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Abstract

SYSTRAN submitted systems for one lan-
guage pair in the 2025 Low-Resource Lan-
guage Track. Our main contribution lies in
the tight coupling and light fine-tuning of an
ASR encoder (Whisper) with a neural machine
translation decoder (NLLB), forming an effi-
cient speech translation pipeline. We present
the modeling strategies and optimizations im-
plemented to build a system that, unlike large-
scale end-to-end models, performs effectively
under constraints of limited training data and
computational resources. This approach en-
ables the development of high-quality speech
translation in low-resource settings, while en-
suring both efficiency and scalability. We also
conduct a comparative analysis of our proposed
system against various paradigms, including a
cascaded Whisper+NLLB setup and direct end-
to-end fine-tuning of Whisper.

1 Introduction

The goal of the IWSLT’2025 low-resource shared
task is to benchmark and promote speech transla-
tion technology for a diverse range of dialects and
low-resource languages. While significant research
progress has been demonstrated recently on popu-
lar datasets, many of the world’s dialects and low-
resource languages lack the parallel data at scale
needed for standard supervised learning. Thus, this
share task requires creative approaches in leverag-
ing disparate resources. The low-resource shared
task will involve two tracks:

» Track 1: A "traditional" speech-to-text trans-
lation track focusing on XX typologically di-
verse language-pairs.

e Track 2: A data track, inviting participants
to provide open-sourced speech translation
datasets for under-resourced languages.

SYSTRAN participates exclusively in the "tradi-
tional" Tunisian Arabic-to-English speech transla-

tion track. Our system employs a tightly coupled
architecture wherein the automatic speech recog-
nition (ASR) encoder directly interfaces with the
neural machine translation (NMT) encoder-decoder
module. This end-to-end pipeline has demonstrated
robust performance in prior evaluations under low-
resource conditions. The primary objective is to
build a high-performance speech-to-text translation
(S2TT) system optimized for constrained compu-
tational environments and limited annotated data,
while effectively leveraging the representational
power of large-scale pretrained models.

In Section 2, we describe the corpora used in this
study, as well as the pre-processing steps applied
to improve their relevance and quality for the target
tasks (see Section 3). Section 4 introduces the pro-
posed system, which combines a speech encoder
with neural machine translation components. Sec-
tion 5 presents the experimental setup and reports
the results obtained. Finally, Section 6 summarizes
the main findings and concludes the paper.

2 Dataset Description

This work is conducted as part of a shared task
aimed at advancing the state of the art in ASR and
speech S2TT for low-resource dialects, with a par-
ticular focus on Tunisian Arabic. To ensure compa-
rability and fairness, all experiments are conducted
under the constrained condition, using exclusively
the Tunisian-English resources provided by the Lin-
guistic Data Consortium (LDC) for this challenge.

2.1 Corpus Overview

The dataset comprises manually transcribed and
translated audio resources in two language vari-
eties: Tunisian Arabic (TA) and Modern Stan-
dard Arabic (MSA). Although MSA content origi-
nates from broadcast news (BN), TA is represented
through conversational telephone speech (CTS),
offering rich linguistic variability. English transla-
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tions are available for all MSA transcripts and for a
large portion of TA segments, enabling the training
of end-to-end speech translation models.

2.2 Audio Data

MSA Broadcast News (BN): This portion includes
two single-channel recordings totaling approxi-
mately 1 hour of audio. The recordings consist
of multi-speaker news broadcasts and interviews,
sampled at 16 kHz and stored as FLAC-compressed
MS-WAV files with 16-bit PCM encoding.

TA Conversational Telephone Speech (CTS):
The core of the dataset consists of 387 hours of two-
channel telephone conversations, distributed across
2,198 dialogues (4,396 single-channel files). These
were collected in Tunisia via an automated robot
operator that interfaced directly with the regional
public telephone network. Each call involves:

* Side A: A “claque” speaker, a recruited partic-
ipant tasked with initiating conversations.

» Side B: A callee, selected naturally by the
claque from their personal contacts.

