
Findings of the Association for Computational Linguistics: ACL 2025, pages 19436–19459
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Tree-of-Prompts: Abstracting Control-Flow for Prompt Optimization

Jihyuk Kim1*, Shubham Garg2, Lahari Poddar2
Seung-won Hwang3†, Christopher Hench2

1LG AI Research, jihyuk.kim@lgresearch.ai
2Amazon, {gargshu, poddarl, henchc}@amazon.com

3Seoul National University, seungwonh@snu.ac.kr

Abstract

Prompt optimization (PO) generates prompts
to guide Large Language Models (LLMs) in
performing tasks. Existing methods, such as
PromptAgent, rely on a single static prompt,
which struggles with disjoint cases in complex
tasks. Although Mixture-of-Prompts (MoP)
uses multiple prompts, it fails to account for
variations in task complexity. Inspired by pro-
grammatic control flow, we introduce a nested
if-else structure to address both varying simi-
larities and complexities across diverse cases.
We propose Tree-of-Prompts (ToP), which re-
cursively expands child prompts from a par-
ent prompt. Sibling prompts tackle disjoint
cases while inheriting shared similarities from
their parent, and handle cases more complex
than the parent. Evaluated on Gorilla (under-
standing), MATH (reasoning), and a subset of
BBH benchmarks, ToP outperforms PromptA-
gent and MoP, with improvements of 1.4% and
4.6% over PromptAgent and 3.2% and 4.5%
over MoP, when tested with GPT-4o-mini and
Llama 3.2-3B, respectively.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Liu et al., 2023) are used across a wide
variety of tasks and the prompt optimization
(PO) (Cheng et al., 2024) methods need to be able
to harness the potential of LLMs for each of them.
We hypothesize that a task consists of diverse cases,
varying in terms of 1) complexity, defined as the
level of reasoning effort required to solve a case,
and 2) disjointness, referring to the degree of sep-
aration between cases based on their underlying
reasoning strategies.

An exemplar is the API function calling
task (Patil et al., 2023), where the system is given
a question and a list of available functions and

* Work done during internship at Amazon.
† Corresponding author.

Objective 2.
disjointness

: 𝑝0

𝑡 < 𝑇

: 𝑝𝑇

: 𝒟train

If-else

𝑝2

Prompt
generation

Prompt
generation

𝑝𝑡

Reflection
feedback

Prompt
generation

: 𝑝0 & 𝒟train

Prompt
generation 𝑝2

& 𝒟2

𝒟2 ⊂ 𝒟train

Prompt
generation

𝒟1 ⊂ 𝒟train
If-else

iterative

conditional

conditional

iterative

sequential

Notation

• 𝑝𝑡: the prompt at 𝑡-th iteration.

• 𝑇: the maximum number of iterations.

• 𝑝0: the initial prompt

• 𝒟train: training dataset

Reflection
feedback

Reflection
feedback

𝑖𝑡𝑒𝑟𝑎𝑡𝑒? 𝑖𝑡𝑒𝑟𝑎𝑡𝑒?

𝑝1

: 𝑝1

No

Yes

(a) PromptAgent: iterative
sequential optimization

(b) MoP
: conditional optimization

(c) Our control flow graph: composition of (a) and (b)

Question: 2+3
Available function:
• add(a, b)

Question: 2+3 and 3+4
Available function:
• add(a, b)

Question: 2+3
Available function:
• divide(a, b)

Toy examples of API function calling task

e.g., 𝒟1(⊂ 𝒟train)
: answerable

questions

𝒟2(⊂ 𝒟train)
: unanswerable

questions

Answer: [add(2,3)] : [add(2,3),add(3,4)] : [] (Unanswerable)

simple
complex

simple
complex

sequen-

tial

1. complexity:

2. disjointness: answerable unanswerable

simple complex

vs

Objective 1.
complexity

Figure 1: Illustration of the control flow graph for
prompt optimization, comparing the two existing ap-
proaches – (a) PromptAgent and (b) MoP – with (c)
our proposed method. (a) and (b) employ iterative,
sequential execution and conditional execution, re-
spectively, while (c) we integrate all the executions.

generates function call(s) to answer the question.
In this task, (1) in terms of complexity, the gold
answer may involve a single function invocation

19436

for a simple question or multiple invocations for a
complex multi-step question, e.g., the toy examples
presented in Figure 1 with red and green boxes, re-
spectively. (2) In terms of varying similarity, while
the above cases share a similarity – both are answer-
able – some questions may be unanswerable if none
of the provided functions are relevant, as shown
in the blue box example in Figure 1. Our contri-
bution is identifying critical gaps between existing
PO approaches and such real-world scenarios.

Existing works, illustrated in Figure 1(a, b), con-
sider only either complexity or distinct cases. For
the complexity, PromptAgent (Wang et al., 2024c)
begins with a vanilla prompt, denoted by p0, capa-
ble of handling simple cases, and iteratively refines
the prompt over a predefined number of iterations,
T , to eventually address more complex ones. For
the refinement at each iteration, the reflection tech-
nique (Pryzant et al., 2023; Madaan et al., 2023)
has been employed to address errors in the previ-
ous prompt. On the other hand, to address distinct
cases, Mixture-of-Prompts (MoP) (Wang et al.,
2024b) separately optimizes multiple prompts by
partitioning the set of training examples, denoted
by Dtrain, case by case, e.g., one prompt p1 for an-
swerable cases and another p2 for unanswerable
ones.

Our novelty lies in systematically incorporating
both the complexity and the disjointness for PO. To
this end, inspired by recent work of “programming”
via LLMs (Khattab et al., 2024; Opsahl-Ong et al.,
2024), we formulate PO via a Control Flow Graph
(CFG) (Allen, 1970) to offer a unified framework,
illustrated in Figure 1 (c). Specifically, we inte-
grate the three execution types in CFG: sequential,
iterative, and conditional. From the perspective of
CFG, PromptAgent implements the sequential exe-
cution via reflection feedback, in conjunction with
iterative execution, though it often fails to handle
disjoint cases. On the other hand, MoP implements
conditinoal optimization to address disjoint cases.
However, without iterative refinement, each prompt
may underfit and remain sub-optimal. Integrating
all three execution types, we iteratively generate
better prompts conditioned on specific cases so that
the set of optimized prompts can comprehensively
handle diverse cases.

2 Related Work

We explore PO for tasks with diverse cases, focus-
ing on two objectives: (1) during training, optimiz-

ing a comprehensive set of prompts to address both
complex and disjoint cases, and (2) during testing,
employing case-specific prompts for given inputs,
as detailed below.

2.1 Prompt Optimization during Training

Existing works (Wang et al., 2024c,b) on PO focus
on either 1) iteratively optimizing a single prompt
or 2) separately optimizing multiple prompts. From
CFG perspective, these correspond to iterative se-
quential execution and conditional execution, re-
spectively. However, both fail to fully address com-
plexity and disjointness, which our method inte-
grates to handle diverse cases effectively.

Iterative Sequential PO Employing iterative se-
quential execution for PO, PromptAgent (Wang
et al., 2024c) and Prompt Optimization with Tex-
tual Gradients (ProTeGi) (Pryzant et al., 2023) re-
peat the sequential process of reflect-then-update.
Reflection feedback (Madaan et al., 2023), derived
from error examples in the previous prompt, en-
ables the prompt to be updated to address more
complex cases. For iteration strategies, while Pro-
TeGi adopts beam search, PromptAgent employs
Monte Carlo Tree Search, offering an improved bal-
ance between exploitation and exploration. Despite
these advancements, relying on a single prompt of-
ten biases the model towards majority cases, lead-
ing to poorer performance on disjoint minority
cases (Henning et al., 2023).

Conditional PO MoP (Wang et al., 2024b), on
the other hand, employs conditional execution for
PO by optimizing a set of prompts P , each con-
ditioned on examples from a specific case. The
training examples in Dtrain are first partitioned into
multiple clusters, each representing a distinct case,
e.g., D1 ⊂ Dtrain and D2 ⊂ Dtrain consisting of an-
swerable and unanswerable questions, respectively.
For each cluster, a prompt is optimized using Auto-
matic Prompt Engineer (APE) (Zhou et al., 2023),
which derives task instructions from a few input-
output pairs sampled from Dtrain. In contrast, MoP
samples these pairs from each individual cluster.
However, individual prompts, without iterative re-
finements, may fail to address complex cases.

Distinction To combine the strengths of iterative
and conditional PO, a straightforward approach
is to iteratively refining a prompt conditioned on
each cluster. However, it treats all cases as entirely
disjoint, independently optimizing prompts with-

19437

out leveraging commonalities across cases. For in-
stance, the toy examples shown with red and green
boxes in Figure 1 both fall under the category of an-
swerable questions, yet the naive approach would
handle them separately. As a novel and effective in-
tegration, our distinction is utilizing a hierarchical
tree structure that allows prompts to share a com-
mon parent prompt, enabling the reuse of shared
knowledge while maintaining flexibility for case-
specific optimization for each prompt. We empiri-
cally demonstrate its effectiveness compared to the
naive integration in our experiments (Table 1).

2.2 Case-specific Prompting during Testing

To achieve adaptive test-time prompting for di-
verse cases, existing methods can be divided into
generation-based and search-based approaches,
with our method belonging to the latter.

