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Abstract

Training large-scale models presents chal-
lenges not only in terms of resource require-
ments but also in terms of their convergence.
For this reason, the learning rate (LR) is of-
ten decreased when the size of a model is in-
creased. Such a simple solution is not enough
in the case of speech-to-text (S2T) trainings,
where evolved and more complex variants of
the Transformer architecture — e.g., Conformer
or Branchformer — are used in light of their
better performance. As a workaround, OWSM
designed a double linear warmup of the LR,
increasing it to a very small value in the first
phase before updating it to a higher value in the
second phase. While this solution worked well
in practice, it was not compared with alterna-
tive solutions, nor was the impact on the final
performance of different LR warmup sched-
ules studied. This paper fills this gap, revealing
that i) large-scale S2T trainings demand a sub-
exponential LR warmup, and ii) a higher LR
in the warmup phase accelerates initial conver-
gence, but it does not boost final performance.

1 Introduction

Following the success of Large Language Models
(LLM) (Radford et al., 2019), large-scale speech-to-
text (S2T) trainings have gained increased interest
with the goal of building Large Speech Models
(LSM) or Speech Foundation Models (SFM) with
similar abilities for the speech modality (Commu-
nication et al., 2023; Peng et al., 2023; Radford
et al., 2023; Zhang et al., 2023).

Scaling the size of the training data and trained
models with respect to traditional small-scale
speech trainings has posed many challenges be-
yond engineering efforts and demanding hardware
requirements. Among them, a significant challenge
was ensuring the convergence of large models,
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which required adaptations to the learning rate (LR)
(Radford et al., 2023; Peng et al., 2024). In partic-
ular, Whisper (Radford et al., 2023) lowered the
peak LR with the increase of the model size. Differ-
ently, OWSM 3.1 (Peng et al., 2024) introduced a
new LR scheduler, driven by the insight that reduc-
ing the peak LR would compromise the quality of
the trained model (Kalra and Barkeshli, 2024). The
new LR scheduler — named piecewise LR scheduler
— modifies the warmup phase from a simple linear
increase to a two-phase linear warmup while keep-
ing unaltered the decay phase after the LR peak.
However, this design choice was not motivated,
nor was it investigated whether alternative warmup
policies could be more effective or how they might
impact the final model quality.

In this paper, we fill these gaps by studying
which factors lead to a more difficult convergence
of large-scale models and what is the impact of
different LR warmup policies on the final perfor-
mance. To this aim, we train large-scale S2T Con-
former (Gulati et al., 2020) models on more than
150K hours of speech data, exploring alternative
warmup methods — specifically an exponential and
a polynomial policy — operating between the dou-
ble linear warmup by OWSM and the traditional
linear warmup phase of the inverse square root LR
scheduler. Our experiments demonstrate that:

* Advanced and more complex variants of the
Transformer architecture, such as Conformer
and Branchformer (Peng et al., 2022), widely
used in speech processing for their superior
performance, are more difficult to train due to
their deeper layers involving additional com-
ponents (e.g., extra convolutional or linear lay-
ers), making them more prone to “exploding
gradient” (Bengio et al., 1994) issues;

The LR warmup should follow an exponen-
tial or sub-exponential function and, while it
plays a crucial role in the convergence of the
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Figure 1: LR schedulers with inverse square root, piecewise-linear, polynomial, and exponential warmup policies.

model by ensuring a smooth transition to a
good model initialization, it does not signifi-
cantly affect the final result as long as conver-
gence of the model is achieved.

To ease future research on the topic, foster re-
producibility of our work, and in accordance with
the Open Science principles (White et al., 2024),
we release the code, logs, and intermediate check-
points under the open-source Apache 2.0 license at
https://github.com/hlt-mt/FBK-fairseq.

2 Learning Rate Schedulers

This section describes the LR schedulers analyzed
in this work, starting from the widely adopted in-
verse square root with linear warmup (§2.1) and
piecewise-linear warmup (§2.2), to the alternative
sub-linear warmup policies, namely polynomial
(§2.3) and exponential (§2.4), designed to be as
close as possible to the traditional inverse square
root LR. All LR schedulers are shown in Figure 1.

2.1 Inverse Square Root Policy

Since the introduction of the Transformer archi-
tecture, the LR scheduler has followed an inverse
square root policy (Vaswani et al., 2017). This
scheduler has therefore been widely adopted in
S2T training settings (Inaguma et al., 2020; Wang
et al., 2020) and entails two phases. Firstly, the LR
linearly increases for a predefined number of steps
w from O to the peak LR 7, where w and 7 are two
hyper-parameters whose tuning is critical for the
success of the training and the quality of the result-
ing model (Popel and Bojar, 2018). In this phase,
the LR 7); at the i-th step is n; = 1 - i/w. Secondly,
after reaching 7, the LR decreases proportionally
to the inverse square root of the number of steps,

i.e. n; = 1 - v/w/\/i. Overall, the LR 7 at the i-th

step is:
N = 1 - 1IN (w’ﬂ)

where w is set to 50k and 7 to 2e % in this work.

