full receptacle be-
fore placing a new object); (2) in 16 cases, failure
was due to not finding the required object, which
should be resolved through object search or the
next workaround stage; (3) in 10 cases, the LLM
correctly identified precondition actions but failed
in execution, despite no apparent reason in scene
representation. Such failures could be attributed to
agent positioning challenges or obstacles not ex-
plicitly represented in scene representation. Future
work could explore integrating spatial reasoning
into LLM-based systems to improve error recovery
in such scenarios.

6.3 Stage 3: Workaround

Stage 3 has the least impact on performance, with
success rate dropping by only 1% when removed.
This is expected, as (a) it is the least frequently
triggered stage, occurring in only 1% of total sub-
goals (Figure 2), and (b) it is more challenging
to think of a workaround that would replace an
action but achieves the same goal than to suggest
the prerequisite steps for this action. Our analysis
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Figure 2: Subgoals that reach each stage of CMFR,
during execution, from ‘All subgoals’ generated in the
initial plan.

Failure Reason Frequency
Object not found 41.1%
Positioning 32.2%
pick-up an object while already holding another object 4.7%
place an object while robot hand is empty 3.4%
slice an object while not holding a knife 2.1%
Others 16.5%

Table 3: Most common failure reasons for all the sub-
goals executed in the seen split games.

reveals that 51% of the subgoals reaching stage 3
failed due to the inability to locate a required object,
prompting the workaround stage to propose alter-
native objects.12 For instance, stage 3 proposed
using apples instead of lettuce for a salad or plac-
ing all remote controls on a sofa when no chair
was observed.13 While such substitutions may be
reasonable in some real-world scenarios, they do
not align with the strict object-type constraints of
the TEACH evaluation. In the cases where the
agent fails to interact with the object due to impre-
cise positioning, the workaround stage suggests an
alternative object of the same type (e.g., using an-
other knife for slicing or selecting a different lettuce
slice if the first was inaccessible). In rare cases, the
agent generates creative but impractical solutions,
such as using a spatula to pick up a potato slice or
a dish sponge for cleaning in the absence of a sink.
While these solutions demonstrate reasoning abil-
ity, they are not applicable within the constraints
of the TEACH environment and therefore do not
lead to task success.

6.4 Stage 4: Post Execution

The final stage plays a critical role by serving as a
post-execution reflection phase, enabling the agent
to assess task outcomes, interpret the environment,
and identify missing steps necessary for successful
completion. Analysis of cases where success was
achieved only after this stage reveals that in 63% of

12This result is in line with our findings in Table 3.
13The task was to place all remote controls on one chair.

those cases, the LLM recovered by generating pre-
viously omitted steps (e.g., recognizing the need to
clean kitchenware before use) or by incorporating
objects observed during execution but absent from
the initial plan. In the remaining 37% of cases,
success was achieved by re-executing steps from
the original plan based on environmental feedback,
such as repeating a Place(Object,Receptacle) ac-
tion if the object was not found in the receptacle at
the end of execution.

6.5 Object Search

The removal of the object search component results
in ∼ 5% decrease in success rate, highlighting its
significance within the system. While the initial
planning stage is expected to generate steps for
locating objects if they are mentioned in the dia-
logue (e.g., directing the agent to open the fridge
if it is mentioned that the target potato is inside), it
is susceptible to mistakes and omitting necessary
actions. Consequently, additional prompting is re-
quired to locate unobserved objects. Furthermore,
the object search component exemplifies the inter-
dependence of system modules, as it relies on the
object locations produced by the initial planning
phase.

To further assess the impact of object search, we
analyze the games that failed and find that when ob-
ject search is not utilized, 26% of those games fail
as a result of the inability to locate required objects.
In contrast, this percentage decreases to 17% when
object search is employed. These findings, along
with the data presented in Table 2, highlight the
critical role of object search in our system while
also indicating that it remains a performance bot-
tleneck. As previously noted, TEACH presents an
additional challenge, as objects may be initialized
in illogical positions, limiting the effectiveness of
common-sense reasoning for object retrieval. Fu-
ture improvements could involve integrating human
interaction or incorporating a specialized system
with expert knowledge of the task environment to
enhance object search capabilities in such cases.

