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Abstract

Reinforcement learning (RL) offers adaptive
solutions to portfolio optimization, yet stan-
dard methods such as proximal policy optimiza-
tion (PPO) rely exclusively on historical price
data and overlook the impact of investor senti-
ment. We introduce sentiment-augmented PPO
(SAPPO), a reinforcement learning framework
that incorporates real-time sentiment signals ex-
tracted from Refinitiv financial news. Daily sen-
timent scores are generated using LLaMA 3.3.
SAPPO integrates these signals into the PPO
advantage function via a sentiment-weighted
term, enabling allocation strategies that re-
spond to both price movements and market sen-
timent. Experiments on a three-asset portfolio
demonstrate that SAPPO increases the Sharpe
ratio from 1.55 to 1.90 and reduces drawdowns
relative to PPO. The optimal configuration uses
a sentiment influence parameter λ = 0.1, as
validated through ablation studies and statis-
tically significant t-tests (p < 0.001). These
findings show that sentiment-aware reinforce-
ment learning improves trading performance
and offers a robust alternative to purely price-
based strategies.

1 Introduction

Portfolio optimization is a fundamental problem
in financial management that aims to allocate re-
sources across various assets to maximize returns
and minimize risk (Markowitz, 1952; Sharpe, 1994;
Fabozzi et al., 2007). Traditional approaches, such
as mean-variance optimization, rely primarily on
historical data to estimate expected returns and as-
set covariances (Markowitz, 1952; Michaud, 1989).
These static techniques often struggle to dynami-
cally adapt to rapidly evolving market conditions,
reducing their effectiveness in volatile financial en-
vironments (DeMiguel et al., 2009; Kolm et al.,
2014).

The emergence of reinforcement learning, and
particularly deep reinforcement learning, provides

promising new solutions to dynamic asset allo-
cation problems by enabling adaptive decision-
making (Deng et al., 2017; Sutton and Barto, 2018;
Wang et al., 2019). RL agents learn optimal alloca-
tion strategies through continuous interaction with
financial environments, adapting policies based on
market feedback (Moody and Saffell, 1998; Moody
et al., 2001). DRL extends these capabilities by
employing deep neural networks to approximate
complex value functions and policy decisions, ef-
fectively handling nonlinear and nonstationary mar-
ket behaviors (Deng et al., 2017; Ye et al., 2020; Jin
et al., 2023). Prominent DRL algorithms, includ-
ing PPO and deep Q-networks (DQN), offer robust
frameworks suitable for continuous action spaces
in financial portfolio management (Schulman et al.,
2017; Sutton and Barto, 2018; Wang et al., 2019;
Gu et al., 2020).

Although PPO effectively captures market dy-
namics based on historical price data, existing im-
plementations generally overlook the critical in-
fluence of investor sentiment on asset prices. Fi-
nancial markets exhibit significant sensitivity to
sentiment-driven investor behaviors, making senti-
ment analysis an important supplementary com-
ponent for accurately predicting market move-
ments (Tetlock, 2007; Baker and Wurgler, 2012;
Huang et al., 2023; Kirtac and Germano, 2025).
Advances in NLP and LLMs, such as FinBERT
(Araci, 2019)—which is fine-tuned for financial
text—and LLaMA 3.3 (Dubey et al., 2024)—a
general-purpose model—have made it feasible to
extract and interpret sentiment from financial news,
analyst reports, and market commentary. Integrat-
ing sentiment signals into quantitative strategies
has been shown to enhance predictive accuracy,
volatility forecasting, and overall trading perfor-
mance (Smales, 2014; Chen et al., 2022; Jin et al.,
2023).

We extend the PPO framework by introducing
sentiment-augmented SAPPO, a novel reinforce-
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ment learning model explicitly incorporating real-
time market sentiment into portfolio optimization.
SAPPO integrates daily sentiment scores extracted
from financial news articles using the LLaMA 3.3
model, a transformer-based architecture. This in-
tegration provides the PPO agent with additional
contextual insights beyond purely historical prices,
allowing for more informed and adaptive allocation
decisions.