Generation Approach Input-specific prompts
can be generated on the fly during testing. Ex-
pertPrompting (Xu et al., 2023) implements this
by generating an input-tailored expert identity as
the prompt. To extend it beyond a single prompt,
Multi-ExpertPrompting (Long et al., 2024) incorpo-
rates multiple expert identities, while HMAW (Liu
et al., 2024) introduces a hierarchical multi-agent
workflow consisting of CEO, Manager, and Worker
prompts. However, since those prompts remain
unverified, their effectiveness is not guaranteed.

Search Approach In contrast, the search-based
approach, e.g., MoP, employs only verified
prompts. During training, it optimizes a compre-
hensive set of prompts, each validated on training
examples, and during testing, it searches for the
most suitable prompt. To identify input-specific
prompts, MoP employs semantic similarity be-
tween training and testing inputs, though it often
fails to distinguish between different cases. To illus-
trate, the two toy examples presented with red and
blue boxes in Figure 1 only differ in the presence
or absence of the relevant function for the identical
question “(What is) 2+3”. Despite the similarity,
the two belong to disjoint cases, i.e., answerable
and unanswerable cases.

Distinction Adopting the search-based approach,
our distinction is in enhancing case identification
by proposing solution-based clustering during train-
ing and case-augmented search during testing.

3 Tree-of-Prompts

We introduce a complete CFG to leverage all
three execution types, namely, sequential, itera-
tive and conditional. We iteratively optimize multi-
ple prompts with reflection feedback on previous
prompts while identifying disjoint cases at each it-
eration. Specifically, as an implementation of CFG
for PO, we propose Tree-of-Prompts (ToP), where
the tree structure represents a roll-out of iterative
conditional optimization applied to prompts, as il-
lustrated in Figure 2(a). The algorithm for building
the tree is presented in Algorithm 1.

We start with a root node containing the en-
tire training dataset, Dtrain, and the initial prompt,
p0. The training dataset is defined as Dtrain =
{(xi, yi)}Ni=1, where xi and yi denote the input
and its corresponding label, respectively, and N
represents the number of training examples. For
p0, we use a basic task description that can be eas-
ily crafted by a human, e.g., “Given a question
and a list of functions, generate function call(s)
to answer the question” for API function calling.
The algorithm then invokes BUILD(Dtrain, p0), to
progressively expand the tree via three execution
operations in CFG as follows.

Conditional Execution We first partition Dtrain
into K clusters, denoted by {Dk}Kk=1, each corre-
sponding to a specific case, creating K new nodes
as the root’s children. The prompt for each child
node is then conditionally optimized based on Dk.
Note that we do not assume case labels to be known
during training, and learn the distribution through
our clustering algorithm as detailed in Section 3.1.

Sequential Execution To optimize a prompt for
each child node using Dk, we employ a reflection-
based prompt update (Pryzant et al., 2023; Wang
et al., 2024c), where two LLMs involve: a base
LLM, denoted as Mbase, and an optimizer LLM,
denoted as Moptimizer. Mbase produces the response
ŷ to x using a prompt p. Moptimizer provides the
reflection feedback on p based on a batch of er-
ror examples Dbatch (⊂ Dk), and suggests a better
prompt pk that can address the errors:

Dbatch = {(xb, yb, ŷb)|ŷb ̸= yb}Bb=1, (1)

pk = Moptimizer(Dbatch, p), (2)

where ŷb = Mbase(xb; p) and B denotes the batch
size. To avoid degeneration, we sample the op-
timized prompt S times and select the best one
based on its performance on Dvalid, the held-out

19438

… Provide correct
argument values. …

Yes

𝑝2

Given a question and a list of available functions,
generate function call(s) to answer the question.

𝑝0

(b) Solution-based clustering
: Identifying train examples’ case labels

𝒟3 𝒟4

If-else

If-else

𝒟2

𝑖𝑡𝑒𝑟𝑎𝑡𝑒?

𝒟1

No

Reflection feedback

Prompt generation

Reflection feedback

Prompt generation

Reflection feedback

Prompt generation

Reflection feedback

Prompt generation

(c) Case-augmented search
: Identifying test-case-aligned
prompt among 𝒫

Test input

Identify the best prompt by
analyzing the input based
on the following key factors:

1. Question Relevance:
If none of the functions are
relevant to the question,
choose

2. Number of Function Calls:
If parallel function calls are
needed, choose
Otherwise, choose

𝑝1

𝑝4

𝑝3

: The question can be
answered by calling “add”
twice in parallel. Therefore,
the best prompt is 𝑝4

𝑝1 : Final optimized prompts for various cases (presented in colors)

Notation

: Base LLM (or Search LLM) : Optimizer LLM𝑝4𝑝3

: A set of final optimized prompts,
𝒫, taken from leaf nodes

Question: 2+3 and 3+4
Given function:
• add (a, b)

𝑖𝑡𝑒𝑟𝑎𝑡𝑒?No 𝑖𝑡𝑒𝑟𝑎𝑡𝑒?No

𝑝1 𝑝3 𝑝4

(a) Tree-of-Prompt

𝒟train

If-else𝒟train

What would be
solution prompt?

𝑖𝑡𝑒𝑟𝑎𝑡𝑒?

… When none of the
provided functions …

𝑝1

Training input 1.

Question: 2+3
Given function:
• divide (a, b)

Question: 2+3
Given function:
• add (a, b)

Training input 2.

𝒟1 𝒟2

… Provide correct
argument values …
If the question is a

multi-step question …

𝑝4… Provide correct
argument values …
Avoid redundant

function calls.

𝑝3

Example 1 and 2 cannot be distinguished
based solely on inputs, though 1 is
unanswerable and 2 is answerable.

Solution prompts are distinct, based on
which we cluster training examples.
𝒟train

𝒟1 𝒟2

If the function
cannot answer
the question, …

Respond using
correct arguments
for the function …

Solution prompt: Solution prompt:

Prediction on the input

from with the prompt

: [add(2,3), add(3,4)]

𝑝4

What would be
solution prompt?

Two examples of disjoint cases in 𝒟train

𝒫 𝑝1 𝑝3 𝑝4

Figure 2: Illustration of our proposed method, Tree-of-Prompts (ToP), implementing CFG using a tree.

validation dataset. We present meta prompts for
the reflection feedback and the prompt generation
in Appendix A.1 (Figure 6).

Note that our integration of sequential execu-
tion with conditional execution allows the parent’s
prompt, p, to be reused as a preliminary prompt
for every child node. This design is motivated by
the observation that the specific cases addressed by
child nodes are derived from the same broader case
targeted by their parent, resulting in closely related
cases with shared characteristics. For example,
for all answerable cases in API function calling,
prompts should include guidance for proper func-
tion formatting for generation. Therefore, reusing
p enables the child nodes to leverage this shared
knowledge (e.g., function formatting) while refin-
ing p into pk to address their specialized cases (e.g.,
a single function call or parallel function calls).

Iterative Execution We recursively partition the
examples in each child node, expanding the tree
iteratively. The iteration, i.e., partitioning a node,
terminates when the optimized prompt for that node
produces fewer than B error examples within the
assigned cluster, ensuring sufficient training data
for the reflection-based prompt update (Eq (1)).

Algorithm 1 Building the tree of prompts by invoking
BUILD(Dtrain, p0), which produces a set of prompts, denoted
by P , with each optimized for a different case.

Function: BUILD(D, p)
1: if

∑
∀(x,y)∈D I(y = Mbase(x; p)) < B then

2: return {p}
3: end if
4: P ← ∅
5: {D1, . . . ,DK} ← KMEANS(D,K) ▷

⋃K
k=1Dk = D

6: for Dk in {D1, . . . ,DK} do ▷ conditional execution
7: ∇ ← REFLECT(Dk, p) ▷ sequential execution 1.

obtain errors in p on Dk, denoted by∇
8: pk ← UPDATE(p,∇) ▷ sequential execution 2.

update p to avoid the errrors.
9: P ← P ∪ BUILD(Dk, pk) ▷ iterative execution

10: end for
11: return P

Additionally, once the tree is built, to avoid redun-
dant prompts, we truncate it to the optimal depth
based on the performance on Dvalid. In our experi-
ments, the optimal depth typically ranges from 1 to
3. We present an example diagram of the tree built
in Appendix C.1.

Once the tree is built, we take prompts in leaf
nodes, producing a final prompt set P , with each
prompt considered an expert in its target case. At
test time, for each input, a test-case-aligned prompt,

19439

Case

Figure 3: tSNE visualization of embeddings on train-
ing examples, comparing MoP (semantic-based embed-
dings) and Ours (solution-based embeddings).

capable of effectively addressing the input’s case, is
searched from P , and is used by Mbase to produce
the final response to the input.

A key challenge is that case labels for task ex-
amples are often unknown during both training and
testing. Our contribution is automatically identi-
fying such labels for training examples and test
inputs, using solution-based clustering (§3.1) and
case-augmented search prompting (§3.2), respec-
tively, discussed below.

3.1 Solution-based Clustering
To identify case labels for training examples, and
enable conditional execution, we propose a novel
solution-based clustering approach as illustrated
in Figure 2(b). We model the similarity between
examples – and ultimately between their respective
cases – by the prompts that can effectively handle
the examples, referred to as “solution” prompts.

In contrast, MoP clusters examples based on se-
mantic similarity; however, semantically similar ex-
amples may belong to different cases. For example,
as showcased by “Training input 1” and “Training
input 2” in Figure 2(b) with an identical question,
two entirely different cases – one answerable and
the other unanswerable – may only semantically
differ in the presence of a relevant function in the
provided function list.