7 Conclusion

We presented a conditional multi-stage failure re-
covery framework for embodied agents, achiev-
ing state-of-the-art performance on the TEACH
TfD benchmark with 36% success rate, which fur-
ther improves to 38% with few-shot prompting.
Through an ablation study, we demonstrated the
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importance of each stage within the framework,
identifying the preconditions stage and the post-
execution stage as the most critical for effective
error recovery. Our findings also showed the im-
portance of object search, highlighting object lo-
calization as a key performance bottleneck that
requires further investigation. For future work, we
aim to explore the integration of spatial reasoning
to enhance error recovery and improve task success
rates.

Limitations

Our work has the following limitations:

Simulated Environments We use AI2-THOR
which simplifies manipulation actions and abstracts
away from physics. Applying our approach to
real-world environments necessitates incorporat-
ing a more fine-grained action space (Brohan et al.,
2023). Furthermore, as we discussed in the paper,
working with the simulator poses the challenge
of accurately positioning the agent for interaction,
even with hardcoded movement adjustments. This
results in execution failures that are not attributed
to planning or error recovery. These challenges
underscore the need for either refining the evalua-
tion setup or developing models capable of learning
fine-grained motion adjustments.

TEACH Challenges We evaluate our approach
on the TfD benchmark of TEACH rather than the
EDH benchmark as in the latter, the agent is pe-
nalised if the state of the environment after execu-
tion differs from the reference state achieved by
the human follower in the dataset. This suggests
that the EDH evaluation lacks precision as any in-
cidental changes made by the human follower in
the environment are considered essential and the
agent is penalised if it does not replicate the same
changes. On the other hand, in TfD, the evalua-
tion specifically targets the task-specific changes
that are intrinsic to the task itself. Furthermore,
in TEACH, objects are initialised at random loca-
tions which limits the ability to use common-sense
reasoning to find objects.

Perception In our models and in replicating pre-
vious work, we used ground-truth perception de-
rived from information provided by the simulator.
The incorporation of perception models could po-
tentially lead to a decline in performance. While
this study abstracts from the use of perception mod-
els, as its primary focus is failure recovery, future

research will explore the integration of generaliz-
able perception models (Li et al., 2023b, 2024).

LLM Cost Our highest performance was at-
tained using GPT-4o followed by o3-mini, which
outperformed other freely available models such as
Llama-3.1 and Qwen-2.5. This highlights the con-
tinued cost implications associated with utilizing
large language models. Ongoing research in LLMs
may reduce or eliminate these costs in the future.
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A TfD Dataset of TEACH

The TfD dataset in TEACH14 is divided into
three splits: train containing 1, 482 episodes, valid
seen (i.e., episodes of the same room instances
as the train split, but different object locations
and initial properties) containing 181 episodes and
valid unseen containing 612 episodes of new un-
seen rooms. In TEACH, the agent executes low-
level navigational actions (Forward(), Backward(),
Rotate Left(), Rotate Right(), Look Up(), Look
Down(), Strafe Left(), Strafe Right())15 and in-
teractive actions (Pickup(X), Place(X), Open(X),
Close(X), ToggleOn(X), ToggleOff(X), Slice(X),
and Pour(X)), where X refers to the relative xy
coordinate of the target object on the egocentric
RGB frame. After each action, the agent obtains
an egocentric RGB image. Path Length Weighted
(PLW) is calculated as Pm = m ∗ L∗/max(L∗L̂),
where m is the evaluation metric (SR or GC), L̂ is
the number of actions the model took in the episode,
and L∗ is the number of actions in the reference
demonstration.