We evaluate the performance of SAPPO relative
to a baseline PPO model that relies exclusively on
historical price information. Our comparative anal-
ysis employs key financial performance metrics
such as the Sharpe ratio, annualized returns, and
maximum drawdown, assessing whether sentiment-
aware reinforcement learning strategies offer tangi-
ble improvements over conventional RL techniques.
Experimental results demonstrate that incorporat-
ing sentiment analysis leads to significantly bet-
ter risk-adjusted returns and reduced drawdowns.
These findings contribute to the existing literature
by showcasing how leveraging financial sentiment
in reinforcement learning frameworks can substan-
tially enhance the adaptability and robustness of
portfolio optimization strategies in dynamic market
environments.

2 Related work

Portfolio optimization techniques have signifi-
cantly evolved since Markowitz (1952) introduced
mean-variance optimization. Traditional methods
estimate asset returns and covariances from histori-
cal financial data, which often limits their adaptabil-
ity in volatile market conditions (Michaud, 1989;
DeMiguel et al., 2009). The rigidity inherent in
these static optimization frameworks has motivated
researchers to explore more dynamic and adaptive
strategies.

Reinforcement learning provides an alternative
approach by enabling agents to adapt asset alloca-
tion decisions through continuous interaction with
the market environment (Moody and Saffell, 1998;
Moody et al., 2001). Deep reinforcement learning
extends these capabilities further, using deep neu-
ral networks to effectively approximate complex,
nonlinear market dynamics (Deng et al., 2017; Ye
et al., 2020). Prominent DRL algorithms, includ-
ing PPO and deep Q-networks (DQN), have shown
robust performance in continuous decision-making
scenarios such as portfolio management (Schulman
et al., 2017; Wang et al., 2019; Gu et al., 2020).

PPO has gained popularity within financial DRL
due to its stable and effective policy updates in
continuous action spaces (Schulman et al., 2017).
PPO optimizes stochastic policies iteratively by
maximizing a clipped surrogate objective function,
ensuring incremental updates of policy parameters.
The algorithm employs an advantage function to
evaluate the effectiveness of actions relative to an
estimated baseline value. This structure enables
PPO to balance exploration and exploitation, facil-
itating efficient learning in dynamic market envi-
ronments (Schulman et al., 2017; Sutton and Barto,
2018). PPO’s combination of stability and adapt-
ability has made it a reliable baseline method for
portfolio optimization research.

Despite the strengths of PPO and related DRL
methods, most current implementations rely exclu-
sively on structured numerical inputs such as histor-
ical price and volume data (Wang et al., 2019; Ye
et al., 2020). These numerical approaches typically
neglect qualitative market factors like investor sen-
timent, which play a critical role in short-term as-
set price fluctuations and volatility (Tetlock, 2007;
Baker and Wurgler, 2012; Smales, 2014). Investor
sentiment strongly influences market dynamics,
and purely numerical DRL models often fail to an-
ticipate sentiment-driven market shifts, leading to
suboptimal allocation decisions (Chen et al., 2022;
Jin et al., 2023).

Recent advancements in NLP have improved
sentiment extraction accuracy from textual finan-
cial data. Transformer-based LLMs, notably Fin-
BERT (Araci, 2019), which is fine-tuned for finan-
cial sentiment analysis, and LLaMA 3.3 (Dubey
et al., 2024), a general-purpose language model,
can be applied to distinguish neutral financial re-
porting from sentiment-rich market commentary.
These domain-specific LLMs outperform general-
purpose NLP models by producing more accurate
and context-aware sentiment signals tailored for
financial forecasting (Ke et al., 2019; Lopez-Lira
and Tang, 2023; Kirtac and Germano, 2024b,a).

Hybrid strategies integrating sentiment analysis
with quantitative finance have demonstrated signifi-
cant improvements in predictive accuracy, volatility
forecasting, and overall risk-adjusted performance
(Ding et al., 2015; Chen et al., 2022; Dai et al.,
2022). Bollen et al. (2011) notably demonstrated
that social media-derived sentiment can accurately
predict short-term market movements. Recent liter-
ature continues to support hybrid models combin-
ing structured market data and sentiment signals,
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frequently outperforming strategies relying solely
on historical prices (Liu et al., 2020; Dai et al.,
2022; Jin et al., 2023).

