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Abstract

This paper explores the robustness of language
models (LMs) to variations in the temporal
context within factual knowledge. It examines
whether LMs can correctly associate a tempo-
ral context with a past fact valid over a defined
period, by asking them to differentiate correct
from incorrect contexts. The LMs’ ability to
distinguish is analyzed along two dimensions:
the distance of the incorrect context from the
validity period and the granularity of the con-
text. To this end, a dataset called TimeStress
is introduced, enabling the evaluation of 18 di-
verse LMs. Results reveal that the best LM
achieves a perfect distinction for only 11% of
the studied facts, with errors, certainly rare,
but critical that humans would not make. This
work highlights the limitations of current LMs
in temporal representation.

1 Introduction

When a Language Model (LM) completes the tex-
tual prompt "The capital of France is" with "Paris",
it demonstrates that it has stored this fact some-
where in its parameters. However, as shown by
numerous studies (Elazar et al., 2021; Dong et al.,
2023; Hagen et al., 2024; Kassner and Schütze,
2020), this type of factual knowledge is not nec-
essarily robust to certain variations in the prompt
(use of paraphrases, aliases, typographical errors,
negations, etc.). Among these variability factors,
the temporal dimension of factual knowledge has
been less studied. Thus, in this paper, we study the
robustness of LMs’ factual knowledge in the face
of simple variations in the temporal context.

While the state of the art has demonstrated cer-
tain biases in LMs related to the temporal distribu-
tion of their training data or their weaknesses in
reasoning with temporal concepts, our work aims
to quantify how well LMs can correctly associate
a temporal context (e.g., a year or a date, such as
"In 2018, . . . ", "On November 5, 2022, . . . ") with

Correct Incorrect

In 2011, the president 
of the US was Obama

In 1998, the president 
of the US was Obama

In 2011, the president 
of the US was Obama

In 1993, the president 
of the US was Obama

On December 20, 
2011, the president of 
the US was Obama

On November 15 
1998, the president of 
the US was Obama

  !

  !

Figure 1: The robustness of the LM on a fact is evaluated
by asking it to differentiate a set of correct and incorrect
statements. The temporal context is varied along two
dimensions: its position on the timeline (rows 1 and 2)
and its granularity (rows 1 and 3). The trophy means
that the sentence was preferred by the LM.

a past fact, that is, a fact with a certain period of
validity. More specifically, the research questions
addressed are:

1. Do LMs distinguish between correct and in-
correct temporal contexts for facts?

2. Do they differentiate them with the same accu-
racy depending on the distance of the incorrect
context from the validity period of the facts?

3. Do LMs activate their factual knowledge
equally well when the temporal context is very
precise or coarse?

To achieve this, as illustrated in Figure 1,
matches are organized between correct and in-
correct temporal contexts to measure the models’
preferences, identify general trends, and highlight
anomalies. As mentioned in the research questions,
two specific angles of study are adopted to vary
the temporal contexts within these matches: the po-
sitioning of the contexts on the timeline and their
granularity (from the year to a specific date).

The contributions of the paper are:

• The release of a dataset, TimeStress, consist-
ing of popular factual knowledge (according
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to a popularity index), temporally annotated,
and their corresponding high-quality verbal-
izations. This dataset allows for the replica-
tion of our experiments but also opens avenues
for other studies on temporality.

• Highlighting the low robustness of current
LMs regarding their factual knowledge when
it comes to positioning them in time, as well
as errors—certainly rare but critical—that a
human would not make. These results reveal
the shortcomings of LMs in terms of internal
representation of temporality, including for
large models (18 models tested across various
sizes and families).

In the following sections, we first discuss related
work (Section 2). Then, we elaborate on the paper’s
issues and present the TimeStress dataset (Section
3). Finally, we describe our experiments and an-
alyze their results (Section 4). The source code
and data to reproduce our results will be published
soon. The source code enabling the reproduction
of our experiments is published on GitHub1 and
TimeStress is distributed in Hugging Face2.

2 Related work

This section presents related work to ours, focus-
ing on the study of factual knowledge in LMs, the
consideration of their temporal aspect, and their
temporal reasoning abilities.

Robustness of factual knowledge in LMs. It
has been demonstrated that LMs store a signifi-
cant amount of factual knowledge (Petroni et al.,
2019; Jiang et al., 2020; Sun et al., 2024). How-
ever, numerous studies indicate that this acquired
knowledge often lacks consistency when faced with
textual perturbations. For example, Kassner and
Schütze (2020) highlighted the limitations of pre-
trained LMs in adapting to negations in questions,
leading to contradictory answers. Robustness to
paraphrasing and minor typographical errors has
also been widely studied (Gan and Ng, 2019; von
Geusau and Bloem, 2020; Matsuno and Tsuchiya,
2023; Mondal and Sancheti, 2024). Notably, Elazar
et al. (2021) and Raj et al. (2022) found that LMs
produce different answers for semantically equiva-
lent factual queries. Similarly, Hagen et al. (2024)

1github.com/Orange-OpenSource/TimeStress (MIT Li-
cense)

2huggingface.co/datasets/Orange/TimeStress (CC BY-SA
4.0 License)

discovered that recent LMs can be negatively im-
pacted by minor typographical errors that preserve
the original semantics.

Temporal alignment of knowledge in LMs.
Since factual knowledge is constantly evolving,
studies have been conducted to understand how to
adapt LMs to this evolution. As expected, LMs
have been shown to be incapable of predicting fu-
ture facts (Lazaridou et al., 2021), highlighting the
need to adapt them to maintain alignment with
current knowledge. To address this issue, meth-
ods such as continual learning (Liska et al., 2022)
and specific pretraining techniques have been pro-
posed, including the joint modeling of text and its
associated timestamp to facilitate the acquisition
of new temporal knowledge (Dhingra et al., 2022);
knowledge editing techniques (Meng et al., 2022;
Hartvigsen et al., 2023; Yu et al., 2024; Zhang et al.,
2023); or simply externalizing knowledge into an
external database accessible by the LM through
retrieval-augmented generation (Ram et al., 2023).
In parallel, several datasets have been proposed to
detect outdated facts in LMs (Zhao et al., 2024;
Kim et al., 2024; Margatina et al., 2023; Kasai
et al., 2023; Mousavi et al., 2024), and to update
LMs’ factual knowledge (Ammar Khodja et al.,
2024; Yin et al., 2024a; Thede et al., 2025; Ge
et al., 2024).

Temporal reasoning in LMs. Several studies
have examined the temporal reasoning capabilities
of LMs (Zhang and Choi, 2021; Chu et al., 2024;
Wei et al., 2023; Fatemi et al., 2025; Dhingra et al.,
2022; Xiong et al., 2024; Su et al., 2024). No-
tably, the works of Chen et al. (2021) and Tan et al.
(2023) each proposed a dataset in which LMs are
invited to answer questions involving the under-
standing of the temporality of facts. While these
studies share similarities with ours in terms of data
(temporally annotated facts), their objectives and
methodologies differ. These studies test the mas-
tery of certain temporal logic operators (date calcu-
lations, comparisons, etc.) and evaluate the average
performance of LMs based on a one-test-per-fact
principle. In contrast, we focus not on reasoning
ability but on the robustness of knowledge, that is,
the ability of an LM to recall the same fact across
various temporal contexts.
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3 Problem Statement and Dataset

The goal of this paper is to measure how robust
a Language Model (LM) is to the temporal con-
text associated with a fact. To achieve this, the
proposed experimental protocol involves analyzing
the LM’s preferences when faced with correct or
incorrect contexts for the same fact. This section
first formalizes this problem and then presents the
TimeStress dataset, which instantiates it.