B Planning Details

To create demonstrations for the planning prompt,
we select 24 input dialogues from training data (two
for each task) and write their output plans, tasks
and object locations. We note that few-shot prompt-
ing from a pool of only 24 examples is used for the
initial plan, whereas failure recovery employs zero-
shot prompting. We use Sentence-BERT (Reimers
and Gurevych, 2019) to select the most similar
three examples from the created demonstrations to
be included in the prompt. We show the planning
prompt in Listing 1 and a sample of the examples
used in few-shot planning in Listing 2. After gener-
ating the initial plan, if a subgoal includes an object
that is not present in the predefined list of object
categories (e.g., generating “Cupboard” when only
“Cabinet” is available), the LLM is prompted with
the generated object and the list of available object
categories and is instructed to select the category
that is most similar to the generated object. We
note that we generate extra information in planning
that we do not use (Listing 1). For example, we

14TEACH code is licensed under the MIT License, their
images are licensed under Apache 2.0 and other data files
are licensed under CDLA-Sharing 1.0 (see https://github.
com/alexa/teach).

15Default distance of Forward() and Backward() is 0.25
meters, angle change for Rotate Left() and Rotate Right() is
90◦ and angle change for Look Up() and Look Down() is 30◦.

prompt the LLM to generate task_params, if exists,
such as the number of objects required for the task
(if the task is to clean 3 cups, task_params should
include N = 3).

C Execution Details

Object Memory The agent maintains a memory
of the objects observed after each action (move-
ment or interaction) along with their properties and
locations. In particular, the agent keeps a dictionary
of observed objects where the key is the object ID
(e.g., Pot_1, Pot_2, etc.) and the value is the list of:
(1) object properties (clean, sliced, open, etc), (2)
xyz position, (3) parent objects if any (e.g., if a pan
is in a sink it will have sink as its parent), and (4)
child objects if any (the sink will have the pan as
its child).

Navigation Before execution, the agent carries
out an initial exploration to gather information
about its surroundings. Sarch et al. (2023) achieves
that by incrementally building a 2D occupancy
map, randomly sampling locations from the map
and then navigating to those locations until the en-
vironment is fully explored. We use a different
approach where the agent goes to the center of the
room floor, then the centers of the top-left, top-
right, bottom-left and bottom-right quadrants of
the room floor, making a full rotation at each of
those points. The agent maintains a memory where
it stores information about the objects observed at
each point. During execution, when Go_to(object)
subgoal is called, we calculate the shortest path
from the agent’s current position to the position of
the target object. The agent navigates to the next
point in the path by first orienting itself towards
this point using Rotate Left() and Rotate Right()
actions then executing the Forward() action. If
navigation fails at any point, we allow the agent
to renavigate one more time from where it failed
to the target object. Navigation failures can arise
from various factors. For example, if the agent is
carrying an object, such as a pot, and encounters a
large obstacle, such as a refrigerator, along its path,
the carried object may collide with the obstacle,
preventing successful navigation. In contrast, the
same path may be traversable if the agent’s hand
is empty. Once the agent reaches the target object,
positioning itself in close proximity and orienting
towards it, it attempts to interact with the object.
In the event of a failed interaction, heuristic-based
adjustments are applied to refine the agent’s posi-
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tioning. These heuristics consist of a sequence of
movement actions, with the interaction attempted
again after each adjustment. The actions include:

1. Change the yaw rotation of the agent’s body
by executing Rotate Left()

2. Change the yaw rotation of the agent’s body
by executing Rotate Right()

3. Change the camera’s pitch by executing Look
Up()

4. Change the camera’s pitch by executing Look
Down()

5. Change the distance to the target object by
moving closer with Forward() action

6. Change the distance to the target object by
moving further with Backward() action

Resources All experiments were run using
NVIDIA TITAN RTX 24GB GPUs.
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D Available Subgoals, Object Categories
and Tasks

Subgoals Find(Object), Go_to(Object), Pick_up(Object),
Place(Object,Receptacle), Open(Object), Close(Object),
Toggle_on(Object), Toggle_off(Object), Slice(Object),
Pour(Object,Receptacle), Fill_with_water(Object), Clean(Object),
Empty(Object), Put_away(Object)

Tasks Water plant, Boil potato, Make coffee, Make plate of toast, Clean all X,
Put all X on Y, N slices of X in Y, Put all X in one Y, N cooked X slices
in Y, Prepare breakfast, Prepare sandwich, Prepare salad