We directly build upon these insights by ex-
plicitly integrating financial news sentiment into
PPO. The proposed SAPPO model leverages sen-
timent scores derived from financial news using
LLaMA 3.3. Our approach systematically com-
pares SAPPO against traditional PPO, quantifying
the benefits of incorporating sentiment signals. The
results provide practical insights into enhancing
adaptive portfolio management strategies within
dynamic market environments.

3 Methodology

We represent the financial market state at time step
n using an array sn. This array consists of cur-
rent portfolio weights wn and current adjusted
closing spot prices Sn for multiple assets. This
setup enables the agent to make portfolio deci-
sions informed by both its existing portfolio al-
location and current market conditions (Markowitz,
1952; Sutton and Barto, 2018). The discrete index
n = ⌊t/∆t⌋ counts trading days, where t repre-
sents continuous time and ∆t = 1 day. The agent
also maintains a cash account to ensure feasible
transactions.

Each trading day ends with the observation of
adjusted closing prices. The agent then computes
daily returns and selects new allocation weights.
Portfolio rebalancing occurs at the beginning of
the next trading day. Trades are executed using
market orders priced at the volume-weighted av-
erage price (VWAP) during the first ten minutes
of the trading session. This VWAP-based execu-
tion reduces volatility typically associated with raw
market-opening prices. We denote the action an as
the change in portfolio holdings at day n,

wn = wn−1 + an. (1)

Positive elements of an indicate asset purchases,
negative elements correspond to asset sales. A
self-financing constraint ensures that the total trade
value sums to zero,

an · Sn = 0. (2)

We subtract from the portfolio transaction costs
equal to 0.05% of the total turnover to reflect re-
alistic market frictions. The immediate reward re-
ceived by the agent is the logarithmic return of the

portfolio, providing a scale-invariant measure.

xn+1 := log
wn · Sn+1

wn · Sn
. (3)

Alternatively, one can use the relative return Rn+1,
defined from

xn+1 = log(1 +Rn+1). (4)

The two return definitions approximate each other
for small values and are numerically stable in rein-
forcement learning training.

The state-action value function Q(sn,an) and
the value function V (sn) represent the expected
cumulative discounted future rewards, conditional
on the current state and action, and are defined as
follows

Q(sn,an) := E

[ ∞∑

k=1

γkxn+k

∣∣∣ sn,an
]
, (5)

V (sn) := E

[ ∞∑

k=1

γkxn+k | sn
]
. (6)

Their difference is the advantage function

A(sn,an) := Q(sn,an)− V (sn). (7)

The state-action value function estimates cumula-
tive future rewards achievable by selecting an ac-
tion an given the current state sn, whereas the value
function estimates the expected return from the
current state sn under the current policy. Actions
follow a stochastic policy distribution π(an|sn),
which transitions states according to the probabil-
ity distribution p(sn+1|sn,an) (Sutton and Barto,
2018). The discount factor γ ∈ (0, 1] determines
the trade-off between immediate and long-term re-
wards, with γ = 0.99 employed in our experiments
to prioritize future returns significantly.

DRL uses deep neural networks to approximate
both the state-action-value function Q and policy
π effectively (Sood et al., 2023). Our implemen-
tation uses PPO, a DRL algorithm designed ex-
plicitly for continuous action spaces. PPO dynami-
cally learns optimal portfolio rebalancing strategies
directly from market interactions. The PPO pol-
icy uses a multivariate Gaussian distribution, with
the self-financing constraint in Eq. (2) ensuring all
trades remain budget-neutral. The policy’s mean
and covariance parameters are learned by a deep
neural network parameterized by θ.
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3.1 Sentiment-augmented PPO (SAPPO)