3.1 Problem Statement

Facts and Temporal Contexts. Classically, we
consider facts as RDF triplets (subject, relation,
object), denoted as (s, r, o), where subjects and
objects are entities or literals, and relations origi-
nate from an ontology (Petroni et al., 2019; Elsahar
et al., 2018). When dealing with temporal facts,
this representation is extended to include a valid-
ity period [a, b], as done in other works (Yin et al.,
2024b; Jain et al., 2020; Tan et al., 2023). For a
quintuple (s, r, o, a, b), the subject s is connected
to the object o via the relation r during the period
from date a to date b. For example, (Barack Obama,
president, USA, 20 January 2009, 20 January 2017)
is a temporal fact.

We define the notion of a temporal context as a
time interval over which we wish to test the validity
of a temporal fact. To reduce the number of pos-
sibilities and frame our work, we limit these time
intervals to either entire years (e.g., 1998, i.e., all
days of the year 1998), an entire month of a given
year (e.g., November 1998), or a specific date (e.g.,
November 15, 1998). Subsequently, these three dis-
tinct granularities will be denoted as Y for "Year,"
YM for "Year-Month," and YMD for "Year-Month-
Day."

Considering a temporal fact f = (s, r, o, a, b), a
temporal context τ is said to be correct for f if τ is
fully included in [a, b] (i.e., τ ⊆ [a, b]), incorrect
if it is not included at all (τ ∩ [a, b] = ∅), or tran-
sitional otherwise (τ ∩ [a, b] ̸= ∅ and τ ̸⊆ [a, b]).
For example, given the validity period [2017, 2019],
2016 is incorrect, 2017 is transitional, and 2018 is
correct.

To assess the ability of an LM to distinguish a
correct context τ+ from an incorrect context τ−

for a given temporal fact (s, r, o, a, b), two textual
statements are constructed respectively. The form
of the statements adopted in our work is that of
a question about the fact (s, r, o) followed by its
answer ("What is the r of s? o") and prefixed

by a verbalization of the temporal context τ+ or
τ−. For the example about Barack Obama, two
possible contexts are τ+ = 2011 and τ− = 1998,
producing the statements "In 2011, who was the
president of the USA? Barack Obama" and "In
1998, who was the president of the USA? Barack
Obama."

Finally, we say that an LM M distinguishes a
correct context from an incorrect context when it
assigns a higher probability to the answer o given
the statement with τ+ compared to conditioning on
τ−, i.e., PrM (o|s, r, τ+) > PrM (o|s, r, τ−). The
details of the computation of PrM can be found in
Appendix D.

The overall estimation of this ability involves
considering a large set of facts with varied enti-
ties, relations, and validity periods, and testing nu-
merous pairs (τ+, τ−) for each fact. To make the
results of these matches interpretable, we impose
that the contexts of the same pair have the same
granularity (Y, YM, YMD).

Metrics. We introduce two metrics. Given a
fact f and a model M , we express the results
using a win rate W(M,f) ∈ [0, 1] of M for f ,
which is the ratio of the number of times the model
preferred a correct context over an incorrect con-
text for the single fact f to the number of tests
performed. Additionally, a robustness metric, de-
noted R(M,f), verifies that correct contexts con-
sistently outperform incorrect ones, defined as:
R(M,f) = 1[W(M,f) = 1] where 1[] is the
indicator function. It is important to note that tran-
sitional contexts are not used in any way for the
calculation of these metrics, as their validity is
ambiguous. Given a set of facts, the average win
rates and average robustness are denoted V(M)
and R(M) respectively.

For segmentation purposes in the analyses, these
global metrics can be restricted to tests conducted
with temporal contexts of a specific granularity (Y,
YM, or YMD).

Finally, to measure the distance of a context τ
relative to the validity period [a, b] of a fact, we
calculate its relative position, denoted α, as the
number of days between the midpoint of [a, b] and
the midpoint of τ , divided by the number of days
in [a, b]. Thus, |α| < 1

2 for correct contexts, and
|α| > 1

2 for incorrect contexts. For transitional
contexts, the value |α| is explicitly set to 1

2 .
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3.2 The TimeStress Dataset
We present the TimeStress dataset, which enables
our study. This dataset contains over 521,000 state-
ments (in the form of questions) generated from
2,003 temporal facts, covering 1,883 unique enti-
ties (1,385 unique subjects and 1,113 unique ob-
jects) and 86 relations. A brief sample is provided
in Table 1.

On average, each fact is associated with 11 cor-
rect temporal contexts and 74 incorrect ones, dis-
tributed across the three granularities Y, YM, and
YMD. There are enough correct and incorrect
contexts to make it nearly impossible for a ran-
dom model to be robust on any fact by chance.

In what follows, we briefly introduce how
TimeStress was built, covering the quintuplet col-
lection from Wikidata, their verbalization in natural
language using GPT-4o, and how incorrect and cor-
rect contexts were sampled for each quintuplet in
order to create statements.

A more detailed version of this section can be
found in Appendix A.

3.2.1 Quintuplet Collection
The quintuplet collection process begins with a
preprocessed version of Wikidata provided in Am-
mar Khodja et al. (2025). This source also provides
a measure of each entity’s popularity, defined as
the median number of human visits per month to
the Wikipedia article associated with the entity in
2020. This measure is used to define the popularity
index of a quintuplet, calculated as the geometric
mean of the popularity of its object and subject.
Although the popularity of the subject and object
does not imply the popularity of the fact, this in-
dex remains an interesting tool for finding facts
"known" by LMs, as it is shown empirically in the
experiments.

We collect and filter Wikidata facts following
this procedure: (1) All quintuplets with a valid-
ity period (i.e., a start or end date mentioned) and
whose objects are not literals, such as quantities and
dates, are collected. (2) Quintuplets valid within
two distinct periods are removed to simplify re-
sult analysis, as this allows all dates outside the
validity period to be considered incorrect. (3) Quin-
tuplets without a delimited validity period (i.e., a
start AND end date mentioned) are removed. (4)
Only quintuplets that were valid prior to 2021 are
retained, as this ensures that all these quintuplets
are past facts for all studied LMs. (5) Only the
quintuplets that are valid for longer than three

years are retained to ensure a minimal number of
correct temporal contexts of Y granularity. (6) We
keep only the most popular quintuplets using the
popularity index. This results in a set of 2,098
quintuplets with a varied set of 86 relations.