Object Categories Cabinet, CounterTop, Sink, Towel, HandTowel, TowelHolder, Soap-
Bar, ToiletPaper, ToiletPaperHanger, HandTowelHolder, SoapBottle,
GarbageCan, Candle, ScrubBrush, Plunger, SinkBasin, Cloth, SprayBot-
tle, Toilet, Faucet, ShowerHead, Box, Bed, Book, DeskLamp, BasketBall,
Pen, Pillow, Pencil, CellPhone, KeyChain, Painting, CreditCard, Alarm-
Clock, CD, Laptop, Drawer, SideTable, Chair, Blinds, Desk, Curtains,
Dresser, Watch, Television, WateringCan, Newspaper, FloorLamp, Re-
moteControl, HousePlant, Statue, Ottoman, ArmChair, Sofa, DogBed,
BaseballBat, TennisRacket, VacuumCleaner, Mug, ShelvingUnit, Shelf,
StoveBurner, Apple, Lettuce, Bottle, Egg, Microwave, CoffeeMachine,
Fork, Fridge, WineBottle, Spatula, Bread, Tomato, Pan, Cup, Pot, Salt-
Shaker, Potato, PepperShaker, ButterKnife, StoveKnob, Toaster, Dish-
Sponge, Spoon, Plate, Knife, DiningTable, Bowl, LaundryHamper, Vase,
Stool, CoffeeTable, Poster, Bathtub, TissueBox, Footstool, BathtubBasin,
ShowerCurtain, TVStand, Boots, RoomDecor, PaperTowelRoll, Ladle,
Kettle, Safe, GarbageBag, TeddyBear, TableTopDecor, Dumbbell, Desk-
top, AluminumFoil, Window, LightSwitch, AppleSliced, BreadSliced,
LettuceSliced, PotatoSliced, TomatoSliced, Mirror, ShowerDoor, Show-
erGlass, Floor

Table 4: List of subgoals/actions the agent is allowed to execute in the environment, list of object categories available
in AI2-THOR and list of tasks available in TEACH.
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E Examples of Scene Representations

Task Scene Representation
Put all watches on one
sidetable

(Watch_1 in SideTable_1), (Watch_2 in SideTable_1), (SideTable_1
contains Watch_1, Watch_2, KeyChain_1 and Box_1), (agent holding
nothing)

Make coffee (Mug_1 is filled with water), (Mug_1 is dirty), (Sink_1 contains Cup_1,
WineBottle_1, Fork_1, Spoon_1 and WineBottle_2), (CoffeeMachine_1
is toggled on), (CoffeeMachine_1 in CounterTop_1), (agent holding
Mug_1),

1 cooked slices of potato
in a bowl

(StoveBurner_1 contains Pan_1), (StoveBurner_2 contains Pan_2),
(CounterTop_1 contains Apple_1, SaltShaker_1, SoapBottle_1, Knife_1
and Microwave_1), (Fridge_1 is closed), (Knife_1 in CounterTop_1),
(Bowl_1 is not filled with water), (Bow_1 is clean), (Bowl_1 in Din-
ingTable_1), (agent holding nothing)

Table 5: Examples of scene representations taken at random points during task execution.

F Per-task Performance

Task SR GC
Put All X In One Y 40.00 (25.32) 50.00 (31.67)

Put All X On Any Y 72.73 (47.54) 82.20 (51.74)

Make Coffee 66.67 (44.37) 69.44 (45.33)

Boil a Potato 20.00 (2.72) 20.00 (2.72)

Water Plant 72.73 (42.59) 72.73 (42.59)

Clean All X 23.81 (9.39) 27.38 (11.27)

N Slices Of X In Y 33.33 (20.43) 49.07 (28.87)

N Cooked Slices Of X In Y 20.00 (8.00) 46.67 (24.33)

Make Plate of Toast 60.00 (23.15) 78.33 (33.54)

Make Breakfast 0.00 (0.00) 32.39 (17.26)

Make Salad 5.88 (0.77) 33.27 (15.56)

Make Sandwich 0.00 (0.00) 29.32 (19.49)

Table 6: Results of CMFR-GPT-4o on each task in the seen data split.
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G Used Prompts

We include, in Listings 1, 2, 3, 4, 5, 6 and 7, the
various prompts we use in this work.
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Listing 1: Prompt for generating initial plan.

