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Abstract

Intelligent agents designed for interactive en-
vironments face significant challenges in text-
based games, a domain that demands complex
reasoning and adaptability. While agents based
on large language models (LLMs) using self-
reflection have shown promise, they struggle
when initially successful and exhibit reduced
effectiveness when using smaller LLMs. We
introduce Sweet&Sour, a novel approach that
addresses these limitations in existing reflection
methods by incorporating positive experiences
and managed memory to enrich the context
available to the agent at decision time. Our
comprehensive analysis spans both closed- and
open-source LLMs and demonstrates the ef-
fectiveness of Sweet&Sour in improving agent
performance, particularly in scenarios where
previous approaches fall short.

1 Introduction

Intelligent agents, designed to interact with and
make decisions in dynamic environments, have
become a central focus in AI research, with text-
based games (TBGs) emerging as a particularly
challenging domain for evaluating these agents’
reasoning, adaptability, and learning abilities (Côté
et al., 2018; Wang et al., 2022). Originally popu-
lar in the 1970s as text adventure games,1 TBGs
present players with textual descriptions of envi-
ronments, requiring them to input natural language
commands to achieve objectives (Hausknecht et al.,
2020). For instance, determining if a metal fork is
conductive involves locating the fork, assembling a
circuit, and analyzing the result. Navigating TBGs
demands that agents exhibit a combination of abili-
ties, including planning, memory retention, spatial
reasoning, and common sense knowledge (Wang
et al., 2023).

1Try it yourself: https://www.microsoft.com/en-us/
research/project/textworld/try-it/

Previously, deep reinforcement learning and be-
havior cloning were the primary approaches to
develop agents to play TBGs (Ammanabrolu and
Riedl, 2019; Yao et al., 2020). However, recent re-
search shows that agents based on pretrained large
language models (LLMs) are more effective at nav-
igating TBGs (Lin et al., 2023). A key factor in
their success is the integration of internal reflection
to improve planning (Xi et al., 2023; Huang et al.,
2024b; Hu et al., 2024).

Self-reflection, closely related to self-refinement,
is a form of reasoning that occurs after receiv-
ing binary or scalar feedback from the environ-
ment (Madaan et al., 2023). In this process, the
LLM reviews its actions and their outcomes, con-
sidering what went wrong and potential ways to
improve (Wang et al., 2024). By iteratively adjust-
ing its strategy based on verbal reinforcement, con-
veyed through textual feedback, the agent refines
its planning for subsequent attempts (Shinn et al.,
2023). However, reflection also has several limi-
tations, including 1) underwhelming performance
when agents are correct initially (Li et al., 2024),
2) significantly worse efficacy when using smaller
LLMs (Lin et al., 2023), and 3) dependence on
external feedback (Zhang et al., 2024b).
Our contributions. In this work we conduct a
comprehensive analysis of LLM-based agents em-
ploying reflection approaches in TBGs and eval-
uate their performance across various LLMs. To
address the limitations of reflection when agents
are initially successful and the diminished effi-
cacy of smaller LLMs, we propose Sweet&Sour
(S&S) to leverage positive experiences to create a
richer context for self-reflection. We supplement
this by proposing a managed memory approach to
build context across multiple rollouts. Our find-
ings demonstrate that our method improves the
performance of agents using reflection, particularly
in scenarios where they previously struggled, en-
abling more robust and generalizable learning.

131

https://www.microsoft.com/en-us/research/project/textworld/try-it/
https://www.microsoft.com/en-us/research/project/textworld/try-it/


Demo

Task: Determine conductivity of fork.

Action t=0: look around
> This room is called the workshop. You 
see: [...]
Action t-1: connect battery anode to black 
wire
> battery anode is now connected to black 
wire
THINK: Now I need to connect the 
cathode

Agent Reflection

Verbalize what 
lead to failure to 
improve next 
attempt

Next 
attempt

Action t: out of actions? / possible action

Demo + previous reflections

Task: Determine conductivity of fork.