We propose SAPPO, extending traditional PPO
by integrating real-time market sentiment derived
from financial news into the decision-making
framework. SAPPO enriches the state represen-
tation by incorporating daily sentiment scores ex-
tracted from Refinitiv financial news. Sentiment
extraction utilizes the LLaMA 3.3 model (Hugging-
Face, 2024). Daily sentiment scores are normalized
within the range [−1, 1], creating an augmented
state vector

sn := (wn,Sn,mn), (8)

where mn represents sentiment scores for the
assets. SAPPO incorporates sentiment directly
into the PPO policy optimization by modifying
the advantage function: we define the sentiment-
weighted advantage function

A′(sn,an) := A(sn,an) + λwn ·mn (9)

where λ controls the influence of sentiment on port-
folio decisions. We set λ = 0.1, chosen through
a grid search over the candidate values 0.01, 0.05,
0.1, 0.15, 0.2, 0.25, 0.30.

We filter sentiment signals to exclude redundant
news using cosine similarity between daily article
embeddings,

sim(mni,mlj) =
mni ·mlj

∥mni∥∥mlj∥
. (10)

Article pairs i, j that exceed a similarity threshold
of 0.8 within a rolling window |n − l| of 5 days
have one element discarded to prevent that repeated
sentiment signals bias allocation decisions. The
SAPPO agent decides portfolio allocations at each
day’s market close. It places trade orders at the
VWAP during the first ten minutes of the following
trading day, realistically modeling trade execution.

3.2 Training setup

We train both PPO and SAPPO using the Stable-
Baselines3 framework (Raffin et al., 2021). The
models are trained on historical daily price data
for Google, Microsoft, and Meta over the period
January 2013 to December 2019. Performance is
evaluated on a held-out test set from January 2020
onwards. A summary of the dataset’s structure and
characteristics is provided in Appendix B. Portfolio
rebalancing decisions are made at market close and
executed the next day using VWAP prices.

Both PPO and SAPPO share the same policy
and value network architecture, consisting of two
hidden layers with 128 and 64 units, respectively,
activated by rectified linear units. The policy net-
work models a multivariate Gaussian distribution
over continuous portfolio weights, subject to a self-
financing constraint.

We use the Adam optimizer with a learning rate
of 3 × 10−4 and a minibatch size of 256. Each
model is trained for 200 epochs, with early stop-
ping based on out-of-sample Sharpe ratio perfor-
mance. The discount factor is set to γ = 0.99 to
prioritize long-term reward accumulation.

The key difference between PPO and SAPPO
lies in the use of sentiment signals. SAPPO in-
corporates daily sentiment vectors into the state
representation and modifies the advantage function
with a sentiment influence term λ = 0.1, calibrated
through grid search. PPO uses only price and port-
folio information in its state space.

Full training configurations, hyperparameter set-
tings, and ablation studies are provided in Appen-
dices E and A.

3.3 Evaluation methodology

We evaluate PPO and SAPPO strategies using stan-
dard portfolio performance metrics, including cu-
mulative returns, Sharpe ratio, maximum draw-
down, and portfolio turnover. Benchmark compar-
isons include the S&P 500, Dow Jones Industrial
Average (DJI), and NASDAQ-100 indices (Wang
et al., 2019). Sharpe ratios measure risk-adjusted
returns, maximum drawdowns assess downside
risk, and portfolio turnover quantifies trading activ-
ity.

The empirical analysis compares SAPPO against
standard PPO, systematically assessing the value
added by sentiment integration. Our results quan-
tify improvements achieved by sentiment-aware
DRL in dynamic portfolio management, emphasiz-
ing enhanced adaptability and robustness relative
to purely price-based reinforcement learning meth-
ods.

Detailed training procedures, including hyperpa-
rameter tuning, ablation studies, and further imple-
mentation details, are provided in Appendices C–E.

4 Experiments and results

We evaluate the performance of the trained DRL
agents using a realistic backtesting framework on
out-of-sample market data. The models are bench-
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marked against traditional portfolio strategies, in-
cluding buy-and-hold and equal-weighted portfo-
lios. Figure 1 presents a risk-return comparison of
the SAPPO and PPO portfolios alongside major
benchmark indices.