To devise a better alternative, our intuition is
that examples that can be addressed using simi-
lar solution prompts are likely to belong to the
same case, while those requiring different prompts
often correspond to distinct cases. For example,
solution prompts for unanswerable questions will
differ from those for answerable ones, as illustrated
by red-colored and blue-colored prompts in Fig-
ure 2(b), enabling them to be separated into dif-
ferent clusters. Based on the intuition, for each
example (x, y) ∈ D where D denotes the cluster in
a given node, we first generate the solution prompt,
denoted by p(x,y). This is generated using only a
single example in Eq (2) with {(x, y)} as a single

I have candidate prompts designed for a task.

: Prompt 1. … \n Prompt 2. … \n …

Here are the evaluation results on the prompts:

<1> (Prompt 1 answers correctly)

Question: What is 2+3?

Given function: divide(int a, int b)

The correct answer is: The function is not relevant.

<2> (Prompt 2 answers correctly)

Question: What is 2+3?

Given function: add(int a, int b)

The correct answer is: add(2, 3)

…

Summarize effective cases for each prompt:

Instruction for optimizer LLM:

Prompt 1 is effective when none of the functions

can answer the question. … Prompt 2 is suitable

for straightforward queries needing single call. …

Response:

Now, outline key factors necessary for analyzing

the input, and present guidance on how to choose

the most suitable prompt:

Instruction for optimizer LLM:

1. Question Relevance:

If none of the functions are relevant to the question,

choose Prompt 1.

2. Number of Function Calls:

If a single call is sufficient, select Prompt 2 …

Response:

Figure 4: Meta prompts used by Moptimizer for construct-
ing psearch and its example responses. Colors indicate
different target cases: blue for unanswerable cases and
red for answerable cases1.

size Dbatch. Meta prompts used for the solution
prompt generation are presented in Appendix A.2
(Figure 7). We utilize p(x,y) in representing each
example, based on which we perform K-means
clustering. Specifically, for each example, we en-
code p(x,y), instead of the input text, into a dense
vector, denoted by e(x,y).

To understand the quality of clusters, we plot a
tSNE visualization in Figure 3. The visualization
shows that MoP is not able to capture the underly-
ing distributions of subtasks by only relying on se-
mantic similarity and fails to separate any cases of
examples. In contrast, our solution-based represen-
tation e(x,y) enables separating distinct examples
and form cohesive clusters.

3.2 Case-Augmented Search

Identifying the test-case-aligned prompt from the
set P can be formulated as a search task, where the
input given at test time and each prompt in P serve

19440

as the query and search target, respectively. For
the search task during inference, MoP again relies
on semantic similarity, where it searches for the
prompt having examples that are most semantically
similar to the given input. However, as shown
in Figure 3, the semantic similarity often fails to
differentiate different cases.

To address this gap during inference, we pro-
pose Case-Augmented Search, as illustrated in Fig-
ure 2(c). Inspired by recent work leveraging LLM
for search tasks (Sun et al., 2023; Tang et al., 2024;
Zhuang et al., 2024; Reddy et al., 2024; Xu et al.,
2024; Zeng et al., 2024), we introduce a dedicated
LLM for prompt search, denoted as Msearch, along
with its prompt, denoted as psearch. We augment
case information in psearch by incorporating: (1) the
specific case in which each prompt in P is most
effective and (2) guidelines for determining the spe-
cific case of the given input. The combination of
these two instructions enables identification of a
case-aligned prompt for the test input.

To this end, we first sample training examples
that highlight the unique strengths and weaknesses
of each prompt across different cases. Specifically,
we sample Bsearch examples, where, for each ex-
ample, at least one prompt fails, exposing weak-
nesses, and at least one prompt succeeds, highlight-
ing strengths. As illustrated in Figure 4, we then
present Moptimizer with the evaluation results of P
on the sampled examples, indicating whether each
p ∈ P is correct or incorrect. We instruct Moptimizer
to identify effective cases for each p and explain
the key factors that can help identify the specific
case of the given input. We repeat sampling psearch
S times and choose the best psearch based on perfor-
mance on Dvalid.

4 Experiments

4.1 Evaluation Setup

Dataset and evaluation metric For evaluation,
we employ two representative tasks: API function
calling and solving mathematical problems, using
Gorilla (Patil et al., 2023) and MATH (Hendrycks
et al., 2021) datasets, respectively. API function
calling assesses understanding and generation ca-
pabilities of LLMs. Given a question and a list of
available functions, an LLM should understand sin-
gle or multiple requests within the question, assess

1In psearch, we present the optimized prompts (in P) in
descending order based on their performance on Dval, which
outperformed random ordering in our preliminary study.

the relevance of each function to the request(s), and
generate function calls with accurate arguments.
On the other hand, mathematical problems assess
reasoning abilities of LLMs, with more emphasis
on intermediate steps that allow the model to derive
the correct answer from the input provided. Math
encompasses diverse cases, as reasoning strategies
can vary across subjects such as Algebra, Calculus,
Probability, and others. In addition, to further vali-
date the generalization of our method, we also stud-
ied challenging tasks in the Big-Bench-Hard (BBH)
benchmark. More precisely, following PromptA-
gent (Wang et al., 2024c), we take the subset of
the benchmark, such as Geometric Shapes, Epis-
temic, Object Counting, Temporal Sequences,
and Causal Judge. Detailed descriptions and statis-
tics on Gorilla, MATH, and BBH, are reported in
Appendix B.1 (Table 18), Appendix B.2 (Table 19),
and Appendix B.3 (Table 20), respectively.

We adopt the official evaluation metric for each
benchmark. For Gorilla, we measure accuracy
based on Abstract Syntax Tree (AST) matching
between the generated function call(s) and anno-
tated gold function call(s). For unanswerable ques-
tions, since none of the provided functions answer
the question, a response is considered as correct if
AST parsing fails (e.g., “The provided functions
are non-relevant to the question.”). For the other
benchmarks, the accuracy is measured based on
exact-match between the parsed response and the
gold answer. For parsing responses, the official
script for each benchmark was used.

Implementation Detail We evaluated various
LLMs, while adhering to the following motivation:
To ensure quality optimized prompts, we employed
sufficiently capable LLMs for Moptimizer, while ex-
amining various LLMs for Mbase. For Msearch, we
used the same LLM used for Mbase. More precisely,
for Moptimizer, we used GPT-4o, and for Mbase and
Msearch, we used GPT-4o-mini and Llama 3.2-3B2

to examine generalization across different archi-
tectures and capacities. In Appendix C.2, we also
report performance using GPT-4o for Mbase.

Following PromptAgent (Wang et al., 2024c),
we set the temperature parameter to 1.0 for
Moptimizer to facilitate the exploration of diverse
prompts, while setting it by 0.0 for Mbase and
Msearch. Meanwhile, for encoding e(x,y), we used
e5-mistral-7b-instruct (Wang et al., 2024a),

2https://huggingface.co/meta-llama/Llama-3.
2-3B-Instruct

19441

https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct

Model Mbase Gorilla MATH Geometric Epistemic Object Temporal Causal Average

Vanilla

GPT-4o
-mini

0.813 0.668 0.465 0.836 0.830 0.906 0.680 0.743
Human 0.872 0.672 0.575 0.824 0.942 0.902 0.680 0.781
APE 0.867 0.675 0.823 0.860 0.922 0.993 0.677 0.831
MoP 0.830 0.669 0.910 0.861 0.942 0.984 0.643 0.834
ProTeGi 0.876 0.675 0.837 0.849 0.958 0.988 0.710 0.842
PromptAgent 0.878 0.679 0.890 0.862 0.966 0.990 0.700 0.852
PA + MoP 0.838 0.683 0.905 0.827 0.957 0.973 0.683 0.838
(Ours) ToP 0.883 0.689 0.915 0.869 0.976 0.993 0.740 0.866

Vanilla

Llama 3.2
-3B

0.286 0.332 0.005 0.220 0.554 0.476 0.290 0.309
Human 0.326 0.356 0.035 0.086 0.412 0.480 0.420 0.302
APE 0.355 0.357 0.197 0.456 0.545 0.697 0.487 0.442
MoP 0.359 0.365 0.475 0.451 0.676 0.651 0.423 0.486
ProTeGi 0.388 0.355 0.237 0.554 0.636 0.690 0.483 0.478
PromptAgent 0.413 0.368 0.188 0.551 0.713 0.715 0.443 0.485
PA + MoP 0.361 0.374 0.432 0.504 0.687 0.721 0.430 0.501
(Ours) ToP 0.470 0.388 0.250 0.559 0.752 0.795 0.500 0.531

Table 1: Overall performance comparisons across different LLMs and different datasets. The best and second-best
performances are highlighted for each Mbase. We used GPT-4o for Moptimizer to ensure quality prompts.

which has shown one of the state-of-the-art per-
formance on clustering tasks in MTEB bench-
mark (Muennighoff et al., 2023).

For hyperparameters of ToP, we set S = 10 and
B = 5 following PromptAgent, while Bsearch =
15 to ensure sufficient diversity across cases for
building psearch. For K, we set K = 2 by default,
since it signifies the if-else branching of conditional
execution, and can represent any set of cases when
used in conjunction with iterative executions via
nested if-else structures. Nevertheless, in practice,
K can be set by any arbitrary number. We report
performance from different K in Appendix C.3,
where K with 2 or 3 often performs best overall.