Action t=0: look around
> This room is called the workshop. You 
see: [...]
Action t-1: connect battery anode to black 
wire
> battery anode is now connected to black 
wire
THINK: Now I need to connect the 
cathode

Action t: out of actions? / possible action

Agent Reflection

Verbalize what 
lead to failure to 
improve next 
attempt

Next 
attempt

Demo + previous reflections

Task: Determine conductivity of fork.

Action t=0: look around
> This room is called the workshop. You 
see: [...]
Action t-1: connect battery anode to black 
wire
> battery anode is now connected to black 
wire
THINK: Now I need to connect the 
cathode

Action t: out of actions? / possible action

Subgoal reached? 
Agent Reflection

Next 
timestep

Stop Act ActStop ActStop

ReAct Reflexion Sweet&Sour

STMLTMLTM

Figure 1: Comparison of used methods to play ScienceWorld. ReAct introduces a THINK action to explicitly reason
regarding the next step, which does not persist across attempts. Reflexion leverages self-reflection across attempts
to learn from unsuccessful tries and stores these in long-term memory (LTM). Sweet&Sour not only performs
self-reflection after failures but also after each completed subgoal, making its reflection instantly available at the
next timestep as part of short-term memory (STM), and thus incorporating positive experiences.

2 Methodology

2.1 LLMs Playing Text-Based Games

Assuming an LLM behaving as an actor model as
part of our agent – i.e. generating actions based on
the current state and policy, analogous to traditional
policy-based RL setups – we sample an action at
from the current policy πθ at time t and receive an
observation from the environment ot. Each task
consists of a number of sub tasks (such as finding
a key object), the completion of which grants the
agent a sparse reward, which adds to its current
reward rt. The game continues until the agent has
achieved the goal d and receives the full reward
as final score, or the maximum number of steps –
which we set to 150 – is reached, in which case rt
will become the final score. A detailed problem
formulation is given in appendix A.

2.2 Self-Reflection

Reflection occurs in addition to the acting LLM.
Here, the agent reviews at and ot associated with
previous unsuccessful attempts to verbalize the rea-
son for failure. This process typically involves
maintaining a persistent history of insights gained
across attempts, which the LLM uses as additional
context for its reflections to improve future decision
making for the next attempt (Shinn et al., 2023).
However, since other self-reflection methods fo-

cus on learning from failures (Renze and Guven,
2024; Zhang et al., 2024a,c; Huang et al., 2024a;
Yao et al., 2024), they overlook the importance of
reinforcing successful behaviors in a similar way.

2.3 Sweet&Sour

Positive experience reflection. To address the limi-
tations of existing self-reflection methods, we intro-
duce a structured approach to leverage reflections
from both positive (sweet) and negative (sour) out-
comes. Unlike Reflexion, which passively accumu-
lates failure-based insights, S&S actively queries
the agent for generalizable insights both from fail-
ure and success cases, promoting a more balanced
context building mechanism. Here, we draw in-
spiration from RL, where rewards steer the agent
towards reinforcing advantageous behaviors and
preventing over-reliance on error correction. When
the current policy is achieving rewards, we query
the agent to extrapolate, encouraging the agent to
articulate what made its current policy successful
and what can be generalized from this, reinforcing
strategies that lead to positive outcomes while still
learning from failures. This is visualized in figure 1
and a qualitative example of positive experience
reflection, as well as an algorithm outlining our
approach, is shown in appendix B. Our method is
broadly applicable to agents in environments with
feedback using self-reflection, including those that
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build additional complexity on top of the core re-
flection loop, such as, for example, grounding (Lin
et al., 2023) or gradient learning (Yao et al., 2024).
Managed memory. Previous works store re-
flections gained from unsuccessful attempts in
something akin to a long-term memory and make
them available as additional context across at-
tempts (Huang et al., 2024a; Shinn et al., 2023).
This implies that the agent only has access to
additional context upon failing the task – essen-
tially brute-forcing the problem across rollouts. To
complement S&S and address these limitations,
we introduce managed memory, which employs a
dual-buffer approach, separating reflections into
short-term and long-term storage. Initially, if sub-
goals are reached within a run, then the reflec-
tion corresponding to this subgoal is stored in
a temporary buffer and made available immedi-
ately. Each short-term memory consists of a tuple
(reflectiont, ot, at, rt).Once a task is completed or
an attempt ends, all short-term memories from the
temporary buffer are moved to long-term memory.
Reflections from failed attempts are immediately
added to long-term memory to inform future at-
tempts. At each time step, the agent queries both
memory systems.