3.2.2 Quintuplet Verbalization
The process of generating statements from quintu-
plets is carried out using GPT-4o. First, a prompt
instructs GPT-4o to generate four linguistically di-
verse questions from a given tuple (subject, rela-
tion, object, year), with the following guidelines:
the question must be in the past tense, begin with
“In [YEAR],”, be stated in a simple and concise
manner without any detail that could give clues
about the answer. It should be directly followed
by the answer, which is the object. The quality of
the generated questions was analyzed to identify
and eliminate incorrect entries. Initially, out of the
2,098 facts intended for verbalization, 53 failed,
and 64 questions mistakenly used the subject as
the answer instead of the object. These erroneous
cases were removed from the dataset, resulting in a
total of 2,003 facts and 2003×4 = 8012 questions.
A random sample of 50 questions was manually
evaluated to ensure the overall quality of the gener-
ated questions. The evaluation revealed that only 1
out of 50 questions was incorrect, while the remain-
ing questions were perfectly constructed (Wilson
confidence interval at 95% = [0.85, 0.99]), which
demonstrates the high quality of the questions in
our dataset. Finally, the temporal context was re-
moved and each fact is randomly assigned one of
its four associated questions.

3.2.3 Context Sampling
For each fact, based on its validity interval [a, b],
centered on m = a+b

2 and of duration d =
b − a3, temporal contexts at the Y granularity
are uniformly sampled over the wider interval
[m−5d,m+5d] with a step of 0.05×d. From these
Y-granularity contexts, YM-granularity contexts
are generated by randomly selecting a month. Sim-
ilarly, YMD-granularity contexts are determined by
choosing a random day from each YM-granularity
context4. This process creates a hierarchy among
contexts derived from the same year for a given
fact. Note that when a date d2 is chosen from a
higher-granularity date d1, it is necessarily correct

3The median of dates (in day precision) is used to perform
arithmetic operations between dates.

4This sampling does not produce erroneous dates such as
February 29 for non-leap years, or April 31.
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(or incorrect) if d1 is. However, d1 may be tran-
sitional while d2 is correct or incorrect. In such
cases, d2 is excluded from the set of correct or in-
correct dates. This guarantees that the number
of correct and incorrect contexts does not vary by
granularity, avoiding bias when comparing model
robustness across granularities. The corresponding
years of the produced contexts are mainly located
in the contemporary period between 1800 and 2020
(Appendix E), because the popularity index used
to select the facts in TimeStress draws more often
recent facts. To produce the statements of each fact
that will be used to compute the metrics, its corre-
sponding statement is prefixed with the previously
sampled temporal contexts associated with the fact.

4 Experimentation

This section details our experiments on the
TimeStress dataset. As a reminder, our objectives
are, in order, to measure the ability of models to
distinguish correct and incorrect temporal contexts,
analyze their robustness, and search for anomalies
in this task when incorrect contexts are closer to or
farther from the validity interval, and as the granu-
larity of contexts becomes finer.

Numerous models from different families and
sizes were tested: Mistral-Nemo-Base-2407,
Mistral-7B-v0.3 (Jiang et al., 2023);
OpenEML-{450M, 3B} (Mehta et al., 2024);
gemma-2-{2b, 9b, 27b} (Team et al., 2024);
Llama-3.1-{8B, 70B} (Grattafiori et al., 2024).
For each, both pretrained and instruction-tuned
versions were considered, resulting in a total of
18 studied LMs. All models were sourced from
huggingface.co.

In the first series of experiments, the statements
were passed to the models as raw text rather than
as instructions to enable the comparison between
pretrained and instruction-tuned models. The use
of an "instruction/message" format is explored in a
second phase.

4.1 Overall Mastery of Temporal Contexts

Figure 2a shows the average win rate for the facts in
TimeStress for the top 5 LMs and for each temporal
granularity Y, YM, and YMD, as well as for their
union. Results for other models are reported in
Appendix E.

Overall, the results show that these top 5 LMs
generally distinguish correct statements from incor-
rect ones well, with win rates ranging from 78% to

87%. Among our other findings, we observed that
even smaller models (<500M parameters) perform
better than chance, and the win rate logically im-
proves with model size (Appendix E), with the best
model being the largest, Llama-3.1-70B-Instruct.

Figure 3 provides a more detailed analysis by re-
porting the average log Pr(o|f, τ) as a function of
the value α, which quantifies the relative distance
of τ from the validity period of f (see Section
3.1). The average is calculated across all facts, for
contexts at the year granularity, and across all 18
studied LMs. We observe that the highest probabil-
ities correspond to contexts within the validity in-
terval (α ∈ [−0.5, 0.5]), while outside this interval,
probabilities gradually decrease as |α| increases.
Finally, we note that the probability assigned to
transitional contexts (years that are neither fully
correct nor fully incorrect) is significantly higher
(based on the confidence intervals (CIs)) than that
for incorrect contexts. We explain this phenomenon
with the following hypothesis: in the training data
of LMs, transitional years are more often associated
with the considered fact than other years within the
validity period, as they correspond to key events
such as the beginning and end of the fact (e.g., the
start or end year of a presidential term).

This strong alignment of LMs with the valid-
ity period of temporal facts leads us to conclude
that LMs possess at least a basic representation of
temporality.

4.2 Robustness and Anomalies
The temporal representation of LMs is not ro-
bust. Figure 2b shows the average robustness of
the top 5 models across all facts in TimeStress. As a
reminder, this metric is stricter and does not tolerate
any error during matches for a given fact. Results
for other models are reported in Appendix E.

The scores are generally low, indicating that win
rates per fact rarely reach 100%. Interestingly, the
most robust model is not the one with the highest
win rate. The most robust model, gemma-2-27b-
it, achieves an R value of only about 17% for the
coarsest granularity Y. This score drops to 11%
when all granularities are considered. Most other
models do not exceed a global robustness score of
3%. Among our other results, we also observed
that instruction-tuned models mostly outperform
their pre-trained counterparts. A notable case is
the Llama-3.1-70B-Instruct model; although it was
fine-tuned on instructions, it is 3.6× more robust
than its pre-trained counterpart, Llama-3.1-70B.
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Temporal fact Temp. Cont. Status Statement

(Betty Ford, spouse, Gerald Ford, 1948-10-15, 2006-
12-26)

1983-03-21 Correct On March 21, 1983, who was the spouse of
Betty Ford? Gerald Ford

(Beirut, country, Ottoman Empire, 1520, 1918) 1759-05 Correct In May 1759, to which sovereign state did
Beirut belong? Ottoman Empire

(Jimmy Butler, member of sports team, Chicago
Bulls, 2011, 2017-06-22)

1989-06-17 Incorrect On June 17, 1989, which basketball team
did Jimmy Butler belong to? Chicago Bulls

(Samarkand, country, Soviet Union, 1922-12-30,
1991-08-31)

1789-03-31 Incorrect On March 31, 1789, what was the sovereign
state of Samarkand? Soviet Union

(United States of America, head of government, An-
drew Johnson, 1865-04-15, 1869-03-04)

1865 Transitional In 1865, who served as the head of govern-
ment for the United States of America? An-
drew Johnson

(Chris Evans, unmarried partner, Minka Kelly, 2007-
05, 2014-10)

2014 Transitional In 2014, who was Chris Evans romantically
involved with? Minka Kelly

Table 1: Random sample of statements generated from various facts and temporal contexts in TimeStress.
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(b) Average robustness

Figure 2: Average metrics on the TimeStress dataset for the 5 most robust models (95% CIs were determined using
bootstrapping).