Claques completed 8 to 15 distinct calls, each
lasting 8—10 minutes, and were encouraged to dom-
inate the discourse to ensure informative linguistic
content. The TA audio files are encoded in A-law
format at 8 kHz with NIST SPHERE headers.

2.3 Segmentation and Speaker Annotation

Broadcast News (BN). Manual segmentation and
speaker turn identification were performed using
the LDC-developed XTrans tool (Glenn et al.,
2009). Speakers were identified by name when
available; otherwise, anonymous labels indicat-
ing speaker and gender (e.g., speakerl/male) were
used.

Conversational Telephone Speech (CTS). Seg-
mentation followed a three-stage process: (i) auto-
matic speech activity detection (SAD) with a mini-
mum silence threshold of 0.5 seconds was applied
to each single-channel audio file; (ii) segments
longer than 15 seconds were re-segmented with
a relaxed silence threshold of 0.3 seconds; (iii) fi-
nal segment boundaries were manually verified and
corrected in XTrans by expert annotators.

2.4 Transcription Protocol

BN transcripts were generated in Arabic script us-
ing XTrans. CTS segments, alternating between

speakers A and B, were transcribed using a con-
textual navigation web interface. Transcripts were
in Buckwalter transliteration, with some segments
also featuring broad IPA transcriptions. A verifica-
tion pass ensured alignment between orthographic
and phonemic transcripts and enabled token-level
annotation for MSA, foreign language, and uncer-
tain items.

2.5 Transcription Statistics

Manual transcriptions were provided for both MSA
and TA recordings. Table 4 summarizes the number
of segments, duration of speech-only segments, and
number of files per genre.

Table 1: Transcription statistics per genre.

Type Segments Hours Files
MSA /BN 420 0.96 2
TA / CTS 398,064 323.73 4,396
Total 398,484 324.69 4,398

2.6 Translation Statistics

English translations are provided for the full set of
MSA segments and a substantial subset of TA tran-
scripts, supporting supervised ST model training.
Table 2 reports the number of translated segments,
duration of time-stamped speech, and correspond-
ing files.

Table 2: Translation statistics per genre.

Type Segments Hours Files
MSA /BN 420 0.96 2
TA /CTS 210,901 167.48 2,284
Total 211,321 168.44 2,286

In total, this release provides:

¢ 323.73 hours of Tunisian Arabic CTS audio
with manual transcriptions, suitable for ASR
development.

* 167.48 hours of translated Tunisian Arabic
audio, enabling end-to-end ST modeling.

* 1 hour of Modern Standard Arabic broadcast
news audio, fully transcribed and translated.

This resource offers a rare and valuable founda-
tion for research in dialectal ASR and ST, bridging
the gap between underrepresented spoken varieties
and high-resource translation targets.
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3 Data Cleaning and Annotation

3.1 Token-Level Annotations and Markup

Arabic transcripts include token-level annotations
to reflect linguistic variability:

¢ M/ — Modern Standard Arabic
* 0/ — Foreign word

¢ U/ — Uncertain token

UM/, U0/ — Combined uncertainty

BN transcripts use XML-style tags (<non-MSA>

. </non-MSA>) to flag non-MSA spans. These
annotations were removed in our pre-processing
pipeline to ensure clean input for downstream mod-
eling.

3.2 Translation Annotations

English translations are aligned at the segment
level. Annotation conventions include:

¢ (()): Uncertain words
e %pw: Partial word
* #: Untranslated foreign word

* +: Mispronunciation

: Typographic errors from the transcript
* uh, um, eh, ah: Filled pauses

All special symbols were removed in a pre-
processing step.

3.3 Text Pre-processing and Token Filtering

To ensure consistency and reduce noise introduced
by transcription and translation annotation artifacts,
we applied language-specific filtering rules to clean
both Arabic and English segments. These regular
expressions were crafted based on the known anno-
tation conventions of the dataset.

We defined the following regular expression
used for Arabic transcripts:

re.compile(r'[OUM] + / * \u061F|\?[\!|\.")