2.4 Data and Environment
We use the ScienceWorld benchmark (Wang et al.,
2022), which provides a versatile setting for evalu-
ating agents in science experiment tasks across 10
interconnected locations, such as a greenhouse and
a workshop, with over 200 objects and 25 action
templates, generating a vast and dynamic search
space. We use the test set for our evaluation, pro-
viding up to 10 variations of each of the 30 dis-
tinct tasks, which have an average optimal decision
depth of 50 steps. An example task is shown in
appendix C. For details of all tasks and the environ-
ment, we refer to (Wang et al., 2022). We measure
performance using the success score. Completing
a task implies completing every sub task, receiving
the full reward, and thus a score of 100. We elect
to use ScienceWorld instead of previous interactive
text environment benchmarks due to their relative
simplicity for current LLM-based agents. Still, we
provide additional results on the ALFWorld bench-
mark (Shridhar et al., 2021) in appendix D.

2.5 Baselines
CALM (Yao et al., 2020), a popular method to play
TBGs, is a reranking method that integrates a deep

reinforced relevance network (DRRN) (He et al.,
2016a) with a causal language model fine-tuned
using oracle trajectories and imitation learning. We
use ReAct (Yao et al., 2023) as our baseline LLM-
based agent. ReAct composes useful information at
each time step by reasoning over the current context
(e.g. decomposing task or common sense knowl-
edge query) and carries it over to the context of the
following time step as few-shot in-context learning.
We further compare our method against Reflex-
ion (Shinn et al., 2023), an agent built on ReAct that
employs a self-reflection mechanism to iteratively
improve its performance across rounds upon en-
countering failure based on feedback from the envi-
ronment. As such, it runs for up to four rounds as it
builds up its long-term memory. For all agents, we
evaluate their performance using LLMs of differ-
ent sizes. In descending order of parameter count,
we select GPT-4o (gpt-4o-2024-08-06), Mistral
Large 2 (mistral-large-2407), and Llama 3.1
8B (llama-3.1-8b-instruct), accessing each
via its respective API.

3 Results and Discussion

The results for ScienceWorld are shown in table 1.
Sweet&Sour outperforms baselines. We find that
S&S outperforms other methods across all LLMs,
setting the highest average score at 54.6 using GPT-
4o. The performance gap between S&S and the
other methods widens for smaller models with a
lower parameter count. For instance, it achieves
44.6 compared to Reflexion’s 27.6 on Mistral Large
2, and 32.5 compared to 21.7 on Llama 8B – indi-
cating that our method is more suitable for scenar-
ios with limited computational resources.
Ablation studies demonstrate the complemen-
tary nature of positive experience reflection. We
conduct ablation studies by selectively removing
positive or negative reflections to analyze their in-
dividual contributions to performance. When we
modify our method to only reflect on failures, per-
formance drops significantly to levels comparable
with Reflexion – average scores decrease to 24.6,
31.1, and 44.9 for Llama 8B, Mistral Large 2, and
GPT-4o, respectively. When employing only posi-
tive reflections, scores remain over the ReAct base-
line at 25.8, 32.4, and 42.3, suggesting that while
positive reflections alone enhance performance,
they are less effective than negative reflections. To
further assess contributions of individual compo-
nents, we forego the use of managed memory and
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Task CALM ReAct Reflexion Sweet&Sour (ours)