This suggests that the training data and possibly
the training procedure play an important role in
temporal robustness. Finally, early signs of fail-
ure in knowledge transfer between granularities are
evident due to the substantial gap between indi-
vidual robustness scores for granularities and the
global score. This issue is explored in detail later
in this section.

LMs are vulnerable to easy incorrect contexts.
Table 4 investigates the impact of the relative posi-
tions of incorrect contexts of granularity Y, focus-
ing on cases where incorrect contexts cause an LM
to fail in a match for facts that seem "known" to
the LM, as indicated by a very high win rate (W ≥
95%). For now, only the "Raw Text" column is
of interest. The table reveals that these incorrect
contexts are not entirely concentrated around the
validity period, as might reasonably be expected.
Instead, a significant proportion is located far from
it. Specifically, LMs fail to achieve robustness due
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Figure 3: Evolution of log Pr(o|f, τ) with respect to
the relative distance α, averaged across all facts in
TimeStress and all LMs, for granularity Y (Bootstrap
95% CIs). The number of points used to compute each
bar is indicated above it.

to contexts with a distance of |α| ≥ 1 in 19% of
cases. This proportion decreases to 6% for |α| ≥ 3,
which remains significant given the proximity of
the win rate to 100% for the facts observed here.
We conducted the same analysis using win rate
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|α| Raw Text Instruction

≥ 1 0.19 (±0.01) 0.25 (±0.01)

≥ 2 0.09 (±0.01) 0.13 (±0.01)

≥ 3 0.06 (±0.01) 0.08 (±0.01)

≥ 4 0.04 (±0.01) 0.05 (±0.01)

Figure 4: Proportion of incorrect dates favored over
correct dates beyond a relative distance |α|, when the
win rate exceeds 95% (Wilson’s 95% CIs).

thresholds higher than 95% (see Appendix B). As
the threshold approaches 100%, vulnerability to
"easy" incorrect dates gradually decreases but never
completely disappears. Even when the win rate
threshold is 99%, errors remain when |α| ≥ 4. We
conclude that this vulnerability is inherent to cur-
rent LMs. While the probabilistic nature of these
models may provide a tangible explanation, this be-
havior is clearly undesirable, as these are typically
errors that a human would not make when aware
of a fact’s validity period.

These conclusions hold for the instruction for-
mat. So far in our experiments, all models have
been fed statements in Raw text rather than instruc-
tions. Since the performance of instruction-tuned
LMs might have been underestimated, win rates
and robustness scores were recalculated using an
"instruction/message" format5. Figure 5 compares
robustness scores calculated for the two formats.
On average, robustness decreases with the use of
the "instruction" format (notably for gemma-2 mod-
els), and global robustness scores remain low. How-
ever, no clear conclusions emerge regarding the
positive or negative impact of this format, as the
effect varies significantly across models. Next, the
"Instruction" column of Table 4 complements our
previous analysis on the impact of the relative po-
sition of incorrect contexts for high win-rate facts.
This time, the "instruction" format degrades perfor-
mance with more critical errors (i.e., far from the
validity period). Based on the confidence intervals,
these differences are statistically significant for all
values of |α| studied. Examples of these critical
errors are shown in Appendix E.

LMs fail to perfectly propagate their knowledge
across granularities. We examine the ability of

5This involves constructing messages and injecting them
into the chat template of each LM, as in the following example:
{user: "In 2011, who was the president of the USA?",
assistant: "Barack Obama"}.
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Figure 5: Average R across all granularities for facts in
TimeStress based on the format of statements submitted
to the models: raw text (blue) or instruction (orange).
95% CIs were determined using bootstrapping.

Y YM YMD
B

Y
Y

M
Y

M
D

A

1 0.78±
0.02

0.77±
0.02

0.68±
0.02 1 0.83±

0.02

0.58±
0.02

0.71±
0.02 1

P(A known | B known)

Y YM YMD
B

Y
YM

YM
D

A

1 0.78±
0.03

0.75±
0.03

0.67±
0.03 1 0.80±

0.03

0.61±
0.03

0.76±
0.03 1

P(A known | B known)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Average success rate of knowledge transfer
between granularity pairs for the 5 most robust LMs
with queries in raw text (left) or instructions (right).
Wilson confidence intervals at 95% are shown.

LMs to propagate knowledge of a fact across dif-
ferent temporal granularities. TimeStress allows
comparisons between two granularities because the
three studied granularities have the same number of
correct and incorrect contexts for all temporal facts.
The only difference between two granularities is
the addition of a random month and/or day, which
does not affect validity when transitioning from a
lower granularity to a higher granularity (e.g., from
Y to YM). For example, if a fact is incorrect for an
entire year, it remains incorrect for any month or
date within that year.

We consider a fact f to be "known" for a granu-
larity by a model M if R(M,f) = 1. This defini-
tion can apply to a given granularity. For example,
a fact is "known" at the Y granularity if all matches
with temporal contexts at the year granularity were
won. For each of the 5 most robust LMs and for
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each pair of granularities (A,B), we then calculate
the proportion of facts that are "known" at granu-
larity A, given that they are "known" at granularity
B.

Figure 6 reports this transfer proportion from
granularity B to A for the "raw text" format (left)
and "instruction" format (right). On average, for
the "raw text" format, LMs failed to generalize their
knowledge to other granularities in 28% of cases (1
- average of all non-diagonal cells), which is surpris-
ingly high given their perfect score on the starting
granularity Y . Details for each model are available
in Appendix C.2. Performance varies across LMs.
For example, for the most robust model, gemma-2-
27b-it, the transition from B = Y to A = YM is
successful in 74±5% of cases, and the win rates for
other transitions range between 68±6% and 88±5%.
The general trend is that LMs fail more in transi-
tions from coarse to fine granularities. No LM
achieves perfect transitions for any pair of gran-
ularities. There are slight variations between the
instruction (Figure 6, right) and raw formats, but
the average success rate is nearly identical.

The possibility that poor knowledge propagation
between granularities could be due to LMs’ igno-
rance of the validity period boundaries6. This was
confirmed in a similar analysis that takes context
position into account (Appendix C.1). Indeed, con-
sistency between granularities approaches perfect
consistency as the context moves away from the
validity period. However, perfect consistency is
never reached; which reminds us of the vulnera-
bility of LMs to easy incorrect contexts.

For exploratory purposes, we investigated
whether including explanations about temporal con-
cepts in the LMs’ prompts could help them better
transfer knowledge from one temporal granularity
to another. To evaluate this, two prompts were
prefixed to each TimeStress statement. The first
explains the hierarchical nature of dates (i.e., a year
consists of months, and a month consists of days),
while the second is more direct and explains how
knowledge of a temporal fact can be generalized
from one granularity to another. Details of these
prompts are provided in Appendix C.3. We recalcu-
lated the transfer proportions between granularities
using the same 5 LMs as in Figure 6. The two
explanatory prompts improved generalization in
the "raw text" format from 73% to 76%. How-
ever, no substantial gain compared to not using an

6In this case, robustness was achieved only by chance.

explanatory prompt was observed when using the
"instruction" format.