This expression targets and removes annotation
prefixes such as O/, U/, and M/, which denote for-
eign language tokens, uncertain words, and Mod-
ern Standard Arabic (MSA), respectively. It also
eliminates punctuation marks including the Ara-
bic question mark (Unicode \u061F) as well as

Western punctuation symbols (7, !, .), which are in-
consistently used and not linguistically informative
for model training.

For English translations, we defined the follow-
ing filter:

re.compile(r"\(IN)\I\ + 1\ = N2 VN VIV )

This regular expression removes special char-
acters and annotation markers such as # (foreign
words), + (mispronunciations), = (typographical
errors), and common punctuation symbols. These
annotations were introduced during the manual
translation process to capture spoken language phe-
nomena but are not useful for token-level alignment
or model training.

This pre-processing step allowed us to normalize
the text, reduce vocabulary sparsity, and ensure
cleaner input for downstream Automatic Speech
Recognition (ASR) and Speech Translation (ST)
tasks.

After filtering, preprocessing, and splitting the
data according to the partitions provided by the or-
ganizers, we obtained the following subsets: train-
ing, development, and test.

Table 3: Transcription statistics per genre after filtering
for train/dev/test.

Type Segments Hours
MSA /BN 410 0.94
TA/CTS  390,021/3833/4220 317.19/3.12/3.43
Total 390,431/3833/4220 318.13/3.12/3.43

Table 4: Translation statistics per genre after filtering
for train/dev/test.

Type Segments Hours
MSA /BN 409 0.937
TA/CTS  202,504/3833/4204  160.81/3.12/3.42
Total 202,913/3833/4204  161.747/3.12/3.42

After filtering, the dataset comprises 318.13
hours of transcribed Tunisian Arabic audio for ASR
training, with 3.12 and 3.42 hours for development
and test, respectively. Additionally, it includes
161.75 hours of parallel audio-translation pairs for
ST training, with the same dev/test splits.

3.4 Known Issues

 Partial Call Coverage: Some CTS calls are
only partially annotated due to transcription
kit omissions.
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 Stranded Diacritic Marks: 158 instances of
diacritic-prefixed tokens (e.g., a, i, o) persist
in 134 files.

* Empty Segments: 714 CTS segments con-
tain only a hyphen (“-”), signaling rejected or
unusable segments.

» Missing Translations: 10 BN segments lack
translations due to English speech in the
source audio.

4 Coupling Whisper and NLLB

This work introduces a hybrid solution designed
for parameter-efficient training in low-resource lan-
guage scenarios inspired by the integration strategy
presented in (Avila and Crego, 2025) , integrating
speech representation features from a pre-trained
speech model into a multilingual NMT system. Our
approach integrates speech representation features
from a pre-trained speech model encoder such as
Whisper into a multilingual Neural Machine Trans-
lation system such as NLLB, enabling both ASR
and S2TT capabilities.

4.1 Motivation and Context

The primary goal of this shared task is to bench-
mark and foster advancements in speech translation
technologies for a wide spectrum of dialects and
low-resource languages. In particular, this initia-
tive focuses on improving automatic speech tran-
scription and translation for the Tunisian dialect, a
variety of Arabic that remains significantly under-
represented in existing resources.

Low-resource conditions such as those en-
countered with Tunisian Arabic pose substan-
tial challenges for conventional speech translation
pipelines, which typically rely on large-scale anno-
tated corpora. In this context, pre-trained models
like Whisper, despite their multilingual design, lack
direct support for Tunisian. Conversely, the NLLB
model provides explicit support for Tunisian text
and English, enabling translation in both directions.

This complementary nature of Whisper and
NLLB forms the foundation of our hybrid approach.
By leveraging Whisper for robust audio feature ex-
traction and NLLB for multilingual text transla-
tion, we bridge the gap between speech and text
modalities. The integration of high-quality speech
representations into a powerful text-based multi-
lingual translation model allows us to address the
limitations of current systems in low-resource envi-
ronments.