CALM L8B ML2 GPT L8B ML2 GPT L8B ML2 GPT

1-1 (Boil) 0.0 0.0 0.0 3.8 0.0 0.0 5.1 0.0 7.2 9.6
1-2 (Melt) 0.0 8.4 10.3 11.8 0.0 0.0 10.0 11.4 12.1 12.8
1-3 (Freeze) 0.0 1.5 0.0 8.1 0.0 2.3 8.3 2.4 3.1 8.9
1-4 (Change state) 0.0 1.0 4.7 10.0 0.0 0.0 4.2 1.7 2.9 9.2
2-1 (Thermometer) 1.0 5.1 7.8 7.7 3.4 4.2 7.6 7.8 9.7 10.9
2-2 (Melting) 1.0 6.7 6.3 5.9 3.3 3.3 26.2 7.9 36.8 46.0
2-3 (Melting) 5.0 9.1 11.8 23.4 13.2 14.7 22.6 15.2 29.0 38.3
3-1 (Power 1) 7.0 18.8 24.6 57.2 21.2 51.5 78.4 28.6 75.4 81.1
3-2 (Power 2) 2.0 10.2 24.7 55.6 9.5 11.9 24.7 23.3 44.5 58.0
3-3 (Conductivity 1) 2.0 52.4 51.7 73.0 9.2 25.8 72.1 59.1 69.2 75.7
3-4 (Conductivity 2) 10.0 54.2 64.9 89.7 35.4 41.6 75.1 62.7 60.3 67.3
4-1 (Find 1) 54.0 17.3 18.7 27.5 44.6 48.1 62.3 41.7 71.7 74.2
4-2 (Find 2) 10.0 69.1 71.6 80.3 68.4 75.7 87.3 76.8 100.0 100.0
4-3 (Find 3) 8.0 21.3 42.8 47.7 18.4 16.5 17.3 20.9 21.5 34.3
4-4 (Find 4) 2.0 15.7 15.2 19.3 39.6 46.6 100.0 55.1 87.8 100.0
5-1 (Grow plant) 4.0 10.8 10.8 10.0 7.2 7.2 7.9 14.2 14.6 17.4
5-2 (Grow fruit) 3.0 18.1 18.5 19.2 30.8 51.4 34.6 51.5 55.6 60.2
6-1 (Chemistry 1) 6.0 37.8 42.9 58.6 27.1 29.7 70.2 37.9 61.1 70.2
6-2 (Chemistry 2) 3.0 25.0 27.1 50.6 14.4 28.0 69.8 27.2 51.9 83.1
6-3 (Chemistry 3) 6.0 14.4 17.5 39.7 38.9 31.1 16.7 45.3 53.7 61.5
7-1 (Lifespan 1) 10.0 37.0 41.7 60.0 75.0 75.0 100.0 75.0 88.2 100.0
7-2 (Lifespan 2) 4.0 50.5 50.7 67.5 60.0 71.9 81.4 70.5 77.0 80.0
7-3 (Lifespan 3) 4.0 33.7 38.2 50.0 29.5 33.7 75.0 51.1 54.2 84.6
8-1 (Identify life 1) 0.0 5.1 18.9 25.3 1.7 1.7 3.4 11.1 10.3 14.2
8-2 (Identify life 2) 0.0 6.4 7.4 8.0 7.4 8.0 8.0 5.0 7.4 7.4
9-1 (Measure angle) 0.0 28.5 33.0 42.5 56.9 55.1 57.1 68.4 70.3 75.0
9-2 (Friction 1) 3.0 14.5 22.6 43.1 23.4 29.3 100.0 33.3 36.7 62.0
9-3 (Friction 2) 2.0 2.9 14.5 42.8 1.3 33.6 59.6 7.2 51.9 63.1
10-1 (Genetics 1) 2.0 25.7 27.3 26.4 5.6 9.8 50.4 38.9 48.6 78.8
10-2 (Genetics 2) 2.0 13.2 19.1 17.2 6.2 21.5 22.7 23.6 24.0 54.8

Average 5.1 20.5 24.8 36.0 21.7 27.6 45.3 32.5 44.6 54.6

Table 1: Results on the ScienceWorld benchmark. For each method, we use Llama 8B (L8B), Mistral Large 2
(ML2), and GPT-4o (GPT). Each value is an average of across all task variations.

instead use a simplified long-term memory similar
to previous approaches. This modification results
in performance decreases to 28.2, 38.5, and 48.7
– still exceeding Reflexion but averaging 12.4%
below S&S. These results demonstrate that nega-
tive reflections, positive reflections, and managed
memory provide benefits, with their combination
yielding superior performance compared to any in-
dividual component.