Other observations. There is a positive correla-
tion between the popularity of a fact and the ro-
bustness and win rate of LMs on it. Interestingly,
LMs are robust on globally different facts. Indeed,
a pair of LMs shares, on average, 11% of facts on
which they are robust. This proportion reaches 31%
when limited to the 5 most robust LMs. However,
only 34 facts out of 384 (8.9%) are robust at the
same time in these LMs. Furthermore, the longer
a fact’s validity period, the higher the win rate (on
the 5 most robust LMs). This statistically signif-
icant correlation7 is intriguing because it appears
that the difficulty of situating a fact in time is the
same whether it has a duration of 3 years or 30
years. One possible explanation is that facts with
longer validity periods are more stable and unique
(i.e., there are no alternative objects "o" for the
same subject-relation pair "s,r"), so LMs can learn
them without confusion or contradiction. However,
this explanation is contradicted by another obser-
vation: when there are more alternative objects "o"
for a given (s,r) pair, the win rate and robustness
actually increase, not decrease. This contradiction
raises the question of how to explain the observed
phenomenon. Finally, the further a fact’s validity
period is from the present, the less robust the LMs
are on it, with lower win rates as well. More details
are in Appendix E.

5 Experimental Protocol: Motivations

There are seemingly more "natural" approaches
for probing factual knowledge in language models,
such as the evaluation protocols used in LAMA
(Petroni et al., 2019), TriviaQA (Joshi et al., 2017),
KAMEL (Kalo and Fichtel, 2022), and BEAR (Wi-
land et al., 2024). Instead of comparing probabili-
ties across several temporal contexts, one could ask
the LM to answer temporally contextual questions
such as “In 2011, who was the president of the
US?”, and evaluate the LM based on the generated
answers. However, our experimental protocol was
preferred for several reasons.

First, our setup–where the LM must distinguish
between statements with correct and incorrect tem-
poral contexts by assigning probabilities–allows to
target specific facts without ambiguity, even in the
case of non-functional relations, such as "shares a

7The null hypothesis is the absence of correlation.
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border with," where a subject-relation pair can have
multiple valid objects. In generation-based settings,
an LM may produce one or several correct answers,
or even off-topic outputs, making evaluation less
reliable and direct comparison across LMs more
difficult. This is especially true given that classi-
cal generation-based metrics, such as ROUGE (Lin,
2004), can underestimate performance. Sometimes,
the set of all correct answers is difficult to enumer-
ate due to the vagueness of the relation (e.g., does
asking for the borders of a country include conti-
nents and oceans?) and due to the sometimes large
number of ways of expressing an answer.

Additionally, our evaluation protocol is efficient
and scalable, as it does not require generation or
answer validation.

Given the imperfections of other evaluation pro-
tocols, it would have been difficult to defend our
claims–especially those involving sensitive metrics
like robustness and the study of rare LM errors–if
our results could be attributed to limitations of the
evaluation method itself.

6 Conclusion

This study examined the robustness of LMs to sim-
ple temporal variations in factual knowledge. It
assessed their ability to distinguish correct from
incorrect temporal contexts based on two factors:
the distance of contexts from the validity period
of facts and their granularity. To facilitate this,
the TimeStress dataset was introduced, featuring
high-quality statements on popular temporal facts
from Wikidata (according to a popularity index)
and enabling the evaluation of 18 LMs of varying
sizes and families. The results revealed that the
best-performing LM was robust for only 11% of
the studied facts, exhibiting errors, certainly rare,
but critical that are uncommon to humans, which
we frame as anomalies. These errors consist of
a susceptibility to easy incorrect contexts and im-
perfect knowledge generalization across granular-
ities. Notably, these findings held true regardless
of whether the LM was pretrained or instruction-
tuned, and whether the statements were presented
in an instruction or raw format. This highlights the
limits of current LMs in temporal representation.
It is worth noting that since the studied temporal
facts are relatively popular, these results likely rep-
resent an upper bound of LMs’ performance on the
general population of facts, given the strong link
between knowledge popularity and its likelihood of

being learned by LMs (Kandpal et al., 2023; Kang
and Choi, 2023).

Limitations

The study evaluates LMs using a probability-based
approach to assess their understanding of tempo-
ral facts. While this method does not fully cap-
ture model performance in text generation scenar-
ios, it is strongly related, as generated text is sam-
pled from the LM’s probability distribution. Addi-
tionally, prior research has shown that probability-
based metrics correlate reasonably well with the
generative performance of models in factual knowl-
edge evaluation contexts, where the model is ex-
pected to generate specific entities (Dong et al.,
2023; Lyu et al., 2024) as an answer, which is
closely aligned with our experimental protocol.
The advantage of our approach compared to genera-
tion metrics is that it allows for precise exploration
of specific non-functional relations where multiple
correct answers exist. This is more challenging
with generation-based metrics, as LMs may pro-
duce another correct answer, unexpected responses,
or off-topic outputs.

Second, the results of our study are limited to the
format of the statements we chose, i.e., a temporal
context followed by a question and an answer. It
is possible that LMs would perform better in a
different format. However, their current limitations
on our data are already problematic.

Finally, the TimeStress dataset consists of state-
ments in English, which may limit the applicability
of our results to other languages due to potential
linguistic differences that could affect temporal un-
derstanding. However, future research can easily
expand the scope by adapting the GPT-4o prompt
used to generate statements to target additional lan-
guages. As for entity labels, they are available in
other languages in Wikidata.
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A TimeStress: Details of the Construction
Process

This section provides a detailed description of the
construction process for the TimeStress dataset. Be-
fore discussing the collection process, we describe
the main characteristics of TimeStress.

First, the dataset focuses on past facts valid
strictly before 2021, ensuring that they are histor-
ical (not valid at the present) events for all recent
LMs. TimeStress includes high-quality statements
that are consistent with the facts and exhibit lin-
guistic diversity to avoid biases stemming from a
limited variety of questions. The statements are
carefully selected to minimize typographical er-
rors, verbs are systematically conjugated in the past
tense, and future dates beyond 2020 are excluded
to avoid absurd questions such as "In 2052, who
was the president of the USA?". The dataset covers
a diverse set of 86 relations to reduce biases associ-
ated with a restricted range. The targeted facts are
popular, essential for evaluating the generalization
of knowledge across different granularities—a task
that becomes challenging if the LMs are unfamil-
iar with the facts. All facts are valid over a single
validity period, ensuring that all contexts outside
the validity period can be considered incorrect. Ad-
ditionally, to ensure fairness, each granularity (Y,
YM, YMD) has an equal number of correct and
incorrect temporal contexts for all facts. Finally,
the number of correct and incorrect contexts is suf-
ficiently large to make it nearly impossible for a
random model to be robust on any fact by chance.