2.2 Piecewise-linear Warmup

Peng et al. (2024) found that the linear warmup of
the standard inverse square root LR scheduler was
not suitable for training their large-scale 1B Branch-
former model and introduced the piecewise-linear
warmup policy. This policy splits the warmup step
into two linear phases, introducing an intermediate
LR 7/ with a corresponding number of intermediate
warmup steps w’ as additional hyperparameters. In
the first w’ steps, the LR linearly increases from
0 to 7/, which is typically set to a much smaller
value than 7, and then in the steps between w’ and
w it increases from 7’ to 7. As such, in the warmup
phase, i.e. at the step 7 < w, the LR ; is:

1 —n) (i —uw

77i<w:max<77/',777/+(77 ) (, ))
w w—w

In this work, we follow Peng et al. (2024) and

set the number of intermediate warmup steps w’ to

w/2 i.e., 25k, and the intermediate LR w’ to 1/10.

2.3 Polynomial Warmup

As a first alternative to the piecewise-linear pol-
icy, we propose to increase the LR with a polyno-
mial function with respect to the number of steps.
The slope of the increase is controlled by a hyper-
parameter «, according to the formula:
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We set « to 1.5, and the polynomial warmup
function is visualized in Figure 1 (green curve).

2.4 Exponential Warmup

As a second alternative, we introduce an expo-
nential policy that, compared to the polynomial
one, has a steeper LR increase in the first part of
the warmup and a lower LR in the second. Also
in this case, the hyper-parameter « controls the
smoothness of the function, and the higher the «
the smaller the LR in the warmup phase. Specifi-
cally, this policy follows the formula:

e — 1
e —1
Similarly to the polynomial warmup (Section
2.3), we set a: to 1.5, and the exponential warmup
function is visualized in Figure 1 (purple curve).

Ni<w =1

3 Experimental Settings

To ensure that divergence issues are not due to a par-
ticularly challenging setting, we avoided multi-task
trainings, resorting to training S2T models on the
automatic speech recognition (ASR) task for two
languages (English and Italian). As training data,
we use ~ 150k hours of publicly available speech
datasets, which are described in Appendix A. For
validation, we use the English (en) and Italian (it)
dev sets of CommonVoice (Ardila et al., 2020).

Our encoder-decoder models have a Transformer
decoder and a Conformer encoder preceded by two
1D convolutional layers that downsample the se-
quence length by a factor of 4. For the Conformer
encoder, we use the implementation by Papi et al.
(2024) that fixes issues in padding handling. Given
the results of preliminary experiments (§4.1), we
set 24 encoder layers and 12 decoder layers for the
experiments in §4.2. The embeddings have 1024
features, with an FFN hidden dimension of 4096
and 16 attention heads. In total, our models have
878M parameters. Further details are provided in
Appendix A.

4 Results

4.1 Preliminary Experiments

In preliminary experiments, we varied the number
of encoder and decoder layers to understand when
the depth of the network becomes critical —i.e., the
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model starts diverging — with the standard inverse
square root LR scheduler. In this scenario, we ob-
served that the number of encoder layers was the
driver of the issue while adding more decoder lay-
ers was not. Specifically, models with more than 18
encoder layers were not converging. For instance,
models with 18 encoder layers and 6 decoder lay-
ers diverge, while models with 12 encoder and 12
decoder layers converge without issues. This obser-
vation, together with the fact that Whisper (which
features a Transformer encoder) was trained with-
out the need for adapting the learning rate sched-
uler, suggests that complex layers featuring many
subcomponents, such as Conformer and Branch-
former layers, pose convergence issues with deep
models. In our Conformer implementation, each
subcomponent is wrapped in a residual connection
(He et al., 2016), which may indicate a need for ad-
ditional normalization layers within each encoder
block to mitigate potential scaling effects. How-
ever, we leave this investigation for future work.

4.2 LR Warmup Analysis

Moving to the comparison of the warmup policies,
Figure 2 shows the resulting learning curves on the
validation sets for the two languages, which dis-
play the same behaviors, with the only difference
that the Italian curves have a higher perplexity at
the beginning and decline later than English ones.
Similar trends can be observed in the training set,
which we report in Appendix B.
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Figure 2: Perplexity on the English and Italian valida-
tion sets for the polynomial, piecewise-linear, and expo-
nential policies for the first 50k steps (warmup phase).