Sweet&Sour improves robustness to tilt. In
highly challenging tasks, such as 1-1 and 8-2, all
methods tend to struggle, while in simpler tasks,
methods succeed based on the LLM’s inherent ca-
pabilities. However, medium-difficulty tasks, such
as 6-3 and 10-2, reveal a critical performance gap
between our method and previous approaches. For
instance, on task 10-2, we could observe Reflex-
ion getting off to a strong start, achieving multi-
ple subgoals, though it appeared to get stuck upon

encountering its first error. We hypothesize this
occurs because methods reflecting only on failures
lack context from early successes, leading to per-
formance decline when facing first encountering
failure (also known as “tilt”). By contrast, S&S’s
balanced reflection approach provides richer con-
text, enabling it to build upon initial successes.

4 Conclusion

We introduced Sweet&Sour, a novel approach
that enhances LLM-based agents’ performance
in text-based games through balanced reflection
on both successes and failures. Our evaluation
demonstrates significant improvements over exist-
ing methods across different model sizes, particu-
larly for smaller LLMs. These findings establish
the value of positive experience reflection and man-
aged memory in developing more robust and adapt-
able agents for complex interactive environments.
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Limitations and Broader Impacts

Limitations. Despite promising results, our work
has limitations. LLMs do not provide guarantees
regarding their reasoning capabilities, and their re-
liance on textual reflection may introduce biases or
inconsistencies in agent behavior. Further studies
are needed to assess how such agents generalize to
real-world decision-making scenarios. Addition-
ally, our evaluation is conducted using a single
environment, which, while comprehensive, does
not cover all types of interactive scenarios. We
leave the exploration of additional environments,
such as embodied environments, to future work.
Broader impacts. Large language models (LLMs)
carry the risk of misuse and the development
of harmful applications (Weidinger et al., 2021).
Since our work enhances LLM performance, it
could also be leveraged for negative purposes.
Given that our research focuses on LLMs function-
ing as agents, it shares the general risks associated
with LLM agents—namely, the potential for errors
and unintended negative consequences for users.
However, we believe these risks are mitigated by
our reliance on simulated benchmarks and by the
fact that our work improves agent accuracy, reduc-
ing the likelihood of harmful outcomes.
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A Background

One may consider every TBG to be a par-
tially observable Markov decision process
(POMDP) (Spaan, 2012) where the environment
state is never observed directly. This POMDP
may be formalized as ⟨S, T,A,Ω, R, γ⟩, where
γ ∈ [0, 1] denotes the reward discount factor. S
denotes the set of states s that contain the internal
information of the game – such as objects found
throughout the game or the player’s location – not
all of which may be visible to the agent at any
given time. A denotes the action space made up of
individual text actions a issued by the player. Ω
denotes the observation function. Further, o ∈ O
denotes the observations made by the player. The
observation ot of the agent at time t depends on
the current state st, as well as the previous action
at−1, which may be formalized as Ω (ot | st, at−1).
Seeing as the agent can only observe and interact
with the environment of a TBG via natural
language, each observation is composed of a
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sequence of tokens ot =
{
ô1t , · · · , ôNt

}
, as are

their actions at =
{
â1t , · · · , âMt

}
.

In the context of TBGs, an action at is consid-
ered admissible at a state st if it is capable of chang-
ing the game’s state, i.e., if it can lead to a transi-
tion to a new state st+1 that is different from the
current state st. The environment’s state transi-
tion is modeled through a probabilistic function
T (st+1 | st, at). Traditionally, admissible actions
in state st could deterministically lead to a new
state st+1. However, we use a more general ap-
proach where all actions, whether admissible or
not, are included in the state transition function.
Non-admissible actions, which do not lead to a
change in the game’s state, result in a transition
back to the original state st with probability 1. In
contrast, admissible actions lead to different states
with their own probability. The admissible action
set is bound to be significant for quests with a suf-
ficiently large branching factor. While admissible,
many action candidates are bound to be suboptimal.