You are a household robot. You are given a dialogue snippet that contains information about the task
you should execute. Your job is to generate the following in JSON format:

(1) 'task': the required task from this list of tasks
- Water plant
- Boil potato
- Make coffee
- Make plate of toast
- Clean N Object
- Put N Object on any Receptacle
- N slices of Object in Receptacle
- Put N Object in one Receptacle
- N cooked Object slices in Receptacle
- Prepare breakfast
- Prepare sandwich
- Prepare salad

(2) 'task_params': task parameters (if exists) which includes number of required objects 'N', 'Object
' type and 'Receptacle' type

(3) 'objects of interest' for this task

(4) 'object locations' if mentioned in the dialogue

(5) 'subgoals' which are the steps required to execute the task described in the dialogue. You should
only generate subgoals from the following list:

- Find(Object)
- Go_to(Object)
- Pick_up(Object)
- Place(Object,Receptacle)
- Open(Object)
- Close(Object)
- Toggle_on(Object)
- Toggle_off(Object)
- Slice(Object)
- Pour(Object,Receptacle)
- Fill_with_water(Object)
- Clean(Object)
- Empty(Object)
- Put_away(Object)

** Any Object or Receptacle generated in the subgoals or objects of interest SHOULD be chosen from
the following list:

Cabinet, CounterTop, Sink, Towel, HandTowel, TowelHolder, SoapBar, ToiletPaper, ToiletPaperHanger,
HandTowelHolder, SoapBottle, GarbageCan, Candle, ScrubBrush, Plunger, SinkBasin, Cloth,
SprayBottle, Toilet, Faucet, ShowerHead, Box, Bed, Book, DeskLamp, BasketBall, Pen, Pillow,
Pencil, CellPhone, KeyChain, Painting, CreditCard, AlarmClock, CD, Laptop, Drawer, SideTable,
Chair, Blinds, Desk, Curtains, Dresser, Watch, Television, WateringCan, Newspaper, FloorLamp,
RemoteControl, HousePlant, Statue, Ottoman, ArmChair, Sofa, DogBed, BaseballBat, TennisRacket,
VacuumCleaner, Mug, ShelvingUnit, Shelf, StoveBurner, Apple, Lettuce, Bottle, Egg, Microwave,
CoffeeMachine, Fork, Fridge, WineBottle, Spatula, Bread, Tomato, Pan, Cup, Pot, SaltShaker,
Potato, PepperShaker, ButterKnife, StoveKnob, Toaster, DishSponge, Spoon, Plate, Knife,
DiningTable, Bowl, LaundryHamper, Vase, Stool, CoffeeTable, Poster, Bathtub, TissueBox,
Footstool, BathtubBasin, ShowerCurtain, TVStand, Boots, RoomDecor, PaperTowelRoll, Ladle, Kettle,
Safe, GarbageBag, TeddyBear, TableTopDecor, Dumbbell, Desktop, AluminumFoil, Window,

LightSwitch, AppleSliced, BreadSliced, LettuceSliced, PotatoSliced, TomatoSliced, Mirror,
ShowerDoor, ShowerGlass, Floor

Your output SHOULD strictly be in JSON format.

Here are some examples to show you what is required:
{RETRIEVED_EXAMPLES}

Now this is the example you should solve:
Dialogue: {INPUT_DIALOGUE}

Output:
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Listing 2: Examples from the RETRIEVED_EXAMPLES in the planning prompt

Example 1
Dialogue:
<Driver> What is my first task today?
<Commander> Hi
<Commander> We are
<Commander> We are serving 1 slice of lettuce in a bowl
<Driver> Can you help me find the lettuce?
<Commander> The bowl is on the top shelf directly above the sink
<Commander> The lettuce is there as well
<Commander> sorry the lettuce is on the table that has the toaster
<Commander> on your right
<Commander> Perfect!
<Commander> We a knife
<Driver> Where is the knife?
<Commander> The knife is right on the sink
<Commander> Awesome
<Driver> Got it.
<Commander> Now to cut the lettuce
<Commander> Is the bowl clean?
<Commander> If it is place a slice of lettuce in the bowl
<Driver> Okay. It is done. What else?
<Commander> Perfect we're done
<Commander> Thank you so much!
<Commander> It was a pleasure doing the task with you
<Driver> Thank you.