The creation process for the TimeStress dataset
was carefully designed to meet the properties de-
scribed above, thereby effectively supporting the
claims of this paper. This process consists of three
main steps. First, an initial collection of 2,098
temporal facts is performed from Wikidata for in-
clusion in TimeStress. Second, questions are gen-
erated from these quintuplets using GPT-4o, ac-
companied by a quality evaluation to ensure high-
quality questions. Finally, for each fact, correct
and incorrect temporal contexts are identified and
integrated into the questions to produce statements.

A.1 Quintuplet Collection Process

The process of collecting quintuplets begins with
the post-processed version of Wikidata provided
by (Ammar Khodja et al., 2025).

This source also provides a measure of an en-
tity’s popularity, defined as the median number of

human visits to the Wikipedia article associated
with that entity during the year 2020. This measure
is used to define the popularity of a quintuplet, cal-
culated as the geometric mean of the popularity of
its object and subject. Figure 13 demonstrates the
effectiveness of this popularity measure in identify-
ing facts on which LMs are robust, illustrating that
the likelihood of the robustness of LMs on a fact
increases with its popularity.

Initially, all quintuplets with at least a start or
end date and whose objects are not literals, such
as quantities and dates, are collected, totaling over
2.1 million quintuplets. The quintuplets are then
filtered to remove any (s, r, o, a, b) where another
quintuplet (s, r, o, a′, b′) exists with a different va-
lidity period [a′, b′], allowing us to assume that all
dates outside [a′, b′] are incorrect, which simplifies
result analysis. This step eliminates a negligible
amount of quintuplets (6.23%). Additionally, quin-
tuplets without a start or end date are removed as
their validity period is unbounded.

Only quintuplets with a popularity measure of at
least 90,0008 and a validity period strictly longer
than three years are retained.

The final result is a dataset comprising the 2,098
most popular facts from Wikidata (according to
the popularity index), with 1,910 unique entities,
1,435 unique subjects, 1,151 unique objects, and 86
relations, forming a well-diversified set of temporal
facts.

A.2 Quintuplet Verbalization

The process of verbalizing quintuplets into natural
language questions is carried out using GPT-4o.
The prompt, adapted from Ammar Khodja et al.
(2024) (Appendix B), was modified to generate
questions instead of declarative sentences. The
adapted system prompt instructs GPT-4o to take a
tuple (subject, relation, object, timestamp) and gen-
erate four linguistically diverse questions. For ex-
ample, for the input (British India, capital,
Kolkata, 1929), a possible question could be:
"In 1929, what was the capital of British India?
Kolkata". The questions must adhere to specific
guidelines: they must be in the past tense, begin
with the year followed by a comma, and end with
the answer. The questions should focus on the ob-
ject, be simple and concise, and avoid any detail
that could simplify the answer.

8This threshold was determined by gradually lowering the
threshold from 150,000 in steps of 10,000 until the number of
retrieved facts exceeded 2,000.
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Here is the system prompt used:

You are an advanced knowledge verbalization system.
You take as input a knowledge quadruple (subject,
relation, object, time) and generate a list of 4
linguistically diverse questions on the quadruple.
For example, the input could be : (British India,
capital, Kolkata, 1929) and one of your questions may
be : "In 1929, what was the capital of British India?
Kolkata.".

All the questions you generate must be in past tense
because the facts are not valid anymore.
The questions must always start with the year, then a
comma, then the question itself, and then finally the
answer.
The questions must always be asked on the object.
The questions must be straightforward and concise.
The questions must not contain details that could make
them easier to answer.

Examples of questions:
- (Jimmy Butler, member of sports team, Chicago Bulls,
2014) –> "In 2014, which team did Jimmy Butler play
for? Chicago Bulls."
- (Philippines, head of state, Emilio Aguinaldo, 1900)
–> "In 1900, who was the head of state of Philippines?
Emilio Aguinaldo."
- (Coretta Scott King, spouse, Martin Luther King Jr.,
1960) –> "In 1960, who was Coretta Scott King married
to? Martin Luther King Jr."
- (European Union, currency, pound sterling, 2002)
–> "In 2002, what was one of the currencies of the
European Union? Pound sterling."

And here is the main prompt:

Here is the knowledge quadruple to verbalize:
([SUBJECT], [RELATION], [OBJECT], [YEAR]).

Due to the ambiguity that could arise from the provided
labels, here is their meaning:
- (subject) "[SUBJECT]" : "[SUBJECT_DESC]"
- (relation) "[RELATION]" : "[RELATION_DESC]"
- (object) "[OBJECT]" : "[OBJECT_DESC]"

Finally, here is an example where the relation
"[RELATION]" is employed : ([EXAMPLE_SUBJECT],
[RELATION], [EXAMPLE_OBJECT]).

To use this main prompt, placehold-
ers [SUBJECT], [RELATION], [OBJECT],
[SUBJECT_DESC], [RELATION_DESC], and
[OBJECT_DESC] are filled with the corresponding
labels and descriptions from Wikidata. An example
of the relation is also retrieved from Wikidata
using the property Wikidata property example
(P1855). If no example is available, the last line of
the main prompt is omitted. The year [YEAR] is
selected as the midpoint of the quintuplet’s validity
period. GPT-4o then generates four questions and
answers for each quintuplet. Next, the temporal
context is removed from the question, and it is
verified that the answer matches the object.

A.3 Quality of Generated Questions

The quality of the generated questions was ana-
lyzed to identify and eliminate incorrect entries.
Initially, out of the 2,098 facts intended for ver-

balization, 53 failed, and 64 questions mistakenly
used the subject as the answer instead of the ob-
ject. These erroneous cases were removed from
the dataset, resulting in a total of 2,003 facts and
2003× 4 = 8012 questions.

A random sample of 50 questions was manu-
ally evaluated to ensure the overall quality of the
generated questions. The evaluation revealed that
only 1 out of 50 questions was incorrect, while
the remaining questions were perfectly constructed
(Wilson confidence interval at 95% = [0.85, 0.99])9.
These results demonstrate the high quality of the
questions in our dataset.

Finally, each fact is randomly assigned one of its
four associated questions.

A.4 Test Generation

Arithmetic operations between temporal contexts
are involved in this section. It is important to note
that all operations between contexts are performed
on the midpoint of the context (as the contexts
studied are intervals). For example, when a+ b is
calculated, the result is the midpoint of a added to
the midpoint of b. The finest granularity a midpoint
can have is the YMD granularity (i.e., Year-Month-
Day). This approach bypasses the interval nature
of dates.

For each quintuplet, the range of tested contexts
is defined as m±5d, where m is the midpoint of the
validity period (a+ b)/2, and d is the duration of
the validity period b− a. To determine the dates of
granularity Y (i.e., Year) to include in TimeStress,
we perform an analysis starting from the midpoint
and extending to the boundaries with a step size
of 0.05 × d. This step size is chosen to limit the
maximum number of correct and incorrect contexts
to reasonable values of 21 and 180, respectively.

For each context of granularity Y, a context of
granularity YM is chosen by randomly selecting a
month within the year. Similarly, for each context
of granularity YM, a context of granularity YMD
is chosen by randomly selecting a day within the
previously selected YM context10. This creates
a hierarchical relationship between the different
granularities (e.g., 2020, 2020-03, 2020-03-24),
enabling reasonable comparisons in terms of win
rates and robustness, as they share the same year
and/or month. All contexts are now classified as

9This confidence interval was calculated with a finite pop-
ulation correction.