4.2 Speech Representation via Whisper

In our hybrid approach, Whisper encoder is kept
frozen and used to generate speech representations,
which substitute the input word embedding of the
NLLB network.

The speech representations X consist of the out-
puts after the K lower encoder layers:

Whisperfyeo(a) = X, with X € RV*M

with a the audio signal, N the sequence length and
M the embedding dimension.

Whisper! (Radford et al., 2023) is a speech
recognition model tailored for multilingual recog-
nition, translation, and language identification. Its
Transformer-based architecture integrates multi-
ple speech processing tasks into a single, unified
model.

We use two variants of Whisper (Medium and
Large-v3) to evaluate the impact of model scale
on representation quality. Both models take 30-
second segments of audio resampled at 16kHz and
convert them into 80-channel log-magnitude Mel
spectrograms. The Whisper encoder outputs are
extracted from the final Transformer layer: the
K=24th layer for Medium ()M = 1024) and the
K=32nd for Large-v3 (M = 1280). The output is
a fixed-length sequence of N = 1500 vectors.

To align Whisper outputs with the NLLB en-
coder input we employ a Reshape module consist-
ing of:

* A convolutional layer with kernel size = 3
and stride = 1 is used to reduce the sequence
length from 1500 to 100.

* A linear projection layer (M x 2048) is ap-
plied to match the expected embedding dimen-
sion of the NLLB 3.3B encoder.

4.3 Neural Machine Translation with NLLB

We employ NLLB? (team et al., 2022), a multilin-
gual NMT model developed by Meta Al, designed
to support direct translation between more than 200
languages, including many low-resource and un-
derrepresented languages. Based on a Transformer
architecture, NLLB employs language-specific to-
kens and dense representations to handle diverse

1https://huggingface.co/openai/
whisper-medium,https://huggingface.co/openai/
whisper-large-v3

2https://huggingface.co/facebook/nllb—20®—3.
3B
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linguistic structures. Its 3.3B parameter version,
used in this work, provides strong performance
across a wide range of language pairs, making it
well-suited for multilingual and low-resource trans-
lation tasks.

In NLLB, we prepend a special token (lang,,..)
at the beginning of the source sentence to spec-
ify the source language and another special token
(lang,,,) to specify the target language. During
inference, this last token guides the decoder to pro-
duce output in the desired language.

The NLLB encoder is partially fine-tuned during
training, specifically the lower L layers, while the
higher layers remain frozen to retain multilingual
generalization. The Whisper encoder remains com-
pletely frozen and is used purely for speech feature
extraction.

4.4 Language Conditioning and Token
Embeddings

To handle multilingual input and output, we append
the source language token (lang,,..) to the reshaped
speech representation and use <1angtgt) in the de-
coder. Both tokens are embedded using NLLB’s
embedding layer. This token-based control mech-
anism enables seamless switching between lan-
guages during both training and inference.

Source and target training pairs are formatted as
follows:

source = (langg.c) src_sentence (€os)

target = (bos) (lang.y) tgt_sentence (eos)

4.5 Hybrid Architecture

This hybrid configuration transforms the multilin-
gual NLLB 3.3B model into a multi-functional sys-
tem capable of both ASR and S2TT. The architec-
ture leverages pre-trained speech representations
from Whisper (specifically the Medium and Large-
v3 variants) and integrates them into the NLLB
framework. This design enables the system to oper-
ate in low-resource settings with minimal parame-
ter updates. In this setup, high-level audio features
are extracted from a frozen Whisper encoder, which
serves solely as a feature extractor. These repre-
sentations are then reshaped to align with the input
format expected by the NLLB encoder. Crucially,
this reshaped output replaces the traditional word
embedding layer in the NLLB encoder, allowing
the model to process audio input instead of text,
and the efficiency of parameter training is achieved

by only modifying the parameters of reshape mod-
ule and the lower layers of the NLLB encoder. The
architecture consists of three main components:

* A frozen Whisper encoder (either Medium or
Large-v3),

* A reshape module that projects the audio em-
beddings into the required format,

* A multilingual NLLB 3.3B encoder-decoder
model.