Output:
{

"task": "N slices of Object in Receptacle",
"task_params": {
"N": 1,
"Object": "Lettuce",
"Receptacle": "Bowl"

},
"objects of interest": [
"Lettuce",
"Bowl",
"Knife"

],
"object locations": [
"(Bowl_1,on,Shelf_1)",
"(Shelf_1,above,Sink_1)",
"(Lettuce_1,on,Table_1)",
"(Toaster_1,on,Table_1)",
"(Knife_1,on,Sink_1)"

],
"subgoals": [
"Find(Bowl_1)",
"Pick_up(Bowl_1)",
"Place(Bowl_1,Table_1)",
"Find(Lettuce_1)",
"Pick_up(Lettuce_1)",
"Place(Lettuce_1,Table_1)",
"Find(Knife_1)",
"Pick_up(Knife_1)",
"Slice(Lettuce_1)",
"Place(Knife_1,Table_1)",
"Pick_up(LettuceSliced_1)",
"Place(LettuceSliced_1,Bowl_1)"

]
}

Example 2
Dialogue:
<Driver> what can i do today
<Commander> boil the potato by cooking it in water
<Driver> where can i find the potato please
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<Commander> let's find it
<Commander> have you looked in the fridge
<Driver>
<Commander> it's in the fridge
<Commander> are you done
<Driver> not yet
<Commander> ok waiting
<Commander> waiting
<Driver> done next?

Output:
{

"task": "Boil potato",
"task_params": {
"N": 1,
"Object": "",
"Receptacle": ""

},
"objects of interest": [
"Potato",
"Pot",
"StoveBurner",
"Sink",
"Fridge"

],
"object locations": [
"(Potato_1,inside,Fridge_1)"

],
"subgoals": [
"Find(Pot_1)",
"Pick_up(Pot_1)",
"Fill_with_water(Pot_1)",
"Pick_up(Pot_1)",
"Find(StoveBurner_1)",
"Place(Pot_1,StoveBurner_1)",
"Find(Fridge_1)",
"Open(Fridge_1)",
"Find(Potato_1)",
"Pick_up(Potato_1)",
"Place(Potato_1,Pot_1)",
"Toggle_on(StoveBurner_1)"

]
}

Example 3
Dialogue:
<Driver> how can i help today?
<Commander> can you make a plate of toast? one slice
<Driver> sure, where can i find the bread?
<Commander> is in the top cupboard to the left above microwave
<Driver> i also need a plate
<Driver> where can i find one?
<Commander> plate is on the chair
<Commander> behind island
<Driver> all done
<Commander> Thank you

Output:
{

"task": "Make plate of toast",
"task_params": {
"N": 1,
"Object": "",
"Receptacle": ""

},
"objects of interest": [
"Bread",
"Plate",
"Toaster",
"Knife"

219



],
"object locations": [
"(Bread_1,in,Cabinet_1)",
"(Cabinet_1,above,Microwave_1)",
"(Plate_1,on,Chair_1)"

],
"subgoals": [
"Find(Cabinet_1)",
"Open(Cabinet_1)",
"Find(Bread_1)",
"Pick_up(Bread_1)",
"Find(CounterTop_1)",
"Place(Bread_1,CounterTop_1)",
"Find(Knife_1)",
"Pick_up(Knife_1)",
"Slice(Bread_1)",
"Put_away(Knife_1)",
"Pick_up(BreadSliced_1)",
"Find(Toaster_1)",
"Place(BreadSliced_1,Toaster_1)",
"Toggle_on(Toaster_1)",
"Toggle_off(Toaster_1)",
"Find(Plate_1)",
"Clean(Plate_1)",
"Place(Plate_1,CounterTop_1)",
"Pick_up(BreadSliced_1)",
"Place(BreadSliced_1,Plate_1)"

]
}
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Listing 3: Prompt for subgoal importance (stage 1) in failure recovery

You are a robot trying to execute a plan of actions to perform a task in an environment, and you are
failing to execute one of the steps.