The reward r received by the agent – the dis-
counted sum of which, E

[∑
t γ

trt
]
, it aims to

maximize – are obtained by rt = R (st, at). In
practice, TBGs typically provide sparse positive
rewards for completing subgoals and advancing
towards completing the game.

When a game begins, the agent makes its first
observation o0 at time step t = 0. This first obser-
vation differs from subsequent ones, as it consists
of the goal description d, as well as an analysis
of the starting room (i.e. the output of the “look
around” command). Subsequently, the agent can
perform a regular action at at each time step and
receives a corresponding observation ot from the
environment. In the ScienceWorld environment,
similarly to many other TBGs, the agent has an
inventory it in which to store items.

A TBG’s interpreter can accept any text se-
quence, but will only recognize text that follows
a certain structure. Typically, commands take the
form of either a single keyword (such as “look”) or
a combination involving verbs, objects, and occa-
sionally prepositions. Previous works on TBGs
made the assumption that we have access to a
predefined set of all admissible actions at each
game state and must select the correct action to
progress (Narasimhan et al., 2015; He et al., 2016b).
This is consistent with how some text adventure
games are played in the real world (Tao et al., 2018).
In line with more recent works (Lin et al., 2023),
we make the assumption that we have access to a

number of action templates (e.g. connect A to B,
pick up C) and subsequently ask the agent to gen-
erate the actions as tokens using these templates.
This leads to a more challenging action generation
process for the agent.

B LLM Reflection

B.1 Reflection Examples

After successfully completing a sub task, the agent
is prompted to reflect on its most recent observa-
tions and identify the key factors that contributed
to its success. This reflection process encourages
the agent to verbalize the steps and strategies that
led to the desired outcome, helping it create a plan
that can be stored in managed memory for future
use. In the case that a task is failed, the agent is
instructed to reflect on alternative actions it could
have taken and to devise a revised plan for the next
attempt, ensuring continuous learning and improve-
ment. This plan is stored in long-term memory.

An example trajectory of a ScienceWorld task
where the agent reflects on positive and negative
experiences is shown in Figure 2. At the end of this
trajectory, we show for a single command what a
reflection would look like for a successful or unsuc-
cessful choice, in this case picking up an animal.
For the unsuccessful case (red), where the agent
does not pick up an animal, we reflect on whether
another choice would have constituted an animal
and thus resulted in a reward. For the successful
case where a subgoal is reached (yellow), we re-
flect on what made the current actions successful
and subsequently commit this to memory.

B.2 Detailed Breakdown of Sweet&Sour

The Sweet&Sour self-reflection process is outlined
in Algorithm 1. Sweet&Sour combines reflec-
tions from positive and negative experiences with
a managed memory system to improve agent per-
formance through structured learning from both
successes and failures.
Initialization and prerequisites. The algorithm
requires an initial observation o0 that contains the
goal description d and the initial environment state.
We set a maximum episode length T = 150 steps to
ensure termination. The system maintains two dis-
tinct memory buffers: short-term memory (MST )
storing reflections from the current episode, and
long-term memory (MLT ) maintaining persistent
reflections across episodes.
Episode structure. Each episode consists of a
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sequence of interactions with the environment. The
agent begins by retrieving relevant reflections from
both memory systems to inform its current decision.
It then samples an action at from its policy πθ,
which is conditioned on the current observation
ot and the relevant memories from both MST and
MLT , if available. After executing the action, the
agent receives a new observation ot+1 and reward
rt.
Reflection generation. The algorithm generates re-
flections through two distinct mechanisms. Positive
reflections (R+

t ) are generated when subgoals are
achieved during an episode. These reflections cap-
ture successful strategies and are initially stored
in short-term memory as tuples (R+

t , ot, at, rt),
allowing the agent to build upon successful ap-
proaches within the current episode. We query the
agent to extrapolate, encouraging the agent to ar-
ticulate what made its current policy successful
and what can be generalized from this, reinforcing
strategies that lead to positive outcomes while still
learning from failures. Conversely, negative reflec-
tions (R−