Figure 1: Risk-return scatter plot as of January 1, 2020,
for SAPPO and PPO portfolios compared to NASDAQ-
100, DJI, and S&P 500. SAPPO shows the highest
Sharpe ratio and return among all strategies, indicating
superior risk-adjusted performance from sentiment inte-
gration.

The reinforcement learning agent demonstrates
strong performance across multiple evaluation met-
rics. The annualized return of the SAPPO portfolio
reaches 30.2%, while the PPO portfolio achieves
26.5%. Both portfolios outperform major bench-
mark indices, including the NASDAQ-100 (20%),
the S&P 500 (15%), and the DJI (10%). The risk-
return scatter plot (Figure 1) highlights SAPPO’s
superior positioning in terms of volatility-adjusted
returns, followed by PPO. Compared to traditional
indices, SAPPO and PPO exhibit higher returns but
at the cost of increased volatility, indicating their
ability to exploit market inefficiencies more effec-
tively. The Sharpe ratio of SAPPO surpasses that of
PPO and all benchmark indices, confirming its im-
proved risk-adjusted performance and highlighting
the effectiveness of sentiment-aware reinforcement
learning in portfolio optimization (Fama and Mac-
Beth, 1973).

Figure 2 reveals how the PPO agent adjusts asset
weights over time. The model increases exposure
to Microsoft during high-volatility periods, cap-
italizing on its stability, while balancing Google
and Meta allocations for diversification. This adap-
tive reallocation highlights the agent’s ability to re-

Figure 2: Portfolio weight allocation over time for the
PPO portfolio, showing dynamic rebalancing among
Google, Microsoft, and Meta. Although weights ini-
tially appear balanced, the agent actively adjusts allo-
cations throughout the period in response to market
conditions, contributing to the cumulative return im-
provements shown in Figure 5.

spond to market changes dynamically (Markowitz,
1952).

Figure 3: 30-day rolling volatility comparison of
SAPPO and PPO portfolios against NASDAQ-100, S&P
500, and DJI indices. SAPPO exhibits higher volatil-
ity, reflecting more active trading driven by sentiment
shifts, while PPO shows slightly lower but still elevated
volatility compared to benchmarks.

Figure 3 presents the 30-day rolling volatil-
ity comparison, showing that the SAPPO and
PPO portfolios exhibit higher volatility than ma-
jor benchmark indices such as the NASDAQ-100,
S&P 500, and DJI. The SAPPO portfolio demon-
strates the highest volatility for most of the ob-
served period, indicating a more aggressive trading
strategy that reacts dynamically to market fluctua-
tions. The PPO portfolio follows a similar trend but
with slightly lower volatility, suggesting a relatively
more balanced risk exposure.

Both SAPPO and PPO portfolios experience pro-
nounced volatility spikes, particularly around mid-
2019, aligning with increased market uncertainty.
As the period progresses, their volatility gradually
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declines but remains above traditional indices, re-
inforcing their active trading and frequent realloca-
tion approach. The NASDAQ-100, S&P 500, and
Dow Jones exhibit more stable and lower volatil-
ity levels, consistent with their passive investment
nature.

These results confirm that sentiment-aware re-
inforcement learning strategies adapt quickly to
market changes, capturing short-term trends effi-
ciently. However, the higher volatility associated
with SAPPO and PPO highlights the tradeoff be-
tween increased return potential and short-term risk
exposure.

Figure 4: Correlation heatmap comparing PPO port-
folio returns with those of major indices. Moderate
correlation values (e.g., 0.67 with DJI) suggest that PPO
develops relatively independent allocation strategies, en-
hancing diversification.

The correlation heatmap (Figure 4) shows that
the PPO portfolio maintains a moderate level of in-
dependence from major indices, with correlations
of 0.67 with the DJI and 0.75 with the S&P 500.
This diversification suggests that the PPO agent de-
velops unique portfolio allocation strategies, reduc-
ing reliance on broader market movements (Camp-
bell and Viceira, 2002).