You are given the task, your plan of actions and the step you are failing to execute. You are also
given information from your environment about the locations and properties of the objects you
are interacting with to achieve the task and about what you (the agent) are currently holding in
hand.

You should determine whether the step you are failing at is important for the task, or you can ignore
it and move on to the next step. You also need to justify your answer.

Your answer SHOULD be a JSON answering whether this step is impotant and the justification for that.

Task: {TASK}

Plan:
{EXECUTION_HISTORY}

Failing step:
{FAILING_SUBGOAL}

Information from environment:
{SCENE_REPRESENTATION}

Is {FAILING_SUBGOAL} important to achieve the task of: {TASK}? and why?

Answer:

"""
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Listing 4: Prompt for preconditions check (stage 2) in failure recovery

You are a robot trying to execute a plan of actions to perform a task in an environment, and you are
failing to execute one of the actions.

You are given the task, your plan of actions, the action you are failing to execute, and why this
action is important for task success. You are also given information from your environment about
the locations and properties of the objects you are interacting with to achieve the task and

about what you (the agent) are currently holding in hand.
Your task is to reason about the environment and output a JSON of two keys (1) "prior required

actions": indicating whether there are prior actions required to execute the failing action
successfully and (2) "actions": which is a list of those required prior actions (if the answer
to the previous question is yes).

You should ONLY generate actions from the following list:
- Find(Object)
- Go_to(Object)
- Pick_up(Object)
- Place(Object,Receptacle)
- Open(Object)
- Close(Object)
- Toggle_on(Object)
- Toggle_off(Object)
- Slice(Object)
- Pour(Object,Receptacle)
- Fill_with_water(Object)
- Clean(Object)
- Empty(Object)
- Put_away(Object)

Task: {TASK}

Plan:
{EXECUTION_HISTORY}

Failing step:
{FAILING_SUBGOAL}

Step {FAILING_SUBGOAL} is important to achieve the task of {TASK} because: {
JUSTIFICATION_FROM_STAGE_1}

Information from environment:
{SCENE_REPRESENTATION}

Let's think step by step.

"""
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Listing 5: Prompt for the workaround (stage 3) in failure recovery

You are a robot trying to execute a plan of actions to perform a task in an environment, and you are
failing to execute one of the actions.

You are given the task, your plan of actions, the action you are failing to execute, and why this
action is important for task success. You are also given information from your environment about
the locations and properties of the objects you are interacting with to achieve the task and

about what you (the agent) are currently holding in hand.
The action you are failing at is impossible to execute and therefore you should think of a workaround

(i.e., an alternative sequence of actions to achieve the target of the failing action).
Your task is to reason about the environment and output a JSON with a key 'solution' and its value is

an array of the actions in your aorkaround solution.
You should ONLY generate actions from the following list:

- Find(Object)
- Go_to(Object)
- Pick_up(Object)
- Place(Object,Receptacle)
- Open(Object)
- Close(Object)
- Toggle_on(Object)
- Toggle_off(Object)
- Slice(Object)
- Pour(Object,Receptacle)
- Fill_with_water(Object)
- Clean(Object)
- Empty(Object)
- Put_away(Object)

Task: {TASK}

Plan:
{EXECUTION_HISTORY}

Failing step:
{FAILING_SUBGOAL}

Step {FAILING_SUBGOAL} is important to achieve the task of {TASK} because: {
JUSTIFICATION_FROM_STAGE_1}

Information from environment:
{SCENE_REPRESENTATION}

Can you think of a workaround to {FAILING_SUBGOAL} that achieves the same target?

Let's think step by step.

"""

223



Listing 6: Prompt for post execution stage (stage 4) in failure recovery

You are a robot trying to a task in an environment. You generated a plan of actions and finished
executing it successfully, but still failed at the task.

You are given the task, your successfully executed actions and information from your environment
about the locations and properties of the objects you are interacting with to achieve the task
and about what you (the agent) are currently holding in hand.

You should reason about the current state of the environment to identify why you failed at the task
and suggest the corrective/missing actions required to succeed at the task.

Your output should be a JSON with a key 'solution' and its value is an array of the actions to
succeed at the task.