Figure 1 (right block) illustrates the complete
hybrid S2TT architecture. Speech representations
X, visualized as black squares, are generated by
the Whisper encoder. These are subsequently re-
shaped X’ and passed to the NLLB encoder, which
processes them and generates translations from the
outputs Z by applying a linear projection followed
by a softmax function. By limiting fine-tuning to
only the lower layers of the NLLB encoder and
the reshape module, the model achieves parameter-
efficient training while retaining multilingual capa-
bilities.

The Whisper encoder outputs high-dimensional
speech representations that are reshaped to match
the input format expected by the NLLB encoder.
This replaces the word embedding layer in NLLB
with audio-derived embeddings. Mor formally:

X = Whisper¥yo(a) (1)
X' = EMB({langs.c)) - Reshape(X) (2)
Y = NLLBgnc(X') 3)
Z = NLLBpgc(Y) 4)

Here, a is the input audio signal, X is the speech
representation, and X’ is the concatenated input
embedding. Y and Z represent the encoded and
decoded outputs, respectively.

4.6 Parameter-Efficient Training Scenarios

We consider two training scenarios for low-
resource adaptation:

* Zero-shot: Whisper and NLLB are used as is,
without fine-tuning. Figure 1 illustrates this
scenario.

* Domain adaptation: Parameter-efficient fine-
tuning is performed:

— Whisper is fine-tuned over Tunisian
audio/transcription examples obtained
from LDC in-domain data (LDC ASR).
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Figure 1: Overview of the Hybrid Whisper+NLLB Approach in a parameter-efficient domain adaptation scenario.
The Whisper encoder/decoder is fine-tuned using LDC ASR data, while NLLB is fine-tuned on both transcription
and translation text from LDC ASR and S2TT datasets (stepl). Both models are then coupled to enable hybrid
processing (step2). Red color indicates model weights being updated (the rest are kept freezed).

— NLLB is fine-tuned using in-domain tran-
scription/translation examples.

Figure 1 illustrates the adaptation in domain for
Whisper ASR tunisian and NLLB adaption to trans-
late english or tunisian in LDC domain. In both
cases, a last adaptation for coupling these two mod-
els is achieved by updating only a small subset of
model parameters (e.g., the reshape module and
lower layers of the NLLB encoder), enabling effec-
tive learning from limited resources.

5 Experimental work

5.1 Networks

Our Coupling Hybrid models are trained using a
single NVIDIA H100 GPU (80GB) during up to
20 epochs, with a maximum batch size of 64 utter-
ances and updates of the model after accumulating
64 batches. We validate every 1, 000 updates and
perform early stopping on a separate validation set
excluded from the training set. We use the lazy
Adam algorithm (Kingma and Ba, 2014) for op-
timization. In inference, we use a beam size of
5.

5.2 Results

Table 5 summarizes the results obtained across var-
ious model configurations and architectures. We
report BLEU scores (Post, 2018) and word error
rates (WER)? as evaluation metrics for S2TT and
ASR, respectively. WER is computed on normal-

ized transcriptions®.

Shttps://huggingface.co/spaces/
evaluate-metric/wer

“Normalization is performed by BasicTextNormalizer
from the transformers.models.whisper module.

BLEU and WER results are indicated over inter-
nal development and test sets, as provided by the
task organizers. These splits are considered in our
analysis. Best scores for each development/test set
are highlighted in bold.

Columns Whisper Inf Enc and Dec indicate the
number of encoder/decoder layers used during in-
ference by Whisper. Similarly, NMT Opt Enc and
Dec specify the number of encoder and decoder
layers fine-tuned in the NLLB model. Note that we
always use the 3.3B parameter version of NLLB.

During inference, NLLB consistently employs
all its encoder/decoder layers. The Size column
reports the total number of parameters used by each
system during inference.

System Whisper M indicates the original Whis-
per Medium model, used for both ASR and S2TT
tasks. Without fine-tuning the model obtains very
poor transcription and translation scores. This is
mainly because Whisper was pre-trained in modern
standard Arabic (MSA) and lacks exposure to the
Tunisian dialect, which severely limits its ability to
handle dialectal input.

