Unreal LLM: Towards Highly Controllable and Interactable 3D Scene
Generation by LLM-powered Procedural Content Generation

Song Tang', Kaiyong Zhao?, Lei Wang?, Yuliang Li?
Xuebo Liu?, Junyi Zou?, Qiang Wang?*, and Xiaowen Chu'*
'The Hong Kong University of Science and Technology (Guangzhou)
2XGRIDS
$Harbin Institute of Technology (Shenzhen)
stang428@connect.hkust-gz.edu.cn

Abstract

The creation of high-quality 3D scenes is es-
sential for applications like video games and
simulations, yet automating this process while
retaining the benefits of Procedural Content
Generation (PCG) remains challenging. In
this paper, we introduce UnrealLLM, a novel
multi-agent framework that connects natural
language descriptions with the professional
PCG system (Unreal Engine 5) to automate
scene generation. UnrealLLM constructs a
comprehensive knowledge base to translate text
into executable PCG blueprints and a diverse
asset library that guarantees high-quality scene
generation. Additionally, it also introduces a
text-based blueprint system with a spline-based
control mechanism for geometric arrangement,
enabling natural language interaction and en-
hancing interactivity in 3D environments using
UES’s advanced capabilities. Through exten-
sive experiments, we show that UnrealLLM
achieves competitive performance in technical
metrics and aesthetic quality, offering unique
advantages in generation scale and interactiv-
ity. This work makes a valuable contribution to
automated 3D content creation, benefiting both
novice users and professional designers.

1 Introduction

The creation of high-quality 3D scenes plays a cru-
cial role in various applications, including video
games, simulation, and visual effects production.
These applications demand not only visually ap-
pealing scenes but also functionally complete 3D
environments that can support interaction, simula-
tion, and real-world deployment. While recent ad-
vances in Al-driven content generation have shown
promising results, creating complex, production-
ready 3D scenes still faces various challenges. To
be concrete, current approaches to 3D scene gener-
ation broadly fall into two categories, explicit and
implicit methods. Explicit 3D generation directly

* Corresponding authors.

[ Text Description ] [

o

PCG Content J [ Interactive Application ]

“An underwater world
teems with vibrant coral
reefs, swaying seagrass,
and a dazzling array of
maving life, creating a
breathtaking tapestry of

nature's beautg.”
(¥

“An exploration base on
the Martian surface,
featuring living modules,
solar panels, and a
vobotic explover”

“A forest with trees of

various sizes and. types.
Stumps and rocks

scattered on the ground.” | %8

Figure 1: Scene demonstration of UnrealLLM with high
controllability and interactivity.

generates 3D meshes from descriptions (Chen et al.,
2025; Zhang et al., 2024; Gao et al., 2022; Fu
et al., 2022; Chen et al., 2019; Poole et al., 2022).
Although showing promise in generating individ-
ual 3D objects, they face significant challenges in
terms of quality and scalability when dealing with
scenes comprising multiple assets. On the other
hand, implicit scene generation methods (Wu et al.,
2024; Razzhigaev et al., 2023; Cao et al., 2023;
Saharia et al., 2022; Zhang et al., 2023), despite
recent advances in interactivity demonstrated by
approaches like GameNGen (Valevski et al., 2025)
and GameGenX (Che et al., 2025), primarily fo-
cus on 2D visual rendering. While these methods
can produce visually impressive results, the lack
of explicit 3D representations renders the objects
indecomposable, leading to reduced flexibility and
applicability.

Given these limitations in current approaches,
Procedural Content Generation (PCG) offers a
promising solution by leveraging rule-based spatial
assembly mechanisms and existing high-quality

19417

Findings of the Association for Computational Linguistics: ACL 2025, pages 19417-19435
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics



assets. These systems excel at creating complex,
realistic environments through sophisticated pro-
cedural rules, from natural landscapes with realis-
tic ecological patterns to structured urban environ-
ments with precise spatial arrangements. However,
PCG requires a deep understanding of generation
rules and professional software knowledge, making
it challenging for beginners and time-consuming to
use. To tackle the aforementioned challenges, re-
cent works like 3D-GPT (Sun et al., 2023) and
SceneX (Zhou et al., 2024) have proposed an
instruction-driven approach to 3D scene generation
by combining a large language model (LLM) agent
with procedural generation tools in Blender. While
current methods have effectively collaborated with
human designers to establish procedural genera-
tion frameworks, they encounter some limitations.
Firstly, they depend on Infinigen (Raistrick et al.,
2023), which offers a restricted variety of scene
types and limited styles of 3D resources. Addi-
tionally, their approach of using LLMs to primarily
orchestrate pre-defined Infinigen APIs places inher-
ent limitations on creative potential.