Baseline We compare our proposed method
with state-of-the-art PO methods, such as
APE (Zhou et al., 2023), ProTeGi (Pryzant et al.,
2023), PromptAgent (Wang et al., 2024c), and
MoP (Wang et al., 2024b). In addition, we com-
pare a baseline that combines PromptAgent and
MoP, denoted by PA+MoP, to contrast with our
hierarchical tree structure for integrating iterative
and conditional PO. Specifically, PA+MoP first par-
titions examples into clusters, as done in MoP, and
then, for each cluster, uses PromptAgent to itera-
tively refine a prompt conditioned on the cluster.

We also compare against a Vanilla prompt
(the initial prompt, p0) and a Human-engineered
prompt, detailed in Appendix A.3. For the vanilla
prompt, which contains only the basic task descrip-
tion, we manually designed the prompt for Gorilla
and MATH, and used the short task description
provided in each dataset for BBH. For the human-

engineered prompt on Gorilla, assuming the pos-
sible cases are known, we added instructions into
the vanilla prompt, that can address all possible
cases. Notably, identifying possible cases may be
infeasible or time-consuming, whereas ToP aims
to automatically identify these cases. For BBH and
MATH, following PromptAgent, we employed the
chain-of-thought prompting (Wei et al., 2022) as
the human-engineered prompt.

4.2 Results

ToP generalizes well across diverse tasks and
different LLMs. Results on overall performance
comparisons are reported in Table 1. MoP, which
incorporates conditional PO, outperforms APE,
which does not, demonstrating the effectiveness
of conditional PO. However, PromptAgent with
iterative refinement often surpasses MoP, highlight-
ing the superior contribution of iterative PO over
conditional PO. Meanwhile, PA+MoP does not con-
sistently outperform PromptAgent, indicating lim-
ited benefits from the naive integration of iterative
and conditional PO. In contrast, ToP’s hierarchical
tree achieves top performance across datasets and
LLMs, except for Geometric with Llama 3.2-3B.
In Appendix C.5, we compare the comprehensive-
ness of the set of optimized prompts, P (i.e., the
leaf prompts in the tree), to those from MoP and
PA+MoP, while decoupling it from the search pro-
cess under the assumption of an oracle search.

In the subsequent paragraphs, we performed de-
tailed analyses using the stronger model, GPT-4o-
mini, and treated the human-engineered prompt as

19442

Model

(a) Disjointness
(in Gorilla)

(b) Complexity
(in MATH)

ANS Not ANS Easy Hard

Human 0.885 0.781 0.820 0.563
MoP 0.843 0.814 0.824 0.555
PromptAgent 0.891 0.784 0.825 0.571
(Ours) ToP 0.903 0.848 0.827 0.588

Table 2: Performance comparisons for disjoint cases –
answerable questions and unanswerable questions, de-
noted by “ANS” and “Not ANS”, respectively – on the
Gorilla dataset, and comparisons across varying diffi-
culty levels on the MATH dataset.

a robust baseline for evaluating automatic PO, with
red highlighting performance below the baseline.

ToP better addresses both disjoint cases and
complex cases. For in-depth evaluations, we
compare models regarding our two primary ob-
jectives: handling (a) disjoint cases and (b) com-
plex cases. These evaluations are conducted using
Gorilla and MATH, which provide annotations spe-
cific to each case type. More precisely, for the eval-
uation on the disjoint cases, we report accuracy on
the two disjoint cases – answerable and unanswer-
able questions – in Gorilla. For the complex cases,
we employ MATH which includes difficulty level
annotations for each question, ranging from Level 1
to 5. To balance the number of evaluation examples,
Levels 1–3 are categorized as easy cases, while
Levels 4–5 are classified as hard cases. For both
evaluation, we compare PromptAgent and MoP as
two representative PO methods for handling each
objective. Results are presented in Table 2, while
more detailed case-by-case comparisons are pre-
sented in Appendix C.4.

Regarding (a) disjointness, PromptAgent shows
minimal improvement on unanswerable questions
(0.784) compared to the human-engineered prompt
(0.781). We argue that the single static prompt used
by PromptAgent is often biased toward the more
frequently observed cases, i.e., answerable ques-
tions which account for 80.6% of the dataset. On
the other hand, MoP, suffering from under-fitting,
underperforms the human-engineered prompt base-
line on answerable questions. In contrast, ToP per-
forms the best for both disjoint cases.

Regarding (b) complexity, while MoP performs
comparably to the human-engineered prompt on
easy questions, it underperforms on harder ques-
tions. We argue that the absence of iterative re-
finements causes MoP to suffer from under-fitting
on complex questions, as reflected in the competi-

Model
BBH Dataset

Geo Epi Obj Tem Cau

Human 0.575 0.824 0.942 0.902 0.680

generation
EP 0.500 0.828 0.866 0.924 0.680
MEP 0.620 0.640 0.498 0.782 0.670
HMAW 0.595 0.788 0.516 0.966 0.540

search
MoP 0.910 0.861 0.942 0.984 0.643
(Ours) ToP 0.915 0.882 0.976 0.993 0.740
(w/ oracle search) (0.930) (0.988) (0.986) (1.000) (0.940)

ablation
ToP w/o CAS 0.895 0.876 0.952 0.986 0.690
ToP (vote) 0.910 0.896 0.968 0.993 0.690

Table 3: Comparing input-specific prompting meth-
ods. “w/o CAS” denotes our ablation model on Case-
Augmented Search. “ToP (vote)” refers to removing the
search and, instead, employing majority voting based on
multiple prompts in P . To reduce space, BBH datasets
are abbreviated using their first three characters.

tive performance of PromptAgent. In contrast, ToP
performs the best for both easy and hard cases.

ToP with case-augmented search facilitates ac-
curate, case-specific prompting. Using BBH
datasets, we evaluate ToP against existing input-
specific prompting methods designed to adaptively
address diverse cases based on inputs. As baselines,
we compare both generation-based and search-
based methods, with ToP belonging to the latter
category. For the generation-based approach, we
compare ExpertPrompting (EP) (Xu et al., 2023),
Multi-ExpertPrompting (MEP) (Long et al., 2024),
and HMAW (Liu et al., 2024), while employing
MoP as the baseline for the search-based approach.
In addition, for in-depth analyses of ToP, we in-
clude ToP with oracle search, representing the
upper-bound performance of ToP, along with two
ablation models as follows. First, we report “ToP
w/o CAS”, which ablates Case-Augmented Search
by replacing psearch with vanilla search prompt, de-
tailed in Appendix A.4. Second, to showcase the
importance of search, we compare “ToP (vote)”,
which excludes search on P but instead employs
majority voting on predictions generated by mul-
tiple prompts in P . Note that this incurs higher
inference costs due to repetitive LLM invocations.
Results are reported in Table 3.

The generation-based methods often underper-
form compared to the human-engineered static
prompt, underscoring the potential drawbacks of
unverified prompts generated at test time. In
contrast, search-based methods, which validate
prompts on the training dataset, demonstrate su-
perior overall performance. In particular, when an

19443

oracle search is assumed, ToP shows much better
performance, suggesting the potential of our PO
method. Among practical search methods, ToP out-
performs MoP and the two ablation models. The
only exception is Epistemic dataset, where ToP
(vote) achieves the best performance. This is be-
cause voting has an advantage in this dataset, which
involves binary classification with only two options
(“entailment” or “non-entailment”), making the ag-
gregated responses from multiple prompts more
likely to converge on the correct answer.

5 Conclusion

We study prompt optimization for LLMs to cater
to a broad distribution of tasks, which may involve
disjoint cases or cases with varying complexity. We
propose Tree-of-Prompts which implements con-
trol flow graphs to address both scenarios. In the ab-
sence of annotated labels for possible cases, we pro-
pose the solution-based clustering method for train-
ing examples and case-augmented search prompt-
ing for test inputs to identify the target cases at both
training and test time. We empirically demonstrate
the effectiveness ToP on Gorilla, MATH, and BBH
benchmarks, outperforming strong baselines such
as PromptAgent and MoP.

Limitations

While our work demonstrates success in optimiz-
ing prompts for accuracy, there are opportunities
for further improvement. Future work could extend
prompt optimization to address multiple objectives
beyond a single task, such as simultaneously im-
proving accuracy and enhancing the safety of out-
puts.

Acknowledgements

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the
Korea Government (MSIT) (RS-2024-00414981)
and ITRC (Information Technology Research Cen-
ter) support program (IITP-2025-2020-0-01789)
supervised by IITP (Institute for Information &
Communications Technology Planning & Evalua-
tion).

References
Frances E. Allen. 1970. Control flow analysis. In Pro-

ceedings of a Symposium on Compiler Optimization,
page 1–19, New York, NY, USA. Association for
Computing Machinery.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning
Wang, Yuxiao Dong, Jie Tang, and Minlie Huang.
2024. Black-box prompt optimization: Aligning
large language models without model training. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3201–3219, Bangkok, Thailand.
Association for Computational Linguistics.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Sophie Henning, William Beluch, Alexander Fraser,
and Annemarie Friedrich. 2023. A survey of meth-
ods for addressing class imbalance in deep-learning
based natural language processing. In Proceedings
of the 17th Conference of the European Chapter of
the Association for Computational Linguistics, pages
523–540, Dubrovnik, Croatia. Association for Com-
putational Linguistics.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Saiful Haq,
Ashutosh Sharma, Thomas T Joshi, Hanna Moazam,
Heather Miller, et al. 2024. Dspy: Compiling
declarative language model calls into state-of-the-art
pipelines. In The Twelfth International Conference
on Learning Representations.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9).