10This sampling does not produce erroneous dates such as
February 29 for non-leap years, or April 31.
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correct, incorrect, or transitional (cf. Section 3.1).
Despite this setup, a fact may have a variable

number of correct and incorrect contexts per gran-
ularity due to transitional contexts, which may be
absent in finer granularities if the 0.05 × d step
skips over them. This difference could bias per-
formance, particularly favoring granularity Y in
the robustness metric, which is calculated on fewer
tests. To address this issue, YM-granularity and
YMD-granularity contexts associated with transi-
tional Y-granularity contexts are removed from the
correct and incorrect sets and assigned to a special
class called Discarded.

Finally, the contexts are converted into text and
prefixed to the questions to create statements for
each context at each granularity for each fact.

The resulting dataset, named TimeStress, in-
cludes 521,000 statements generated from 2,003
temporal facts. On average, it contains 11 cor-
rect dates and 74 incorrect dates, encompassing
1,883 unique entities, 1,385 unique subjects, 1,113
unique objects, and 86 relations. A random sample
of TimeStress is presented in Table 2.

B Vulnerability to Easy Incorrect
Contexts: Analysis of Results at
Different Win Rate Thresholds

In Section 4.2, we demonstrated that LMs, even
when they are almost robust on a fact (i.e., a high
win rate but inferior to 100%), often fail to achieve
robustness due to their vulnerability to easy con-
texts that are far outside the validity period (Table
4). In this section, we extend this analysis by ex-
perimenting with different win rate thresholds to
observe how the distribution of incorrect contexts
favored over correct contexts evolves as the thresh-
old approaches 100%.

The results in Figure 7 indicate that even as the
threshold approaches 1, LMs remain vulnerable to
easy incorrect contexts that are significantly distant
from the validity period. We would expect LMs
to definitively exclude highly distant contexts once
they have acquired sufficient information about the
validity period. However, this is not the case here,
as even when the win rate is very close to 1, LMs
continue to fail on these contexts. These results
suggest that language models may never achieve
true robustness, as the proportion of incorrect con-
texts converges toward zero but never fully reaches
it. This implies that there will always be a possibil-
ity for an LM to fail on a distant incorrect context.

This last point suggests that the already low per-
centage of robust facts could be even lower if we
increased the number of incorrect and correct con-
texts used to calculate robustness.

C Generalization of Knowledge Across
Granularities

This section provides additional details and results
regarding the generalization of knowledge across
granularities.

C.1 Consistency Across Granularities Based
on Relative Distance

In this section, we examine the consistency of LM
predictions across different granularities (Y, YM,
YMD) as the distance between the tested context
and the validity period increases.

To evaluate this, and solely for this section, we
introduce a metric called local robustness. Local
robustness for a fact, a LM, and a given incorrect
context is equal to 1 if all correct contexts are pre-
ferred over this incorrect context, and 0 otherwise.

We group all statements in TimeStress accord-
ing to the relative distance α from their temporal
context, and restricting ourselves to the 5 most ro-
bust MLs and to the "known" facts11 at least on
one granularity by these LMs. These statements
are categorized according to the interval of which
their relative distance α is part. The chosen inter-
vals are ]s, s + 1

2 ], where s can take values from
{−5,−4.5, . . . , 4.5}. For each interval, the con-
texts are aligned by fact and by granularity hi-
erarchically (e.g., 2020, 2020-04, 2020-04-23),
which is guaranteed to be possible due to the prop-
erties of TimeStress (cf. Section 3.2). Local robust-
ness is then calculated for each incorrect context,
and the accuracy12 between these measures is com-
puted for all granularity pairs (i.e., Y-YM, Y-YMD,
and YM-YMD). These coefficients are averaged
across all granularity pairs, all facts, and the 5 most
robust LMs, with the results presented in Figure 8.

The results indicate that the inconsistency be-
tween granularities is mainly caused by incorrect
contexts located at the boundaries of the validity

11We recall that "known" in the context of this article means
that the ML in question has a robustness equal to 1 on the fact
in question, i.e., all correct contexts are preferred to incorrect
contexts by the ML.

12Accuracy measures the proportion of identical elements
between two vectors, that is, the number of positions where
the values are equal, divided by the total number of elements
compared.
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(b) Instruction Format

Figure 7: Proportion of incorrect contexts favored over correct contexts that are beyond a relative distance α from
the validity period, when the win rate exceeds the threshold, for the 5 most robust LMs. Experiments were conducted
with granularity Y. 95% confidence intervals were calculated using bootstrapping.

period. As the context moves away from the va-
lidity period, the consistency approaches a perfect
score of 1 but never reaches it regardless of the ML,
the statement type and the α interval used.

C.2 Generalization Matrices for Each LM

In Section 4.2, we explored the ability of language
models to generalize their temporal knowledge
from one granularity to another. We provided two
matrices (one for instruction-based questions and
one for raw text questions) containing the general-
ization rate between each granularity pair averaged
over the 5 most robust LMs. Complementing these
average performances, the generalization rate ma-
trices for individual models are presented in Figure
9.

C.3 Explanatory Prompts

In section 4.2, we investigated whether including
explanations of temporal concepts in the prompt
could help LMs better generalize their knowledge
across granularities. Two prompts prefixed to each
instruction in TimeStress were used:

Prompt 1 : Hierarchical natures of dates

A date is a specific point in time,
expressed through a year, a month, and a
day. A year is divided into months, and
a month is divided into days. Answer the
following question.

Prompt 2 : Knowledge transfer between granu-
larities

A date is a specific point in time. If a
fact is valid for a specific year, it holds
true for all dates within that year. If
a fact is valid for a specific month of a
specific year, it holds true for all dates
within that month. Answer the following
question.

The first explains the hierarchical nature of dates,
while the second is more straightforward and ex-
plains how knowledge of a temporal fact can be
generalized across granularities.

In addition to the average performance in the 4.2
section, figure 10 shows the average generalization
matrices across the same 5 models as in figure 6,
using raw text and an instruction format.

D Conditional Probability Calculations in
LMs

Since our experiments rely entirely on the calcu-
lation (by the LM) of the conditional probability
of one text given another, it is crucial that these
calculations are rigorously implemented.

Given that different tokenizers split a text dif-
ferently, we require a universal algorithm to best
calculate the probability of generating a text given
a prompt, even when the end of the prompt might
be in the middle of a token.
Below are the general steps we used to compute
P (A | B) where A and B are strings:

1. Tokenize A + B into a sequence of tokens
s = (t1, t2, . . . , tn)

13.

2. Find the smallest token sequence (tk, . . . , tn)
in s that contains B, starting from the end.

13+ represents the string concatenation operation.
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Figure 9: Generalization matrics between pairs of granularities on the 5 most robust LMs. In the first row, the
statements are presented in a raw format, and in the second row, they are presented in a instruction format.