In contrast, Unreal Engine 5 (UE5)' offers a
powerful and flexible ecosystem for procedural
content generation (PCG), enabling users to uti-
lize a diverse range of professional assets from the
Marketplace and leverage advanced technologies
like Nanite, Lumen, and Chaos for high-quality
visuals. Moreover, UE5’s native PCG system fa-
cilitates direct access to node-level scene compo-
sition, presenting opportunities for more dynamic
and innovative content creation. However, how
LLMSs can interface with node-level scene genera-
tion in UES also raises challenges. First, construct-
ing the UES-specific blueprint for scene generation
requires extensive expert knowledge, needing a se-
mantic translation mechanism between natural lan-
guage and node-level PCG workflows. Second, the
fine granularity and high diversity of assets in UES
present efficiency challenges for context-aware re-
trieval across various artistic styles. Finally, ensur-
ing stability and quality in generation demands the
systematic integration of expert knowledge.

The preceding analysis motivates our design of
a UE5-native generation framework, named Unre-
alLLM, which redefines the interaction between
large language models (LLMs) and procedural con-
tent generation (PCG) processes. This novel multi-
agent framework bridges the gap between natural

"https://www.unrealengine.com

language interaction and PCG-based scene gener-
ation. As demonstrated in Figure 1, our frame-
work not only facilitates text-to-scene generation
but also fully interactive environments that support
complex gameplay mechanics like character walk-
ing, swimming, and object destruction, leveraging
UES’s real-time physics and gameplay systems. A
key innovation is the development of a text-based
blueprint representation that allows Al agents to
systematically process and manipulate PCG graphs,
capturing both structural composition and paramet-
ric configurations in a machine-processable and
human-interpretable format. To enhance asset uti-
lization, we construct a rich 3D asset library with
multi-modal representations for context-aware re-
trieval, and we develop a comprehensive PCG
knowledge base encompassing node operations,
parameter configurations, and proven generation
strategies to ensure reliable, high-quality scene gen-
eration. Additionally, we introduce a spline-based
control enhancement that provides precise spatial
control over the generation process, enabling users
to achieve specific aesthetic goals while maintain-
ing procedural efficiency. Our main contributions
can be summarized as follows:

* Reliability: A specialized multi-agent frame-
work where agents collaborate to handle node-
level PCG tasks, supported by a comprehen-
sive knowledge base of PCG expertise to en-
sure generation reliability and quality.

* Diversity: A multi-modal asset library and
context-aware retrieval system that empow-
ers our framework to generate virtually any
type of 3D scene while maintaining consistent
artistic styles and high visual quality.

* Interactivity: A novel text-based blueprint
representation that enables seamless interac-
tion between natural language and profes-
sional PCG operations, while supporting rich
gameplay interactivity in generated scenes
through UES’s physics and gameplay systems.

2 Related Works

Procedural 3D Content Generation. Procedu-
ral Content Generation (PCG) has emerged as
a powerful paradigm for automated 3D content
creation, with applications spanning both natu-
ral and urban environments. Early works estab-
lished strong foundations in natural scene genera-
tion (Zhang et al., 2019; Gasch et al., 2022), while

19418


https://www.unrealengine.com

parallel efforts developed sophisticated urban plan-
ning frameworks (Talton et al., 2011; Lipp et al.,
2011; Vanegas et al., 2012; Yang et al., 2013).
These approaches typically rely on carefully crafted
mathematical rules and parameters to guide the
generation process. Procedural modeling of cities
(Parish and Miiller, 2001) pioneered city genera-
tion through boundary-aware procedural rules, ef-
fectively handling street layouts and building ar-
rangements via L-system-based algorithms that in-
corporate environmental constraints and procedural
generation patterns. Recent advances like Infinigen
(Raistrick et al., 2023) have pushed the boundaries
of procedural generation, enabling the creation of
diverse, realistic 3D natural objects and scenes
through sophisticated algorithmic techniques.
However, these systems generally require ex-
tensive technical expertise to operate effectively,
limiting their accessibility to non-expert users. Our
work addresses this challenge by introducing a nat-
ural language interface to PCG systems while main-
taining their powerful generation capabilities.