Yuchi Liu, Jaskirat Singh, Gaowen Liu, Ali Payani,
and Liang Zheng. 2024. Towards hierarchical multi-
agent workflows for zero-shot prompt optimization.
arXiv preprint arXiv:2405.20252.

Do Xuan Long, Duong Ngoc Yen, Anh Tuan Luu, Kenji
Kawaguchi, Min-Yen Kan, and Nancy F. Chen. 2024.
Multi-expert prompting improves reliability, safety
and usefulness of large language models. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 20370–20401,

19444

https://doi.org/10.1145/800028.808479
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2024.acl-long.176
https://doi.org/10.18653/v1/2024.acl-long.176
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://doi.org/10.18653/v1/2023.eacl-main.38
https://doi.org/10.18653/v1/2023.eacl-main.38
https://doi.org/10.18653/v1/2023.eacl-main.38
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://aclanthology.org/2024.emnlp-main.1135
https://aclanthology.org/2024.emnlp-main.1135

Miami, Florida, USA. Association for Computational
Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. MTEB: Massive text embedding
benchmark. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 2014–2037, Dubrovnik,
Croatia. Association for Computational Linguistics.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David
Broman, Christopher Potts, Matei Zaharia, and Omar
Khattab. 2024. Optimizing instructions and demon-
strations for multi-stage language model programs.
arXiv preprint arXiv:2406.11695.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang
Zhu, and Michael Zeng. 2023. Automatic prompt op-
timization with “gradient descent” and beam search.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7957–7968, Singapore. Association for Computa-
tional Linguistics.

Revanth Gangi Reddy, JaeHyeok Doo, Yifei Xu,
Md Arafat Sultan, Deevya Swain, Avirup Sil, and
Heng Ji. 2024. First: Faster improved listwise
reranking with single token decoding. arXiv preprint
arXiv:2406.15657.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 14918–14937, Singapore. Association for
Computational Linguistics.

Raphael Tang, Crystina Zhang, Xueguang Ma, Jimmy
Lin, and Ferhan Ture. 2024. Found in the middle:
Permutation self-consistency improves listwise rank-
ing in large language models. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), pages 2327–2340, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024a. Improv-
ing text embeddings with large language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 11897–11916, Bangkok, Thai-
land. Association for Computational Linguistics.

Ruochen Wang, Sohyun An, Minhao Cheng, Tianyi
Zhou, Sung Ju Hwang, and Cho-Jui Hsieh. 2024b.
One prompt is not enough: Automated construction
of a mixture-of-expert prompts. In Proceedings of the
41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning
Research, pages 50043–50064. PMLR.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Hao-
tian Luo, Jiayou Zhang, Nebojsa Jojic, Eric Xing, and
Zhiting Hu. 2024c. Promptagent: Strategic planning
with language models enables expert-level prompt op-
timization. In The Twelfth International Conference
on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Benfeng Xu, An Yang, Junyang Lin, Quan Wang,
Chang Zhou, Yongdong Zhang, and Zhendong Mao.
2023. Expertprompting: Instructing large language
models to be distinguished experts. arXiv preprint
arXiv:2305.14688.

Chengjin Xu, Muzhi Li, Cehao Yang, Xuhui Jiang,
Lumingyuan Tang, Yiyan Qi, and Jian Guo. 2024.
Move beyond triples: Contextual knowledge graph
representation and reasoning. arXiv preprint
arXiv:2406.11160.

Yifan Zeng, Ojas Tendolkar, Raymond Baartmans,
Qingyun Wu, Huazheng Wang, and Lizhong Chen.
2024. Llm-rankfusion: Mitigating intrinsic in-
consistency in llm-based ranking. arXiv preprint
arXiv:2406.00231.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations.

Shengyao Zhuang, Honglei Zhuang, Bevan Koopman,
and Guido Zuccon. 2024. A setwise approach for
effective and highly efficient zero-shot ranking with
large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’24, page 38–47, New York, NY, USA. Association
for Computing Machinery.

19445

https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2024.naacl-long.129
https://doi.org/10.18653/v1/2024.naacl-long.129
https://doi.org/10.18653/v1/2024.naacl-long.129
https://doi.org/10.18653/v1/2024.acl-long.642
https://doi.org/10.18653/v1/2024.acl-long.642
https://proceedings.mlr.press/v235/wang24b.html
https://proceedings.mlr.press/v235/wang24b.html
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-
https://doi.org/10.1145/3626772.3657813
https://doi.org/10.1145/3626772.3657813
https://doi.org/10.1145/3626772.3657813

A Prompts

A.1 Reflection-based Prompt Update
Meta prompts used by Moptimizer for the reflection-
based prompt update are presented in Figure 6.

A.2 Solution Prompt Generation
Meta prompts used by Moptimizer for the solution
prompt generation are presented in Figure 7.

A.3 Manual Prompts
The initial and human-engineered prompts for each
evaluation dataset are presented in Table 15 and
Table 16, respectively.

A.4 Search Prompt Templates
The prompt templates for the vanilla search and our
case-augmented search are presented in Table 17.

B Datasets

B.1 Gorilla
Descriptions and statistics on possible cases for
Gorilla benchmark are reported in Table 18.

B.2 MATH
The statistics on possible cases for MATH are re-
ported in Table 19.

B.3 BBH
The statistics for datasets in BBH benchmark are
presented in Table 20. For detailed illustrations of
diverse cases in each BBH dataset, refer to §C.6.

C Additional Analysis

C.1 Example Diagram of Tree
Figure 5 presents (a) clustering results and (b) per-
formance trajectories of optimized prompts across
iterations from the root node (i.e., p0) to each leaf
node: The cluster for p2 contains training examples
for the two correlated cases, such as “Relevance”
and “Multiple”, where the list of available func-
tions is non-relevant to the given question at all
or partially relevant, respectively. As a result, the
performance trajectory of p0 → p2 shows improve-
ments in the two cases. On the other hand, for the
trajectory of p0 → p1 → p4, the cluster for p1 con-
tains answerable questions (i.e., all cases except
“Relevance”), and the subsequent clustering opti-
mizes p4 more focused on the answers consisting
of multiple function calls in parallel, i.e., “Parallel”
and “Parallel & Multiple” cases. As a result, the

𝑝1

𝑝3

𝑝5

𝑝2

𝑝4

𝑝6

(a) Clustering results during building the tree

(b) Performance trajectories, from the root node to

each leaf node of the tree in (a): 𝑝2 , 𝑝4 , 𝑝5 , 𝑝6 ∈ 𝒫

𝑝0

Leaf prompt: 𝑝2 Leaf prompt: 𝑝5

Leaf prompt: 𝑝6Leaf prompt: 𝑝4

𝑝0 𝑝2

𝑝0 𝑝1 𝑝4

𝑝0 𝑝1 𝑝3 𝑝5

𝑝0 𝑝1 𝑝3 𝑝6

Par & Mul Relevance

ParallelMultipleSimple

Case

𝑝𝑖 → 𝑝𝑗: 𝑝𝑗 is the child

prompt of 𝑝𝑖.

Notation

𝑝0: the initial prompt at

the root node

The root node

Figure 5: (a) Clustering results and (b) the resulting
trajectories of performance from the initial prompt (p0)
to leaf prompts. The numbers in each cell in (a) denote
the number of training examples for different cases. In
(b), the dashed line denotes PromptAgent’s performance
using a single prompt iteratively optimized for all cases.

trajectory shows performance improvements in the
two cases, such that the optimized prompts p2 and
p4 complement each other.

C.2 Evaluation of Frontier Model

In Table 4, we report the performance of the fron-
tier model evaluated using GPT-4o on the Gorilla
benchmark for both Mbase and Moptimizer. Our pro-
posed method, ToP, achieves the best performance,
suggesting that our framework is effective when
applied to larger models.

C.3 Performance from Different K

Table 5 reports the performance of different K,
such as 2, 3, or 4, where K = 2 or K = 3 often

19446

Model
Mbase &
Moptimizer Gorilla

Vanilla

GPT-4o

0.376
Human 0.808
APE 0.894
MoP 0.906
ProTeGi 0.910
PromptAgent 0.917
PA+MoP 0.857
(Ours) ToP 0.925

Table 4: Performance comparison using GPT-4o for
both Mbase and Moptimizer on Gorilla.

K Object Counting Temporal Causal Judge

2 0.976 0.994 0.740
3 0.972 0.998 0.680
4 0.952 0.946 0.690

Table 5: Performance of different K.

shows the best performance overall.

C.4 Detailed Case-by-Case Comparisons

On Gorilla and MATH which include case labels,
we present detailed case-by-case comparisons be-
tween all baselines in Table 6 (Gorilla), Table 7
(subjects in MATH), and Table 8 (difficulty levels
in MATH).

C.5 Comprehensiveness of P on Diverse
Cases

On diverse cases annotated in Gorilla and MATH,
we evaluate the comprehensiveness of the set of
optimized prompts, P , generated by our proposed
method, ToP, compared to those from MoP and
PA+MoP. For this evaluation, we assume an oracle
search, where a prediction is considered correct if
at least one prompt in P produces the correct pre-
dictions. As a baseline, we also compared Promp-
tAgent, which employs a single static prompt (with-
out search) rather than the set of multiple prompts.
Case-by-case comparisons are reported in Table 9
(Gorilla) and Table 10 (MATH).