3. Compute P (tk, . . . , tn | t1, . . . , tk−1), which
can be done using the logits produced by the
LM.

Other considerations, such as the automatic
addition of special tokens by the tokenizer,
must also be accounted for. A detailed
implementation of this method (the function
LanguageModel.credibility_text) that han-
dles these details is available in the source code.

E Supplementary Results

• The average robustness score and win rate
across the 18 studied LMs are presented in
Figure 12.

• The relationship between the number of pa-
rameters in LMs and their performance is

shown in Figure 11.

• Figure 15 illustrates the evolution of logP (o |
f, τ) with respect to the relative distance of
the date from the validity period α, which is
equivalent to Figure 3 but with more details.

• Figure 16 displays the relations that were most
robustly known on average by the studied
LMs ("raw text" format statements).

• Figure 17 shows examples where LMs were
vulnerable to easy incorrect contexts.

• Figure 14 shows the year distribution of tem-
poral contexts across the entire TimeStress
dataset.

• Figure 18 shows the influence of fact distance
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(f) No explanatory prompt, in-
struction format

Figure 10: Effect of adding explanations on temporal concepts through an explanatory prompt

from the present (here, the year 2021), as well
as their durations, on the robustness and win
rate of the 5 most robust MLs. The time unit
used for both metrics is the year.
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Figure 11: Relationship between the number of parameters in an LM and the metric used (across all granularities Y,
YM and YMD). Pretrained models are represented by straight lines, while models finetuned on instructions are
represented by dotted lines.
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Figure 12: Average metrics across all facts in TimeStress for the 18 studied LMs with 95% confidence intervals
(determined using bootstrapping).
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Figure 13: Relationship between fact popularity and
robustness metric calculated across granularities Y,
YM, YMD. The Pearson coefficient is equal +0.065
(p-value < 10−51).
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Figure 14: Distribution of the the years of all the tem-
poral contexts in TimeStress.
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Figure 15: The evolution of logP (o|f, τ) with respect to the
relative distance of the context from the validity period α. Each
point is an average over many data points.
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Figure 16: The 10 most known relationships
(across all granularities) in TimeStress on av-
erage by the studied LMs.
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Question : In [YEAR], who led the 
government of Texas? Rick Perry

Type : Instruction
Model : Mistral-Nemo-Instruct-2407

Question : In [YEAR], of which band was
Paul McCartney a member? The Beatles

Type : Instruction
Model : Llama-3.1-8B-Instruct

Question : In [YEAR], who was the
owner of Pixar? Steve Jobs

Type : Raw
Model : gemma-2-9b-it

Question : In [YEAR], which football
club was Wayne Rooney associated 
with? Manchester United F.C.

Type : Instruction
Model : gemma-2-27b-it

1937 1958 1979 2000 2021
Year

1910 1937 1965 1993 2021
Year

1891 1923 1956 1988 2021
Year

1942 1961 1981 2001 2021
Year

Figure 17: Examples of vulnerability to easy incorrect contexts for different LMs. The color blue represents the
boundaries of the validity period, the color green represents incorrect contexts that are never preferred to correct
contexts, and the color red, on the contrary, represents incorrect contexts that were preferred to one or more correct
contexts.
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(a) Logarithm of the distance of the fact with respect to
the present.

2 4 6
Log(Duration of a fact)

0.0

0.2

0.4

0.6

0.8

M
et

ric Type

(b) Logarithm of the duration of the fact.

Figure 18: The influence of two factors on the robustness and win rate of the 5 most robust LMs. All correlations
are statistically significant where the null hypothesis is the absence of linear correlation. Robustness is missing
from Figure b because its analysis is not relevant as the duration of a fact is confounded with another variable: the
number of matches of a fact. Indeed, the longer a fact is, the more matches it has, and the lower is the robustness.
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Temporal Fact Statement Status

(Alexander Graham Bell, country of citizenship, United States of
America, 1882, 1922)

In July 1734, what was Alexander Graham Bell’s
country of citizenship? United States of America

Incorrect

(Lauren Bacall, spouse, Jason Robards, 1961-07-04, 1969-09-10) In July 1984, who was the spouse of Lauren Bacall?
Jason Robards

Incorrect

(Vatican City, head of state, John Paul II, 1978-10-16, 2005-04-02) In July 2006, who held the highest authority in Vati-
can City? John Paul II

Incorrect

(Gareth Barry, member of sports team, Manchester City F.C., 2009,
2014)

In July 2020, which football team included Gareth
Barry as a player? Manchester City F.C.

Incorrect

(Pierce Brosnan, spouse, Cassandra Harris, 1980, 1991) In 1954, who did Pierce Brosnan have as his wife?
Cassandra Harris

Incorrect

(Metallica, has part, Jason Newsted, 1987, 2001-01-17) In 1971, who was included in Metallica’s lineup?
Jason Newsted

Incorrect

(Eliza Dushku, unmarried partner, Rick Fox, 2009, 2014) In 2003, who was Eliza Dushku in a relationship
with? Rick Fox

Incorrect

(United Kingdom, head of state, George VI, 1936-12-11, 1952-02-
06)

On July 1, 1892, who served as the king of the United
Kingdom? George VI

Incorrect

(Linda Lee Cadwell, spouse, Bruce Lee, 1964, 1973-07-20) In 1929, who was the spouse of Linda Lee Cadwell?
Bruce Lee

Incorrect

(George Harrison, part of, The Beatles, 1960, 1970) On July 2, 1971, what was the name of the band that
George Harrison was associated with? The Beatles

Incorrect

(Philippines, head of state, Corazon Aquino, 1986-02-25, 1992-
06-30)

On July 2, 1969, who served as the leader of the
Philippines? Corazon Aquino

Incorrect

(Jawaharlal Nehru, position held, Prime minister of India, 1947-
08-15, 1964-05-27)

In 1985, what position did Jawaharlal Nehru hold?
Prime Minister of India

Incorrect

(Vienna, country, Austria-Hungary, 1867-03-30, 1918-11-11) In July 1769, which country did Vienna belong to?
Austria-Hungary

Incorrect

(Mileva Marić, spouse, Albert Einstein, 1903, 1919) In July 1907, who was Mileva Marić married to?
Albert Einstein

Correct

(Mayte Garcia, spouse, Prince, 1996, 2000) In July 1979, who was the spouse of Mayte Garcia?
Prince

Incorrect

(Abkhazia, country, Soviet Union, 1921, 1991) In July 1956, which country did Abkhazia belong to?
Soviet Union

Correct

(Georgia, member of, Commonwealth of Independent States, 1993-
12-03, 2009-08-18)

In 1930, what group included Georgia as a member?
Commonwealth of Independent States

Incorrect

(Abraham Lincoln, member of political party, Whig Party, 1834,
1854)

In 1808, which political party was Abraham Lincoln
a member of? Whig Party

Incorrect

(Wales, located in the administrative territorial entity, Kingdom of
England, 1284, 1707-04-30)

On July 1, 1072, which territorial entity included
Wales? Kingdom of England

Incorrect

(Frédéric Chopin, residence, Paris, 1831, 1849) On July 2, 1847, which city was home to Frédéric
Chopin? Paris

Correct

Table 2: Random sample from TimeStress.
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