Model Convergence First, we notice that the
model convergence is obtained only with the expo-
nential and piecewise-linear policies. The polyno-
mial policy, instead, displays the same pattern as



CvV

MLS

VP

LR . - - AVG
en it en it en it

PL | 184 137 |74 174 |83 178 | 13.8

Exp | 19.1 143 | 75 179 | 86 183 | 14.3

Table 1: WER ({), computed using jiwer and the Whis-
per text normalizer, on the Common Voice (CV), Vox-
Populi (VP), and MLS test sets of the 170k-steps check-
points obtained with the LR scheduler with piecewise-
linear (PL) and exponential (Exp) warm up.

the standard inverse square root policy (which we
do not report here) leading the model to a high per-
plexity that minimally degrades with the progres-
sion of the training. This convergence issue can
be attributed to an exploding gradient: as we show
in Appendix C, in the polynomial training there
are huge spikes in the gradient norm in the range
25k-30k steps and later, where the other policies
feature a steep decrease that the polynomial fails to
achieve. The exponential policy, despite a higher
LR during the first ~15k steps, has a slightly lower
LR in the 15k-50k range than the polynomial pol-
icy. This minimal difference is sufficient to enable
model convergence. Therefore, we can conclude
that the exponential policy closely approaches the
highest feasible LR during the warmup phase with-
out compromising model convergence.

Convergence Speed Figure 2 also shows that,
as expected, higher LRs result in lower perplex-
ity during the initial steps. In both the English
and Italian validation sets, the exponential policy
— which features the highest LR in the first ~15k
steps — always displays the lowest perplexity. The
polynomial one starts with the highest perplexity
due to its lower LR in the initial steps. However,
it later surpasses the piecewise-linear policy and
closes the gap with the exponential one, thanks to
its higher LR in the later stages, until it ultimately
fails to converge. Interestingly, the learning curves
of the two converging policies show a step-like
decrease, which is anticipated for the exponential
policy (~20k vs ~23k steps for English and ~22k
vs ~26k for Italian) as per its faster convergence.

Effect on the Resulting Model Lastly, we ex-
plore whether the faster initial convergence of the
exponential policy results in a better model at the
end of the training compared to that obtained with
the piecewise-linear policy. Figure 3 shows the
learning curve after the first S0k steps, up to the end
of the whole pass over the training set (i.e., the first
training epoch at step 170k). The learning curves
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Figure 3: Perplexity on the English and Italian valida-
tion sets for the piecewise-linear and exponential poli-
cies for the steps after the warmup phase (50k-170k).

of the piecewise-linear scheduler not only reach the
perplexity of those of the exponential policy but the
English one also becomes slightly better. The same
trend is observed in the training data (see Figure 5
in Appendix B), in which the English data is more
than 80%. The WER on test sets for the checkpoint
at the 170k step also testifies to a slight superiority
of the model obtained using the piecewise-linear
policy on both languages, as shown in Table 1. We
can conclude that a faster convergence in the early
stages of the training does not imply a better result-
ing model and that the warmup policy of the LR
scheduler is critical to ensure the convergence of
the model, but, once that is achieved, its role in the
model quality is limited.

5 Conclusions

In this study, we analyzed one of the key chal-
lenges — beyond engineering, data curation, and
hardware efforts — associated with training large-
scale S2T models i.e., the role of the LR sched-
uler and, in particular, of its warmup strategy in
model convergence and final performance. To this
aim, we compared the standard linear warmup and
the piecewise-linear warmup strategies with two
policies — polynomial and exponential — aimed at
finding the highest possible LR in the warmup
phase that does not lead to convergence issues.
Through experiments on large-scale ASR train-
ings of a ~900M parameters Conformer model,
we demonstrated that while the LR warmup phase
is crucial for stabilizing convergence, it has a mini-
mal impact on final model performance and that the
LR warmup phase should follow an exponential or



sub-exponential rise to ensure model convergence.
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Limitations

Effect of Multilingualism and Multi-task In
this work, we decided to experiment with a single
task and two languages in the training, even though
the amount of training data we used was compara-
ble to that used in other works to train S2T models
on multiple tasks and more than 100 languages
(e.g., OWSM uses 180k hours of data against our
150k hours). Although there is no reason to posit
that a different setting may lead to different conclu-
sions since the behaviors we observed were similar
to those of OWSM, future works should validate
that our findings extend to these scenarios.

Multiple Runs While performing multiple runs
for each setting would provide stronger insights
into the possible statistical significance of the ob-
served differences, this would require extensive
computational costs that go beyond our budget.