Among compared models, PromptAgent per-
forms worst, suggesting that the single prompt is
limited in addressing diverse cases. Among meth-
ods optimizing multiple prompts, MoP performs
worst on average accuracy. Due to the lack of iter-
ative refinements, each prompt in P suffers from
under-fitting on its target case. While employing
the same clustering method to MoP, PA+MoP pro-

duces better P outperforming MoP by iteratively
refining a prompt on each cluster and its target case.
However, PA+MoP separately optimizes prompts
for different cases, failing to incorporate common-
alities between related cases (e.g., answerable cases
in Gorilla, such as “Simple”, “Multiple”, “Paral-
lel”, and “Parallel Multiple”, or related subjects
in MATH, such as “Algebra”, “Prealgebra”, and
“Intermediate Algebra”). For instance, for Llama
3.2-3B on Gorilla (Table 9), PA+MoP shows incon-
sistent results between related answerable cases:
While improving performance on “Parallel Mul-
tiple” and “Parallel”, PA+MoP significantly de-
grades performance on “Multiple” and “Simple”
(highlighted in red).

In contrast, by introducing a hierarchical tree
structure allowing siblings’ prompts to share the
preliminary prompt from their parent, ToP achieves
the best average accuracy on both Gorilla and
MATH across all LLMs, and the best accuracy on
9 cases out of 12 for GPT-4o-mini and all cases for
Llama 3.2-3B. This validates that ToP produces a
comprehensive set of prompts that can effectively
address diverse cases.

C.6 Diverse Cases in BBH Datasets

Targeting tasks in BBH benchmark, we present ex-
amples of diverse cases and our optimized prompts
effective for them, in Table 11, Table 12, Table 13,
and Table 143.

Geometric Shape (Table 11) This task aims to
identify the shape of an object drawn using SVG
commands such as “M” (move), “L” (draw a line),
or “A” (draw an arc). Effective strategies depend
on the patterns of these commands. The example in
the first row consists of a single “M” command fol-
lowed by multiple “L” commands. In such simple
cases, an effective strategy can be simply counting
the total number of vertices (e.g., five occurrences
of “L” commands indicate a pentagon.). In contrast,
the second and third examples present more com-
plex and distinct scenarios. Multiple occurrences of
“M” in the second example create sub-paths, while
the “A” command in the third example defines an
arc, resulting in a more intricate shape.

Epistemic (Table 12) The example in the first
row is the simplest, as the entailment between the

3We excluded “Temporal” from consideration because the
vanilla prompt already achieves sufficient accuracy (over 90%
with GPT-4o-mini), rendering the task trivial and making a
single prompt sufficient to address it.

19447

Model Mbase
Diverse cases in API function calling

Relevance Parallel Multiple Parallel Multiple Simple Average

Vanilla

GPT-4o
-mini

0.452 0.807 0.898 0.915 0.938 0.802
Human 0.781 0.790 0.886 0.938 0.926 0.864
APE 0.794 0.760 0.860 0.918 0.941 0.855
MoP 0.814 0.767 0.812 0.892 0.901 0.837
ProTeGi 0.797 0.792 0.886 0.920 0.939 0.867
PromptAgent 0.784 0.812 0.888 0.932 0.932 0.870
PA + MoP 0.671 0.790 0.881 0.926 0.932 0.840
(Ours) ToP 0.848 0.869 0.875 0.915 0.952 0.892

Vanilla

Llama 3.2
-3B

0.336 0.123 0.238 0.452 0.273 0.284
Human 0.329 0.238 0.333 0.468 0.290 0.332
MoP 0.425 0.142 0.156 0.495 0.445 0.333
ProTeGi 0.351 0.107 0.270 0.616 0.486 0.366
PromptAgent 0.387 0.202 0.298 0.495 0.545 0.385
PA + MoP 0.606 0.153 0.270 0.397 0.336 0.352
(Ours) ToP 0.304 0.145 0.349 0.646 0.702 0.429

Table 6: Case-by-case comparisons on Gorilla.

Model Mbase
Subjects in MATH

Algebra
Counting and
Probability Geometry

Intermediate
Algebra

Number
Theory Prealgebra Precalculus Average

Vanilla

GPT-4o
-mini

0.835 0.606 0.641 0.376 0.716 0.841 0.451 0.638
Human 0.818 0.614 0.590 0.436 0.745 0.867 0.415 0.641
APE 0.844 0.591 0.547 0.466 0.681 0.844 0.421 0.628
MoP 0.861 0.606 0.496 0.444 0.674 0.833 0.451 0.624
ProTeGi 0.869 0.598 0.564 0.444 0.660 0.852 0.431 0.631
PromptAgent 0.859 0.629 0.556 0.440 0.681 0.859 0.446 0.639
PA + MoP 0.861 0.606 0.573 0.474 0.695 0.837 0.456 0.643
(Ours) ToP 0.854 0.629 0.607 0.474 0.674 0.856 0.467 0.651

Vanilla

Llama 3.2
-3B

0.482 0.250 0.205 0.141 0.255 0.544 0.138 0.288
Human 0.547 0.182 0.205 0.205 0.319 0.478 0.200 0.305
MoP 0.530 0.250 0.282 0.162 0.312 0.548 0.174 0.323
ProTeGi 0.523 0.288 0.291 0.158 0.234 0.541 0.154 0.313
PromptAgent 0.533 0.288 0.222 0.188 0.319 0.544 0.169 0.323
PA + MoP 0.545 0.250 0.265 0.205 0.305 0.556 0.164 0.327
(Ours) ToP 0.547 0.273 0.291 0.209 0.319 0.559 0.215 0.345

Table 7: Case-by-case comparisons on MATH across different subjects.

premise and the hypothesis can be directly identi-
fied using the vanilla prompt. In contrast, the sec-
ond and third examples are more complex for differ-
ent reasons. For the second example, an effective
prompt should address nested beliefs (e.g., “Ava
assumes that David thinks that ...”). On the other
hand, for the third example, an effective prompt
may explore implications or generalizations (e.g.,
Students who pay attention to a lecture would per-
form listening).

Object Count (Table 13) The example in the
first row corresponds to the simplest case, which
can be addressed by general instructions related
to the task. The examples in the second and third
rows require more complex strategies while being
distinct to each other. For the former, as high-

lighted by blue keywords, an object may appear
multiple times, necessitating an instruction related
to handling plural forms. On the other hand, for
the latter, objects should be first classified to avoid
counting non-relevant objects (e.g., “onion” in the
example) to the question (e.g., “animals”). The
example in the last row is the most challenging,
encompassing both complexities. Our optimized
set of prompts can comprehensively address those
diverse cases with dedicated instructions. Mean-
while, MoP, which relies on semantic similarity,
would fail to cluster those examples into distinct
cases. Instead, examples are likely to be grouped
based on object type (e.g., musical instruments in
one cluster and animals in another), as the object
type reflects the overall semantics of the question.

19448

Model Mbase
Difficulty levels in MATH

Level 1 Level 2 Level 3 Level 4 Level 5 Average

Vanilla

GPT-4o
-mini

0.930 0.792 0.727 0.656 0.455 0.712
Human 0.947 0.792 0.721 0.674 0.452 0.717
APE 0.947 0.812 0.712 0.643 0.466 0.716
MoP 0.947 0.812 0.712 0.638 0.471 0.716
ProTeGi 0.947 0.799 0.748 0.659 0.452 0.721
PromptAgent 0.947 0.795 0.733 0.664 0.479 0.724
PA + MoP 0.939 0.799 0.721 0.674 0.495 0.725
(Ours) ToP 0.947 0.809 0.724 0.682 0.495 0.731

Vanilla

Llama 3.2
-3B

0.658 0.500 0.387 0.279 0.111 0.387
Human 0.711 0.510 0.432 0.326 0.095 0.415
MoP 0.737 0.503 0.429 0.307 0.151 0.426
ProTeGi 0.667 0.514 0.405 0.292 0.161 0.408
PromptAgent 0.746 0.497 0.468 0.313 0.124 0.430
PA + MoP 0.667 0.510 0.474 0.315 0.153 0.424
(Ours) ToP 0.728 0.549 0.447 0.331 0.169 0.445

Table 8: Case-by-case comparisons on MATH across different difficulty levels.

Model Mbase
Diverse cases in API function calling

Relevance Parallel Multiple Parallel Multiple Simple Average

PromptAgent
GPT-4o
-mini

0.813 0.839 0.917 0.943 0.952 0.893
MoP 0.859 0.835 0.928 0.966 0.957 0.909
PA + MoP 0.876 0.860 0.924 0.970 0.957 0.917
(Ours) ToP 0.863 0.947 0.956 0.970 0.986 0.944

PromptAgent
Llama 3.2

-3B

0.606 0.279 0.429 0.664 0.664 0.528
MoP 0.828 0.339 0.476 0.841 0.793 0.655
PA + MoP 0.906 0.396 0.587 0.765 0.706 0.672
(Ours) ToP 0.989 0.470 0.667 0.947 0.908 0.796

Table 9: Case-by-case comparisons on Gorilla, assuming oracle search on the set of optimized prompts P from
MoP, PA+MoP, and ToP, while contrasting them with the single static prompt optimized by PromptAgent. Red
indicates the performance below that of MoP.