You should ONLY generate actions from the following list:
- Find(Object)
- Go_to(Object)
- Pick_up(Object)
- Place(Object,Receptacle)
- Open(Object)
- Close(Object)
- Toggle_on(Object)
- Toggle_off(Object)
- Slice(Object)
- Pour(Object,Receptacle)
- Fill_with_water(Object)
- Clean(Object)
- Empty(Object)
- Put_away(Object)

Task: {TASK}

Plan:
{EXECUTION_HISTORY}

Information from environment:
{SCENE_REPRESENTATION}

Let's think step by step.
"""
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Listing 7: Prompt for object search where {GOAL} refers to the search task (e.g., to find a potato) , {OB-
JECT_LOCATIONS} is generated by the planner and {RETRIEVED_EXAMPLES} is a fixed set of four demon-
strations

You are a robot trying to find an object in a room. Given the goal object you are trying to find and
information about some object locations, predict the steps required to locate your object.

For example, if a potato is inside a fridge, you need to Open(Fridge) to find the potato.
Your output should be a JSON that consists of of an array of one or more of the following actions:

- Find(Object)
- Go_to(Object)
- Pick_up(Object)
- Place(Object,Receptacle)
- Open(Object)
- Close(Object)
- Toggle_on(Object)
- Toggle_off(Object)
- Slice(Object)
- Pour(Object,Receptacle)
- Fill_with_water(Object)
- Clean(Object)
- Empty(Object)
- Put_away(Object)

{RETRIEVED_EXAMPLES}

Goal: {GOAL}

object locations: {OBJECT_LOCATIONS}

Output:
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H Examples of Failures due to Navigation and Agent Positioning

(a) Subgoal: Open(Microwave_1).
The agent is failing to open the mi-
crowave at the top, and ‘looking
up’ did not fix the problem.

(b) Subgoal: Pick_up(Knife_1).
The agent fails to pick up the knife
in the sink.

(c) Subgoal:
Pick_up(RemoteControl_1). The
agent fails to pick up RemoteCon-
trol_1 which is not visible in the
current view. This means that there
was a problem in navigating/orient-
ing the agent to the correct direc-
tion.

(d) Subgoal: Toggle_on(Sink_1).
The agent fails to toggle on the sink
although it is standing in front of
it.

(e) Subgoal: Place(Pot_1,Sink_1).
The agent fails to place the pot it
is holding in the sink behind. The
pot obstructs the sink making it in-
visible. We tried to move the pot
up and down but it did not work.

(f) Subgoal: Pour(Mug_1,Sink_1).
The agent fails to pour the mug it
is holding in the sink.

Figure 3: Examples of RGB images from the agent’s view when it is failing to execute a subgoal. The failures are
due to the position of the agent relative to the target object.

226



I Subgoals that reaches each stage of CMFR in Llama3.1 and Qwen2.5

(a) Llama-3.1 (b) Qwen2.5

Figure 4: Subgoals that reach each stage of CMFR, during execution, from ‘All subgoals’ generated in the initial
plan. Used CMFR models are Llama-3.1 and Qwen2.5.

J Examples of Preconditions and Possible Recoveries from TEACH

Action Preconditions

Pick_up(Object)
1- if object is not pickupable, skip
2- if agent is holding an object in hand, put away then pick up the new object
3- if object is inside a closed receptacle, open receptacle

Place(Object, Receptacle)
1- if agent is not holding the object, pick it up first
2- if receptacle is full, empty before placing
3- if receptacle is closed, open it

Slice(Object) 1- if object is not sliceable, skip
2- if agent is not holding a knife, find a knife and pick it up first

Open(Receptacle) 1- if receptacle is toggled on, toggle off first
Pour(Object,Receptacle) 1- if object is not filled with liquid, skip

2- if object is not in hand, pick it up first
3- if agent is far from receptacle, go to receptacle

Clean(Object) 1- if object is already clean, skip
2- if object is not in hand, pick it up first
3- if there is no space in sink, empty it

Fill_with_water(Object) 1- if object cannot be filled with water or is already filled with water skip
2- if object is not in hand, pick it up first
3- if there is no space in sink, empty it

Table 7: Examples of preconditions and their possible recoveries for executing the actions in the left column.
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