The second experiment introduces market senti-
ment analysis into the PPO framework, forming the
SAPPO model. By incorporating sentiment data
from Refinitiv financial news sources, processed
using LLaMA 3.3 via Hugging Face transformers,
the agent receives an additional market signal to
guide allocation decisions. This enables sentiment-
driven adjustments in response to market sentiment
shifts.

The cumulative return comparison (Figure 5)
highlights the performance improvement achieved
by SAPPO over standard PPO. SAPPO consistently

Figure 5: Cumulative return comparison of PPO and
SAPPO portfolios against NASDAQ-100, S&P 500,
and DJI indices over the test period. SAPPO consis-
tently outperforms PPO and benchmarks by leveraging
sentiment-aware policy updates, leading to higher prof-
itability.

outperforms PPO in cumulative returns, leveraging
sentiment-aware trading strategies to enhance prof-
itability. By reacting to shifts in market sentiment,
SAPPO is better equipped to capture momentum
and avoid adverse market conditions.

Metric PPO SAPPO NASDAQ-100

Sharpe ratio 1.55 1.90 1.25
Annualized return 26.5% 30.2% 21.3%
Max drawdown -17.5% -13.8% -21.9%
Volatility 11.8% 11.2% 14.5%
Turnover rate 3.5% 12.0% n/a

Table 1: Performance comparison between PPO and
SAPPO. SAPPO outperforms PPO across Sharpe ratio,
return, and drawdown metrics, with a higher turnover
rate due to frequent sentiment-driven rebalancing.

Table 1 presents a quantitative comparison be-
tween PPO and SAPPO. The Sharpe ratio of
SAPPO (1.90) is higher than that of PPO (1.55),
indicating improved risk-adjusted returns. Annual-
ized returns increase from 26.5% (PPO) to 30.2%
(SAPPO), demonstrating better profitability. Addi-
tionally, SAPPO exhibits a lower maximum draw-
down (-13.8%) compared to PPO (-17.5%), sug-
gesting enhanced downside protection.

SAPPO also shows a slightly higher daily aver-
age turnover rate of 12% compared to PPO’s 3.5%.
This indicates that, on average, SAPPO adjusts 12%
of the portfolio’s total value through buying and
selling activities each day. This elevated turnover
reflects the model’s increased sensitivity to senti-
ment changes, resulting in more active rebalancing
in response to daily news signals.
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These results indicate that sentiment-aware rein-
forcement learning enhances portfolio management
by integrating external market sentiment signals.
The ability to react to news-driven market senti-
ment fluctuations provides an additional layer of
adaptability beyond price-based decision-making.
The findings highlight the potential of combin-
ing reinforcement learning with financial senti-
ment analysis for dynamic investment strategies.
Appendix A reports the statistical significance of
SAPPO’s performance improvement over PPO.

5 Impact

Sentiment-aware reinforcement learning offers a
measurable performance edge in portfolio optimiza-
tion. SAPPO outperforms vanilla PPO by integrat-
ing real-time financial news sentiment into a deep
reinforcement learning framework. This enhance-
ment leads to significantly higher Sharpe ratios and
lower drawdowns, as confirmed by statistical sig-
nificance testing and ablation studies reported in
Appendix A. These results validate sentiment as
a meaningful input signal in dynamic allocation
tasks.

The findings contribute to the broader field of
financial reinforcement learning by showcasing the
tangible value of sentiment-aware trading strate-
gies. SAPPO enables agents to respond more effec-
tively to market fluctuations, capturing momentum
and mitigating downside risk during adverse con-
ditions. Institutional investors, hedge funds, and
algorithmic trading firms can benefit from models
that adapt allocations based on evolving sentiment
rather than relying solely on historical price move-
ments.

Our research emphasizes the growing relevance
of multi-modal financial decision-making. The
SAPPO framework integrates structured market
data with unstructured textual information to in-
form portfolio policies more holistically. The use
of LLaMA 3.3 for domain-specific sentiment ex-
traction exemplifies the expanding role of founda-
tion models in financial analysis. This work lays a
foundation for future sentiment-aware trading sys-
tems that combine natural language understanding
with adaptive reinforcement learning techniques.