Causal Judgement (Table 14) While all three
examples require common-sense reasoning to iden-
tify causality, they differ in the factors needed to
determine it. As disjoint cases, the beliefs or knowl-
edge of the protagonist(s) should be considered for
the first and second examples (e.g., “he knows that
the water has been poisoned” or “Claire has told
Daniel ...”), whereas objective causality in the phys-
ical world should be addressed for the third exam-
ple (e.g., “Someone will win the game if the total
of dice roll is greater than 11 and the coin comes up
heads”). Regarding complexity, the first example
involves direct causality from a single person’s ac-
tion (i.e., “the man pumps the water into the cistern,
such that it will poison and kill the inhabitants.”),
whereas multiple factors may jointly contribute to
the outcome in the second and third examples (i.e.,
“Alex will only win the game if the total of his dice
roll is greater than 11 and the coin comes up heads.”
for the second example, and “If Claire and Daniel

are both logged on at the same time, the computer
will crash.” for the third example), making them
more challenging. Therefore, these diverse cases
should be addressed using different prompts, as
shown by our optimized prompts in the table.

D Potential Risk

As we focus on optimizing prompts primarily for
accuracy, the resulting prompts may generate harm-
ful responses. Future work could extend prompt
optimization to address multiple objectives beyond
a single task, such as simultaneously improving
accuracy and minimizing harmful outputs.

E Usage of AI Assistants

We used ChatGPT for language edits.

19449

Model Mbase
Subjects in MATH

Algebra
Counting and
Probability Geometry

Intermediate
Algebra

Number
Theory Prealgebra Precalculus Average

PromptAgent
GPT-4o
-mini

0.859 0.629 0.556 0.440 0.681 0.859 0.446 0.639
MoP 0.922 0.705 0.726 0.628 0.844 0.922 0.564 0.759
PA + MoP 0.932 0.712 0.735 0.620 0.844 0.930 0.615 0.770
(Ours) ToP 0.954 0.689 0.778 0.684 0.809 0.952 0.631 0.785

PromptAgent
Llama 3.2

-3B

0.533 0.288 0.222 0.188 0.319 0.544 0.169 0.323
MoP 0.788 0.508 0.470 0.359 0.560 0.774 0.385 0.549
PA + MoP 0.796 0.538 0.453 0.380 0.631 0.781 0.369 0.564
(Ours) ToP 0.849 0.636 0.607 0.483 0.645 0.867 0.415 0.643

Table 10: Case-by-case comparisons on MATH across different subjects, assuming oracle search on the set of
optimized prompts P from MoP, PA+MoP, and ToP, while contrasting them with the single static prompt optimized
by PromptAgent. Red indicates the performance below that of MoP.

Task (Geometric Shape): Name geometric shapes from their SVG paths.

Example Prompt

This SVG path element <path d="M 62.00, 89.00
L 36.00, 63.00 L 38.00, 28.00 L 85.00, 35.00 L
90.00, 74.00 L 62.00, 89.00"/> draws a
Option:
(A) circle
(B) heptagon
(C) hexagon
(D) kite
(E) line
(F) octagon
(G) pentagon
(H) rectangle
(I) sector
(J) triangle (Answer: (G) Pentagon)

Identify the geometric shapes from their SVG
paths based on explicit vertex count and geometric
properties.
Guidelines:
1. Count the Vertices: Count the number of dis-
tinct points (vertices) connected by the lines in the
SVG path. ...
2. Shape Identification Rules:
...
- Pentagon: 5 vertices.
- Hexagon: 6 vertices.
...
Confirm the total vertex count matches the shape’s
properties as per the above rules. ...

This SVG path element <path d="M 27.90, 64.74
L 34.84, 44.47 L 47.96, 46.51 L 42.27, 35.46 L
66.92, 43.08 M 66.92, 43.08 L 55.91, 49.64 M
55.91, 49.64 L 56.62, 66.11 L 27.90, 64.74"/>
draws a
Option:
(A) circle
...
(J) triangle (Answer: (B) Heptagon)

Identify the geometric shapes ...
1. Count the Vertices: Identify distinct points
(vertices) in the SVG path, considering sub-paths
(M commands) as part of the single shape unless
they form a new shape. ...
3. Disaggregate Sub-Paths: Treat new sub-paths
(indicated by ’M’) as part of the same shape unless
they form distinguishable different shapes. ...

This SVG path element <path d="M 54.00, 61.00
L 68.40, 56.81 A 15.00, 15.00 0.00 0, 1 51.82,
75.84 L 54.00, 61.00"/> draws a
Option:
(A) circle
...
(J) triangle (Answer: (I) Sector)

Name geometric shapes from their SVG paths by
carefully considering the following details:
1. Arc Commands: Identify if the path uses the
"A" command to form arcs. ... If the radii are
equal, the shape is a circle; otherwise, it is an
ellipse. Determine if the arc forms a complete or
partial loop (e.g., circle vs. sector). ...

Table 11: Examples of diverse cases in “Geometric Shape” task and effective prompts for them. Colors highlight
keywords consistent between examples and their effective prompts.

19450

Task (Epistemic): Determine whether one sentence entails the next.

Example Prompt

Premise: Emma learns that a girl bounces in a
bounce house. Hypothesis: Ava learns that a girl
is bouncing around. (Answer: non-entailment)

Determine whether one sentence entails the next.

Premise: Ava assumes that David thinks that two
men are drumming, one is standing and one is
sitting down. Hypothesis: Ava assumes that two
men are drumming, one is standing and one is
sitting down. (Answer: non-entailment)

Determine whether one sentence entails the next
by analyzing nested beliefs, understanding that an
individual’s perception or memory of another’s
belief implies the truth of that belief. ...

Premise: Isabella sees that a group of attentive
students are paying attention to a college lecture.
Hypothesis: Isabella sees that a group of students
are listening. (Answer: entailment)

Determine whether one sentence entails the next
by analyzing implied contexts, common context
implications, and any generalization from specific
to broader statements. ...

Table 12: Examples of diverse cases in “Epistemic” task and effective prompts for them. Colors highlight keywords
consistent between examples and their effective prompts.

F Artifact Licenses

• Gorilla dataset4: Apache license 2.0

• MATH dataset5: MIT license

• Big-Bench-Hard datasets6: MIT license

4https://huggingface.co/datasets/gorilla-llm/
Berkeley-Function-Calling-Leaderboard

5https://github.com/hendrycks/math
6https://github.com/suzgunmirac/

BIG-Bench-Hard

19451

https://huggingface.co/datasets/gorilla-llm/Berkeley-Function-Calling-Leaderboard
https://huggingface.co/datasets/gorilla-llm/Berkeley-Function-Calling-Leaderboard
https://github.com/hendrycks/math
https://github.com/suzgunmirac/BIG-Bench-Hard
https://github.com/suzgunmirac/BIG-Bench-Hard

Task (Object Count): Count the overall number of all items.

Example Prompt

I have an oven, and a toaster. How many objects
do I have? (Answer: 2)

Count and verify the total number of items by
accurately listing each item first, summing them
up methodically, and providing only the final total.

I have three pianos, a drum, and four trom-
bones. How many musical instruments do I have?
(Answer: 8)

... Thoroughly review the entire input list to ensure
every item is properly counted, including items in
plural forms. ...

I have a mouse, an onion, a pig, a snake, and a
yam. How many animals do I have? (Answer: 3)

Please count the total number of items belonging
to the specified category in the input. Only include
items that match the category given in the question.
For example, if the question asks, "How many
animals do I have?" only count animals.

I have three bears, a fish, a duck, a goat, a donkey,
a cat, a snake, a rabbit, a cow, a potato, and a
chicken. How many animals do I have? (Answer:
12)

Please follow these steps ...
1. **Identify and list all items** of the specified
category (e.g., vegetables, fruits, animals). Ensure
each item is correctly classified as belonging to
the specified category. 2. **Note the quantity of
each item**. Remember to: - Properly account
for multiple quantities of the same item (e.g., "two
chickens" should be noted as 2). - Correctly in-
clude or exclude items based on the specified cate-
gory (e.g., garlic as a vegetable). 3. **Sum all the
quantities** to get the total count. Ensure that: -
All correctly identified items are included in the
final tally. - All quantities are summed accurately,
combining multiple counts of the same item. ...

Table 13: Examples of diverse cases in “Object Count” task and effective prompts for them. Colors highlight
keywords consistent between examples and their effective prompts.

19452

Task (Causal Judgement): Answer questions about causal attribution.

Example Prompt

There is a man who gets paid for pumping water
into a cistern thereby replenishing the supply of
drinking water in a nearby house. Unfortunately
for the inhabitants of the house, the water that the
man is pumping into the cistern today has been
systematically contaminated with a lethal poison
whose effects are unnoticeable until they can no
longer be cured. Even though the man pumping
the water had nothing to do with poisoning the
water, he knows that the water has been poisoned.
Nevertheless, the man pumps the water into the
cistern knowing that it will poison and kill the
inhabitants. But, he doesn’t care at all about the
inhabitants, he simply wants to do his job and
get paid. Did the man intentionally poison the
inhabitants? (Answer: Yes)

Answer questions about causal attribution by eval-
uating primary intentions and accepted, foresee-
able side effects. Direct and inevitable conse-
quences of an action should always be consid-
ered intentional, regardless of the primary inten-
tion. Clarify that personal beliefs or procedural
constraints do not negate the intentionality of ac-
cepted outcomes. Focus on the inevitability and
directness of consequences when determining in-
tentionality, ensuring any direct and foreseeable
outcome of an intentional action is deemed inten-
tional, even if it was not the primary goal.