t ) are generated at the end of unsuccessful
episodes. These reflections analyze failure cases
and include a proposal for a different approach to
be pursued during the following episode. They are
directly stored in long-term memory, enabling the
agent to learn from and avoid unsuccessful strate-
gies in future attempts.
Managed memory. The algorithm’s memory man-
agement system employs a structured approach
through its dual-buffer design. Short-term memory
accumulates positive reflections during successful
progression and maintains immediate context for
the current episode. This memory is reset at the
end of each episode, ensuring a fresh context for
new attempts. The long-term memory serves as a
persistent knowledge base, receiving all short-term
memories after successful episodes and directly
storing negative reflections from failed episodes.
This separation between immediate and persistent
knowledge enables the agent to maintain both con-
textual awareness and learned experience across
multiple episodes.

C Example ScienceWorld Task

In this section, we provide a successfully com-
pleted task, a variation of Task 1-1, which concerns
itself with boiling a substance, in this case water,
to change its state. Once the agent has viewed its
surroundings and moved to the kitchen, it collects

the necessary items and begins its experiment by
boiling the water in a pot on the stove. Finally,
the agent examines steam and completes the task
(highlighted in green). The example is truncated
to improve readability. The trajectory is shown in
Figure 3.

D Additional Results on ALFWorld

To further demonstrate the generalizability and ro-
bustness of S&S, we conduct additional experi-
ments on the ALFWorld benchmark (Shridhar et al.,
2021). ALFWorld comprises of various interac-
tive embodied tasks set in common home environ-
ments. It includes 6 task types where an agent must
achieve high-level goals by navigating and interact-
ing via text actions within a simulated household.
Tasks can span over 50 locations and require more
than 50 steps to solve. We follow the experimen-
tal protocol used by ReAct (Yao et al., 2023), i.e.
we test on the same 134 unseen evaluation games.
Additionally, we report success rates as the evalua-
tion metric. Table 2 summarizes our results. S&S
consistently outperforms baselines across differ-
ent model sizes, demonstrating its effectiveness in
complex interactive scenarios.

Method / Model Llama 8B Mistral Large 2 GPT-4o

ReAct 8.0 41.0 77.0
Reflexion 13.0 61.0 91.0
Sweet&Sour (ours) 20.0 78.0 97.0

Table 2: Performance on ALFWorld (success rates).

These results affirm that leveraging positive ex-
perience reflections significantly enhances perfor-
mance, particularly in challenging interactive envi-
ronments. Still, we find that the ALFWorld tasks
remain significantly easier than those of Science-
World discussed in section 3, with our approach
achieving a near perfect score. Future work may
explore extending S&S to additional tasks and en-
vironments.
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Algorithm 1 Sweet&Sour Reflection Process with Short- And Long-Term Memory

Require: Initial observation o0 containing goal description d
Require: Maximum steps T = 150

1: Initialize short-term memory MST ← ∅
2: Initialize long-term memory MLT ← ∅
3: Initialize current reward r ← 0
4: for each episode do
5: t← 0
6: while t < T and goal not achieved do
7: Retrieve reflections from MST and MLT

8: Sample action at ∼ πθ(at|ot,MST ,MLT )
9: Execute at, observe ot+1, potentially receive reward rt

10: r ← r + rt
11: if subgoal achieved then
12: Generate positive reflection R+

t

13: MST ←MST ∪ {(R+
t , ot, at, rt)}

14: end if
15: t← t+ 1
16: end while
17: if goal achieved then
18: MLT ←MLT ∪MST ▷ Transfer successful memories
19: else
20: Generate negative reflection R−

t

21: MLT ←MLT ∪ {(R−
t , ot, at, rt)}

22: end if
23: MST ← ∅ ▷ Reset short-term memory
24: end for

ScienceWorld Task 8-1

Task Description:
Your task is to find a(n) animal. First, focus on the thing. Then, move it to the red box in the
kitchen.