6 Limitations and future work

We demonstrate the value of sentiment-aware rein-
forcement learning, but it leaves several directions
open for future research.

The sentiment layer uses only financial news
from Refinitiv, processed via LLaMA 3.3. While
this ensures domain-specific, high-quality signals,
it excludes other sources such as social media, earn-
ings calls, and analyst reports. Incorporating di-
verse sentiment channels could improve robustness
and capture complementary market signals.

The portfolio scope focuses on three technol-
ogy stocks—Google, Microsoft, and Meta. This
controlled setting helps isolate model behavior but
limits generalizability. Extending SAPPO to sector-
diverse or large-cap portfolios would test its ef-
fectiveness under broader market conditions and
enhance practical relevance.

The evaluation relies on historical backtesting
from 2013 to 2020. This setup omits real-time mar-
ket execution, order slippage, liquidity constraints,
and shocks beyond the test window. Future work
could implement paper trading or live simulations
to assess deployment readiness under actual trading
constraints.

The model uses daily sentiment updates avail-
able only at market close, with decisions applied
the next day. This design does not exploit intra-day
news shifts or fast-moving sentiment. Integrating
real-time or high-frequency sentiment signals could
increase responsiveness and improve intra-day trad-
ing strategies.

Future research that addresses these limitations
will improve the generalization, scalability, and
practical deployment of sentiment-aware reinforce-
ment learning in modern financial markets.

7 Conclusion

We extend PPO by introducing a sentiment-aware
reinforcement learning model for portfolio opti-
mization. The proposed SAPPO framework incor-
porates LLM-based sentiment analysis to integrate
real-time financial news into trading decisions.

The sentiment-enhanced model consistently de-
livers superior risk-adjusted performance, achiev-
ing higher Sharpe ratios, stronger annualized re-
turns, and reduced drawdowns compared to the
standard PPO baseline. SAPPO also outperforms
benchmark indices such as the NASDAQ-100, S&P
500, and DJI, demonstrating the value of combin-
ing sentiment signals with reinforcement learning.

Investor sentiment serves as a critical comple-
mentary signal, enhancing adaptability in dynamic
portfolio management. Incorporating sentiment
provides the agent with greater adaptability to shift-
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ing market conditions and offers a viable alternative
to purely price-driven strategies.

These findings highlight the practical and theo-
retical relevance of sentiment-aware reinforcement
learning in financial decision-making. This work
lays the groundwork for future research on multi-
modal trading systems that combine structured mar-
ket data with unstructured textual information.
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Appendix

A Ablation studies

We conduct ablation experiments to assess the im-
pact of the sentiment integration and the λ weight-
ing parameter in the SAPPO model. Table 2 shows
how performance varies with different values of
λ. The results highlight that moderate sentiment
influence (λ = 0.1) yields the best Sharpe ratio
and return, whereas overly small or large values
underperform.

λ Sharpe Ratio Annualized Return Max Drawdown

0.00 1.55 26.5% −17.5%
0.01 1.62 27.3% −16.4%
0.05 1.75 29.1% −14.3%
0.10 1.90 30.2% −13.8%
0.15 1.78 29.4% −14.5%
0.20 1.60 27.4% −15.6%
0.25 1.50 26.2% −17.0%
0.30 1.41 25.3% −18.2%

Table 2: Extended ablation study of the sentiment in-
fluence parameter λ in SAPPO; λ = 0 corresponds to
the PPO baseline. Performance peaks at λ = 0.10, with
diminishing returns and increased risk for larger values.

We also tested alternative sentiment models.
When replacing LLaMA 3.3 with FinBERT (Araci,
2019), the model achieved a Sharpe ratio of 1.72
and annualized return of 28.1%, which outperforms
PPO but slightly underperforms the full SAPPO
implementation. These results underscore the im-
portance of both the sentiment source and tuning
λ.