Claire’s parents bought her an old computer.
Claire uses it for schoolwork, but her brother
Daniel sometimes logs on to play games. Claire
has told Daniel, "Please don’t log on to my com-
puter. If we are both logged on at the same time, it
will crash". One day, Claire and Daniel logged on
to the computer at the same time. The computer
crashed. Later that day, Claire’s mother is talk-
ing with the computer repairman. The repairman
says, "I see that Daniel was logged on, but this
computer will only crash if two people are logged
on at the same time. So, I still don’t see quite
why the computer crashed." Did Daniel cause the
computer crash? (Answer: Yes)

Answer questions about causal attribution by bal-
ancing the focus between immediate, direct ac-
tions and the broader context of events leading to
outcomes. Clearly differentiate between actions
that are jointly sufficient versus those that indepen-
dently cause an outcome. Consider defined roles,
rules, and violations, emphasizing when agents
act within permissions or against guidelines. Ac-
knowledge the chain of events and historical fac-
tors that contribute to outcomes, while ensuring
secondary agents’ contributions are considered ...
Emulate typical human reasoning by attributing
causality ...

Alex will only win the game if the total of his dice
roll is greater than 11 AND the coin comes up
heads. It is very unlikely that he will roll higher
than 11, but the coin has equal odds of coming
up heads or tails. Alex flips the coin and rolls his
dice at exactly the same time. The coin comes up
heads, and he rolls a 12, so amazingly, he rolled
greater than 11. Alex wins the game. Did Alex
win because of the coin flip? (Answer: No)

Answer questions about causal attribution by sys-
tematically analyzing: - Necessary and sufficient
causes for each event ... - Interactions and shared
causation among different conditions. - Incor-
porate insights on how typical people attribute
causality, ... Break down each scenario clearly,
emphasizing common-sense reasoning where re-
sponsibility may be shared or multifactorial.

Table 14: Examples of diverse cases in “Causal Judgement” task and effective prompts for them. Colors highlight
keywords consistent between examples and their effective prompts.

19453

I have candidate prompts designed for a task.

I'm writing prompts for a language model designed for a task.

My current prompt is: {current_prompt, e.g., the initial prompt}

But this prompt gets the following examples wrong:

<1>

The model's input is: {model_input}

The model's response is: {model_response}

The correct label is: {label}

The model's prediction is: {prediction}

<2> …

For each wrong example, carefully examine each question and wrong answer step by step, provide

comprehensive and different reasons why the prompt leads to the wrong answer. At last, based on all

these reasons, summarize and list all the aspects that can improve the prompt.

Reflection Feedback:

I'm writing prompts for a language model designed for a task.

My current prompt is: {current_prompt, e.g., the initial prompt}

But this prompt gets the following examples wrong:

<1>

The model's input is: {model_input}

The model's response is: {model_response}

The correct label is: {label}

The model's prediction is: {prediction}

<2> …

Based on these errors, the problems with this prompt and the reasons are:

{reflection_feedback}

There are a list of former prompts including the current prompt, and each prompt is modified from its

former prompts:

{trajectory_of_prompts}

Based on the above information, please write a new prompt following these guidelines:

1. The new prompt should solve the current prompt's problems.

2. The new prompt should consider the list of prompts and evolve based on the current prompt.

3. The new prompt should be wrapped with <START> and <END>.

The new prompt is:

Prompt Update:

Figure 6: Meta prompts used by Moptimizer for reflection-based prompt update. The generated response from the first
meta prompt is used for “{reflection_feedback}” in the second meta prompt. “{trajectory_of_prompts}” in
the second meta prompt is the list of prompts that have been previously optimized, including “{current_prompt}”.
Both “{model_response}” and “{model_prediction}” present the model’s response to the input. However, the
former (the raw response) also includes intermediate responses, typically providing rationales for the final prediction
and facilitating reflection feedback.

19454

I'm writing instructions for a language model designed for a task.

My current instruction is:

{current_prompt}

But this instruction gets the following example wrong:

The model's input is: {model_input}

The model's response is: {model_response}

The correct label is: {label}

The model's prediction is: {prediction}

There are a list of former instructions including the current instruction, and each instruction is modified

from its former instructions:

{trajectory_of_prompts}

Based on the above information, please suggest a missing instruction, which will be added to the current

instruction, following these guidelines:

1. The missing instruction should address 1 reason why the current instruction could have gotten the

example wrong.

2. The missing instruction should consider the list of former instructions and complement them.

3. The missing instruction should not assume any scenarios beyond the provided example.

4. The missing instruction should be entirely abstract and generalized without providing any specific

examples including the current example.

5. The missing instruction should be wrapped with <START> and <END>.

The missing instruction is:

Solution Prompt Generation for Wrong Example:

I'm writing instructions for a language model designed for a task.

My current instruction is:

{current_prompt}

This instruction gets the following example correct:

The model's input is: {model_input}

The model's response is: {model_response}

The correct label is: {label}

The model's prediction is: {prediction}

There are a list of former instructions including the current instruction, and each instruction is modified

from its former instructions:

{trajectory_of_prompts}

Based on the above information, please identify a missing instruction, which will be added to the current

instruction, following these guidelines:

1. The missing instruction should consider 1 aspect that has not been explicitly covered in the current

instruction but could have helped the model get the example correct.

(Omitting the rest as the same guidelines with the meta prompt above are used)

Solution Prompt Generation for Correct Example:

Figure 7: Meta prompts used by Moptimizer for solution prompt generation. The first and the second meta prompts
target scenarios where Mbase with the current prompt produces a wrong or correct prediction for the example,
respectively. “{trajectory_of_prompts}” is the list of prompts that have been previously optimized, including
“{current_prompt}”. Both “{model_response}” and “{model_prediction}” present the model’s response to
the input. However, the former (the raw response) also includes intermediate responses, typically providing
rationales for the final prediction.

19455

Dataset Initial prompt

Gorilla You are given a question and a set of possible functions in Python language. Generate
function call(s) to answer the question.

MATH Answer the mathematical question.

Geometry Name geometric shapes from their SVG paths.

Epistemic Determine whether one sentence entails the next.

Object Count Count the overall number of all items.

Temporal Answer questions about which times certain events could have occurred.

Causal Judge Answer questions about causal attribution.

Table 15: Initial prompts, containing basic task descriptions, for different datasets.

Dataset Human-engineered prompt

Gorilla You are given a question and a set of possible functions in Python language. Generate
function call(s) to answer the question.
- If the question can be answered with a single function call, avoid generating additional
functions.
- If the question requires multiple functions in parallel, separate them with a comma
and present them in the order they are called.
- Some of the provided functions may not be relevant to the given question. Use only
the relevant function(s).
- If none of the provided functions can address the question, state that “None of the
functions are relevant”.

MATH Please reason step by step.

Geometry Name geometric shapes from their SVG paths. Let’s think step by step.

Epistemic Determine whether one sentence entails the next. Let’s think step by step.

Object Count Count the overall number of all items. Let’s think step by step.

Temporal Answer questions about which times certain events could have occurred. Let’s think
step by step.

Causal Judge Answer questions about causal attribution. Let’s think step by step.

Table 16: Human-engineered prompts for different datasets.

19456

Vanilla Search Prompt You are given multiple candidate prompts used for a language model
for the same task with different focuses. Your goal is to choose the best
prompt that most fits an input.

Candidate Prompts: {prompts}

Input: {input_text}

Output only the best prompt’s identifier, such as “Prompt 1”, without any
additional explanations. Output:

Case-Augmented Prompt You are given multiple candidate prompts used for a language model
for the same task with different focuses. Your goal is to choose the best
prompt that most fits an input.

Candidate Prompts: {prompts}

Input: {input_text}

Instruction: {case_related_instruction}

Output only the best prompt’s identifier, such as “Prompt 1”, without any
additional explanations. Output:

Table 17: Search prompt templates. The example for the case_related_instruction is presented in Figure 4.

19457

Case Description |Dtrain| |Dvalid| |Dtest|
Overall Given a question and a list of available functions, gen-

erate function call(s) to answer the question using the
provided functions.

100 50 1090

Simple The provided list of functions contains only one func-
tion, which is relevant to the given question.
The question can be answered using a single invoca-
tion of the function.

32 16 352

Multiple The provided list of functions contains multiple func-
tions. Some of them are non-relevant to the given
question.
The question can be answered using a single invoca-
tion of the function.

16 8 176

Parallel The provided list of functions contains only one func-
tion, which is relevant to the given question.
The question can be answered using multiple invoca-
tions of the function in parallel.

16 8 176

Parallel Multiple The provided list of functions contains multiple func-
tions. Some of them are non-relevant to the given
question.
The question can be answered using multiple invoca-
tions of the function in parallel.

16 8 176

Relevance The question is unanswerable.
None of the provided functions can answer the ques-
tion.

20 10 210

Table 18: Descriptions for possible cases in Gorilla benchmark and the number of examples in each split for each
case.

19458

Case (Subject) |Dtrain| |Dvalid| |Dtest|
Algebra 111 111 137
Counting and Probability 38 38 44
Geometry 53 53 39
Intermediate Algebra 89 89 78
Number Theory 67 67 47
Prealgebra 91 91 90
Precalculus 51 51 65
Total 500 500 500

Complexity |Dtrain| |Dvalid| |Dtest|
Level 1 37 37 38
Level 2 85 85 96
Level 3 114 114 111
Level 4 141 141 129
Level 5 123 123 126
Total 500 500 500

Table 19: The number of examples in each split for
possible cases and annotated difficulty levels in MATH.

Dataset |Dtrain| |Dvalid| |Dtest|
Geometry 150 150 200
Epistemic 500 150 500
Object Count 300 150 500
Temporal 300 150 500
Causal Judge 90 90 100

Table 20: The number of examples for each split for
each dataset in BBH benchmark. For detailed illustra-
tions of BBH tasks on diverse cases, refer to §C.6.

19459