> look around
This room is called the hallway. In it, you see:

• a substance called air
• a picture
• the agent

You also see:
• A door to the greenhouse (open)
• A door to the living room (open)
• A door to the art studio (open)
• A door to the kitchen (open)
• A door to the bedroom (open)
• A door to the workshop (open)

> open door to greenhouse
The door is already open.
> go to greenhouse
You move to the greenhouse.
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> open door to outside
The door is already open.
> go to outside
You move to the outside.
> look around
This outside location is called the outside. Here, you see:

• a substance called air
• an axe
• a substance called wood
• the ground
• a fire pit (containing nothing)
• a fountain (containing a substance called water)
• a butterfly egg
• a blue jay egg
• a dove egg
• the agent

You also see:
• A door to the kitchen (open)
• A door to the foundry (open)
• A door to the greenhouse (open)

Case #1: Failure
> focus on axe
You focus on the axe.
> pick up axe
You move the axe to the inventory.
Reflection (I failed because I assumed eggs are not animals. My plan was to go outside to find
animals. I tried to pick up an axe. An alternative course of action would have been to go outside
and pick up an egg, as it might be considered an animal.)
→Managed Memory

Case #2: Success
> focus on dove egg
You focus on the dove egg.
> pick up dove egg
You move the dove egg to the inventory.
Reflection (Picking up an egg was the correct choice. Even though the animal was in an egg, it is
still considered an animal. My plan was to go outside and find an animal in the wild. Items such
as an axe, wood, or landscape elements are not related to animals.)
→Managed Memory

Figure 2: Example of reflection in the 2-1 Task, where the agent needs to find something.
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ScienceWorld Task 1-1

Task Description:
Your task is to boil water. For compounds without a boiling point, combusting the substance is
also acceptable. First, focus on the substance. Then, take actions that will cause it to change its
state of matter.

> look around
This room is called the hallway. In it, you see:

• a picture
• a substance called air
• the agent
• A door to the green house (open)
• A door to the living room (open)
• A door to the art studio (open)
• A door to the kitchen (open)
• A door to the bedroom (open)
• A door to the workshop (open)

> open door to kitchen
The door is already open.
> go to kitchen
You move to the kitchen.
> look around
This room is called the kitchen. In it, you see:

• a substance called soap
• a painting
• a thermometer reading 10°C
• a counter with various items (banana, potato, red apple, orange)
• a sink (off, empty)
• a table with a glass cup (empty)
• a chair (empty)
• a freezer (closed)
• a lighter
• a stopwatch (deactivated)
• a fridge (closed)
• a cupboard (closed)
• a stove (turned off)
• a glass jar containing sodium chloride
• various other items (air, the agent, etc.)

> pick up thermometer
You move the thermometer to the inventory.
> open cupboard
The cupboard is now open.
> pick up metal pot
You move the metal pot to the inventory.
> move metal pot to sink
You move the metal pot to the sink.
> activate sink
The sink is now activated.
> deactivate sink
The sink is now deactivated.
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> pick up metal pot
You move the metal pot to the inventory.
> focus on substance in metal pot
You focus on the water.
> move metal pot to stove
You move the metal pot to the stove.
> activate stove
The stove is now activated.
> use thermometer in inventory on substance in metal pot
The thermometer measures a temperature of 13 degrees Celsius.
> examine substance in metal pot
A substance called water.
> use thermometer in inventory on substance in metal pot
The thermometer measures a temperature of 28 degrees Celsius.
> examine substance in metal pot
A substance called water.
> use thermometer in inventory on substance in metal pot
The thermometer measures a temperature of 58 degrees Celsius.
> examine substance in metal pot
A substance called water.
> use thermometer in inventory on substance in metal pot
The thermometer measures a temperature of 78 degrees Celsius.
> examine substance in metal pot
A substance called water.
> use thermometer in inventory on substance in metal pot
The thermometer measures a temperature of 98 degrees Celsius.
> examine steam
A substance called steam. Task completed.

Figure 3: Successful sequence of events in the 1-1 Task, where the agent needs to boil water.
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