A.1. Statistical significance of SAPPO improve-
ments

We assess the statistical significance of SAPPO’s
performance gains over PPO using a Welch’s t-test
on daily Sharpe ratios over a 1-year out-of-sample
period. The result is statistically significant (t =
−16.68, p < 0.001), confirming that the observed
Sharpe ratio improvement from 1.55 (PPO) to 1.90
(SAPPO) is statistically robust and unlikely to be
attributable to random variation.

A.2. Extended ablation: Sentiment filtering and
timing

To better understand the role of sentiment pro-
cessing, we perform two additional ablation experi-
ments shown in Table 3.
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Configuration Sharpe Ratio Annualized Return Max Drawdown

SAPPO (base) 1.90 30.2% -13.8%
– No Filtering 1.63 27.8% -16.1%
– Lagged Sentiment (t-1) 1.67 28.4% -15.4%

Table 3: Extended ablation: effect of removing senti-
ment filtering and lagging sentiment input.

Removing cosine-similarity-based sentiment fil-
tering reduces SAPPO’s Sharpe ratio from 1.90 to
1.63, confirming that redundant news signals de-
grade learning performance. Additionally, using
lagged sentiment scores (from the previous trad-
ing day) leads to a moderate drop in return and
Sharpe ratio, showing that timely sentiment access
improves adaptability.

B Dataset summary

Attribute Value

Asset Universe Google (GOOG), Microsoft (MSFT), Meta (META)
Market Data Source Yahoo Finance (daily adjusted closing prices)
Sentiment Source Refinitiv Financial News
Sentiment Model LLaMA 3.3 (via Hugging Face Transformers)
Sentiment Range Normalized to [-1, 1]
Training Period January 2013 – December 2019
Test Period January 2020 – December 2020
Total Trading Days 1,760 (Training), 251 (Test)
Execution Model VWAP for first 10 minutes of trading day
Transaction Costs 0.05% per turnover

Table 4: Dataset summary and environment configura-
tion.

C Implementation details

We implement both PPO and SAPPO using Py-
Torch and Stable-Baselines3 (Raffin et al., 2021).
The financial environment is built using a cus-
tomized version of OpenAI Gym (OpenAI, 2022)
that simulates trading with transaction costs,
VWAP execution, and rebalancing constraints.

The dataset includes daily adjusted closing
prices for Google, Microsoft, and Meta from Jan-
uary 2013 to January 2020. Financial news sen-
timent is extracted using LLaMA 3.3 (MetaAI,
2024).

D Model architecture

The PPO and SAPPO models share the same neural
network structure. Each model uses a state input
that combines portfolio weights, normalized prices,
and sentiment scores.

The policy and value networks contain two hid-
den layers with 128 and 64 units, respectively, acti-
vated by rectified linear unit functions. The policy
network outputs the mean and log variance for a

multivariate Gaussian policy. The value network
produces a scalar estimate of state value.

E Training configuration

Training occurs on 90% of the data spanning 2013–
2019, while testing is performed on 10% held-out
data from 2020. Each model is trained for 1 million
timesteps. The hyperparameters are:

Optimizer: Adam
Learning rate: 3e−4
Batch size: 256
PPO epochs per update: 10
Discount factor γ: 0.99
Clipping parameter ϵ: 0.2
Sentiment influence λ: 0.1 (for SAPPO only)

F Sentiment filtering

We apply cosine similarity to filter redundant fi-
nancial news. Embeddings of daily articles are
compared in a rolling 5-day window. A similarity
threshold of 0.8 removes duplicate signals. This
improves sentiment diversity and reduces noise dur-
ing training.

G Additional results

SAPPO is evaluated using FinBERT (Araci, 2019)
as an alternative sentiment model. This variant
achieves a Sharpe ratio of 1.72 and an annual-
ized return of 28.1%, showing gains over PPO but
slightly underperforming the LLaMA 3.3-based
SAPPO model.

Baseline strategies such as equal-weighted and
momentum-based portfolios perform worse across
all key metrics. SAPPO demonstrates consistent
improvements in return and Sharpe ratio across
different sentiment sources and baselines.
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