Systems Whisper and Whisper Lf7 in-
volve full fine-tuning of Whisper Medium and
Whisper Large v3 for ASR using the complete
cleaned speech-transcription training data intro-
duced in Section 2. These are the only two con-
figurations in which Whisper is fine-tuned, result-
ing in considerably longer training times (nearly 2
days). Although their BLEU scores remain very
low, similar to those of the baseline Whisper model,
their ASR performance improves significantly af-
ter fine-tuning. Compared to the baseline Whisper
M, which was not fine-tuned, both fine-tuned sys-
tems show significant improvements in ASR per-

MFT
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Whisper Inf | NLLB Opt . BLEUt WER|
Model Data Enc  Dec | Enc Dec Size dev tst dev tst
Whisper M \ - 24 24 - - 769M | 1.18  1.14 | 157.28 168.23
Whisper fine-tunned
Whisper MI'T ASR 24 24 - - 769M | 1.17  1.15| 4431 5341
Whisper LT ASR 32 32 - - 1550M | 2.13 1.86| 43.70 50.23
Cascade
Whisper M7 + NLLB ASR 24 24 0 0 407B | 545 4.64 | 4431 5341
Whisper LF7 + NLLB ASR 32 32 0 0 485B | 5.68 5.07| 4370 5023
Whisper MFT + NLLBFT | ASR+MT | 24 24 24 24 | 407B | 19.25 16.44 | 4431 5341
Whisper LFT + NLLBFT | ASR+MT | 32 32 24 24 | 485B | 19.77 1739 | 43.70 50.23
Hybrid
Whisper M + NLLB ST 24 - 2 0 407B | 1239 9.92 - -
Whisper M + NLLB ASR+ST | 24 - 2 0 407B | 9.10 7.44 | 7171  85.07
Whisper MFT + NLLBFT ST 24 - 2 0 4.07B | 1922 16.62 | 126.57 121.41
Whisper L¥T + NLLBFT ST 32 - 2 0 435B | 19.37 17.52 | 149.31 139.48

Table 5: Translation (BLEU) and recognition (WER) results across various model configurations. The column Data
shows data used for each configuration, the column Whisper Inf specifies the number of Whisper encoder/decoder
layers used during inference, while NMT Opt shows the number of NLLB encoder/decoder layers optimized during
training. The Size column denotes the total number of parameters used during inference.

formance. Specifically, Whisper M7 achieves
WERs of 44.31 and 53.41 on the dev and test sets,
while Whisper LT further improves to 43.70 and
50.23. These results demonstrate the effectiveness
of fine-tuning even without changes to the model ar-
chitecture. However, BLEU scores remain low for
in both cases as these models are not explicitly opti-
mized for translation. The slight increase in BLEU
for the larger model is likely due to more accurate
transcriptions feeding into the implicit translation
process, but overall, these scores confirm that fine-
tuning Whisper solely for ASR is insufficient for
reliable S2TT performance.

In the Cascade setup, systems Whisper
MT+NLLB and Whisper LY7+NLLB combine fine-
tuned Whisper models (for ASR) with the base
NLLB model (for MT). In this approach, Whisper
is first fine-tuned on the LDC ASR dataset to gen-
erate transcriptions, which are then passed to the
unadapted NLLB model for translation. These con-
figurations do not yield strong translation perfor-
mance, primarily due to the mismatch between the
transcription domain and the NLLB training data.
However, performance could be improved through
domain adaptation of the NLLB component. When
adapting the NLLB model with the available in-
domain datasets, systems Whisper M/7+NLLB!T
and Whisper LYT+NLLB?” clearly improve their
translation performance. The NLLB model is fine-
tuned on transcription-translation pairs from the
LDC ASR and ST datasets. Thus, transcriptions

produced by Whisper are then translated using
the adapted NLLB network. These latter systems
demonstrate the effectiveness of adapting NLLB to
the ASR/ST domain using LDC transcriptions and
translations. However, despite the improved accu-
racy, the inherent latency introduced by cascading
models makes them less suitable for real-time or
industrial applications, where efficiency is critical.
WER scores remain constant across all cascade sys-
tems because the Whisper component, responsible
for transcription, is identical within each Whis-
per variant. This consistency further confirms that
BLEU gains are due solely to the adaptation of the
translation model.