Tuning o Although by tuning o we could, for
instance, obtain a converging model even with the
polynomial policy, this was not the focus of our
work. In this paper, we attempted to understand
the role of different LR schedulers on the resulting
model and what could be achieved by using differ-
ent LR warmup policies. Since two extreme solu-
tions — the piecewise-linear policy with a relatively
low LR and the exponential policy with the high-
est feasible LR — do not show evident differences,
finding other values of « or other policies leading
to similar results would not have added much to
our discussion. Also, as noted above, each run is
computationally demanding, limiting our ability to
explore the space of the possible values.
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A Training Settings

We train the models on ~150k hours of speech
datasets, namely the train section of Common Voice
(Ardila et al., 2020), CoVoST2 (Wang et al., 2021b),
FLEURS (Conneau et al., 2023), LibriLight (Kahn
et al., 2020), MLS (Pratap et al., 2020), VoxPop-
uli (Wang et al., 2021a), and YouTube-Commons
(PlelAs, 2024). When the transcript was not avail-
able for a given dataset, we used the automatic
transcripts of MOSEL v1.0 (Gaido et al., 2024).
As YouTube-Commons transcripts are not avail-
able in MOSEL v1.0', we used the transcript pro-
vided for the training of FAMA (Papi et al., 2025).
Our training data is exactly the same used for
FAMA and is available at https://huggingface.
co/datasets/FBK-MT/fama-data. The textual
data is used to build the vocabulary with 16,000
SentencePiece unigrams (Kudo, 2018).

We optimize our models using the Adam op-
timizer with betas (0.9, 0.98). The training loss
is the linear combination of the label-smoothed
cross-entropy (Szegedy et al., 2016) on the decoder
output and two CTC (Graves et al., 2006) losses,
one at the 16th encoder layer and one on top of
the encoder (Bahar et al., 2019; Yan et al., 2023).
We also experimented with removing the auxiliary
CTC losses, to ensure that they were not the driver
of divergence issues and, indeed, their removal did
not change anything in terms of whether a model
converges or not. We clip the gradient norm at
10.0 and use 0.001 weight decay. We trained the
models on 16 A100 GPUs (64GB VRAM) for 1
epoch with at most 55 seconds of data in each mini-
batch and 5 gradient accumulation steps, resulting
in 176,208 batches to complete an epoch. One run
in this setting lasts 6 days.

B Perplexity on the Training Set

Figure 4 shows the perplexity (PPL) of the different
warmup policies on the training set for the first part
of the training. Compared to Figure 2 presenting
the PPL obtained on the validation set, the training
curves show similar behaviors, with the polynomial
warmup not converging, and the piecewise-linear
and exponential leading to, respectively, slower and
faster convergence.

Looking at Figure 5 that isolates the PPL behav-
ior after the first 50k steps, we notice that, again,
the piecewise-linear and exponential warmup ex-

'They have been added in v2.0.
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Figure 4: Perplexity on the training set for the polyno-
mial, piecewise-linear, and exponential warmup policies
for the first 50k steps (warmup phase).
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Figure 5: Perplexity on the training set for the piecewise-
linear and exponential warmup policies for the steps
after the warmup phase (50k-170k).

hibit similar trends to those reported for the valida-
tion set in Figure 3: the curves are very close, with
the piecewise-linear, initially above the exponen-
tial, becoming slightly below the exponential in the
long run. This reconfirms the results discussed in
Section 4, where we highlighted the convergence
issues of the polynomial function, which is actu-
ally reflected in the training set, and the slower but
slightly better convergence of the piecewise-linear
warmup against the exponential one.

C Gnorm Analysis

Figure 6 reports the gradient norm in the warmup
phase for the different policies (exponential, poly-
nomial, and piecewise-linear). Except for the initial
steps, the gradient norm for the policies leading to
convergence always remains low (<25). For the
polynomial warmup, instead, there are huge spikes
beyond 100 and even 200 after 25k steps. These
explosions of the gradient norm have also been
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observed in all the runs with the inverse square
root LR scheduler that did not converge in our pre-
liminary experiments. We can conclude that huge
spikes in the gradient norm can be used to detect
non-converging trainings.

Analyzing the gradient norm of the exponential
and piecewise-linear policies, we observe that the
gradient norm is higher at the beginning (8k-15k
steps) for the exponential policy, which displays
faster convergence in this phase. On the opposite,
the gradient norm of the piecewise-linear policy is
higher in the 15k-30k steps range, in which closes
the initial gap with the exponential policy.
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Figure 6: Gradient norm comparison across the piecewise-linear, polynomial, and exponential warmup policies.
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