The next set of results pertains to our hybrid
systems. We utilize fine-tuned versions of Whisper
(Medium and Large v3) tightly coupled with NLLB
as detailed in section 4. Similarly to the cascade
setup, the first two systems use the original, pre-
trained Whisper and NLLB models, while the latter
two are hybrid systems that combine Whisper and
NLLB models which have been previously fine-
tuned.

One key advantage of the hybrid models lies in
their compactness: they require significantly fewer
parameters than the cascade counterparts. Further-
more, coupling optimization is computationally ef-
ficient. The Whisper speech encoder is kept frozen,
while only 2 out of 24 layers in the NLLB encoder
are fine-tuned. This strategy drastically reduces
training time and computational cost. Fine-tuning
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with the LDC ST dataset required only 1 to 3 days,
depending on the configuration and number of train-
able parameters.

The first two hybrid systems, where Whisper and
NLLB models are used without any fine-tuning,
output moderate improvements over the raw Whis-
per model but significantly lower performance
than domain-adapted cascade approaches. The
system trained on both ASR and ST objectives
(ASR+ST) exhibits a significant drop in both trans-
lation and transcription quality compared to the
version trained solely on the ST objective (ST).
This suggests that, in the absence of domain adap-
tation, multitask training may lead to interference
between the tasks.

When hybridizing the adapted networks (last
two rows), where both Whisper and NLLB are
fine-tuned using in-domain LDC data, systems at-
tain BLEU scores nearly equivalent to the best-
performing cascade systems. These results validate
the effectiveness of our lightweight hybrid fine-
tuning strategy, which freezes most Whisper and
NLLB layers, optimizing only a minimal subset.
Notably, these hybrid models operate with lower
parameter counts and exhibit superior latency char-
acteristics compared to their cascade counterparts.
WER scores, however, are higher in the hybrid
domain-adapted models (ranging from 121 to 149),
reflecting a trade-off in ASR accuracy potentially
introduced by tighter integration and shared opti-
mization. This is also partly due to the fact that the
hybrid models were exclusively fine-tuned using
speech translation (ST) data, without direct super-
vision on ASR objectives. As a result, while the
models are optimized for generating accurate trans-
lations, their raw transcription outputs may be less
precise, contributing to higher WER.

As expected, the hybrid models achieve S2TT
performance comparable to the cascade systems.
For example, the best hybrid domain adaptation
configuration attains BLEU scores of 19.37 and
17.52 on the development and test sets, respectively.
Importantly, these hybrid models offer superior la-
tency characteristics, making them more suitable
for deployment in real-time or resource-constrained
environments compared to their cascade counter-
parts.

Finally, it is important to note that the results
submitted for the evaluation of this task were ob-
tained several epochs prior to the final version of
the model. At that stage, the model achieved a
BLEU score of 18.96 on the development set and
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16.94 on the test set. The current version of our
model outperforms the submitted one by approxi-
mately 0.5 BLEU points.

6 Conclusions and further work

We presented SYSTRAN’s submitted systems for
the 2025 Low-Resource Language Track, targeting
the task of Tunisian Arabic to English speech trans-
lation. Our approach combines an ASR encoder
(Whisper) with a neural machine translation de-
coder (NLLB), using light fine-tuning to create an
efficient and compact speech translation pipeline.
The resulting Speech-to-Text Translation system is
designed to operate with minimal computational re-
sources and limited training data. We evaluated our
system against several alternative configurations,
including a cascaded Whisper+NLLB setup and
direct end-to-end fine-tuning of Whisper. Our re-
sults demonstrate that it is possible to achieve high
translation quality under low-resource constraints,
enabling broader accessibility without the need for
large-scale infrastructure.
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