Text-to-3D Scene Generation Recent advances
in text-to-image synthesis have catalyzed signifi-
cant developments in text-guided 3D content cre-
ation. Early approaches explored vision-language
models for generation guidance (Jain et al., 2022),
followed by the development of Score Distillation
Sampling techniques that enabled the adaptation
of 2D generative models for 3D content synthesis
(Poole et al., 2022; Wang et al., 2023a). The field
has witnessed diverse explorations in representa-
tion formats, ranging from neural implicit repre-
sentations (Metzer et al., 2023; Mildenhall et al.,
2021) to optimized mesh-based approaches (Lin
et al., 2023; Chen et al., 2023). Researchers have
addressed generation consistency through various
strategies, including multi-view synthesis methods
(Shi et al., 2023; Ye et al., 2024) and advanced
distillation techniques (Wang et al., 2023b). Paral-
lel efforts have focused on single-view reconstruc-
tion (Huang et al., 2023; Liu et al., 2023) and spe-
cialized applications in shape synthesis (Yu et al.,
2024b; Erkog et al., 2023) and domain-specific gen-
eration (Sarafianos et al., 2025). However, existing
approaches face challenges in creating production-
quality 3D scenes, particularly in terms of struc-
tural organization and asset quality. Our work ad-
dresses these limitations by integrating natural lan-
guage understanding with established PCG systems
and high-fidelity asset libraries.

3 Method

3.1 Rule-based Procedural Generation

Procedural content generation (PCG) systems of-
fer a powerful approach to 3D content creation
through their sophisticated rule-based spatial as-
sembly mechanisms. As illustrated in Figure 2,
these systems fundamentally operate through se-
quential steps: target space sampling, 3D pose
transformation, composition, filtering, and asset
selection. The core workflow involves iterative
interactions between these operations, which col-
lectively define the spatial rules for scene gener-
ation. To enable Al agents to effectively under-
stand and manipulate these complex PCG work-
flows, we need a systematic way to represent them
in a machine-processable format.

Step 1

Target Space
Determination
&

Spatial Sampling

Step 2

Step 3

Points
Transformation
&
Filtering

Assets Selection
&
Spawning

Figure 2: A simple workflow demonstration of PCG
(Procedural Content Generation). This image showcases
how a realistic plate of dumplings can be generated
through simple steps.

3.2 Text-based PCG Blueprint Representation

The effective automation of PCG systems requires
a standardized and efficient representation of pro-
cedural generation logic. While traditional node-
based PCG systems rely on visual programming
interfaces, we propose a text-based blueprint rep-
resentation that enables systematic processing and
manipulation by Al agents. This representation cap-
tures the structural composition and parametric con-
figurations of PCG graphs in a format that is both
machine-processable and human-interpretable, and
critically, enables generation and manipulation by
Large Language Models (LLMs).

Our blueprint representation maintains a hierar-
chical structure mirroring PCG graphs. The key
innovation is a structured, JSON-based Domain-
Specific Language (DSL). This DSL bridges nat-
ural language to technical PCG configurations by
precisely defining core Unreal Engine Blueprint

19419



Stage-1: User Input

Stage -2:Scene Analysis

s

“Stepping into this 3D space is like entering a
A rden, where gﬂ: sunlight H‘leers"g ]
dancs

ag
through tree leaves,

\}
o 1
/ v e with the Formal Scene |;
¥ breezs, and a faint floral aroma fills the air. Scene Analyst Description : Assets Retriever Query Text
1
e T et . | —rB
u::g.mm Mﬂkﬁd;m U‘t Q '/ \ : Target Scene’s : - - - E
breeze, a faint floral aroma the air. 1. As an expert in Unreal 1 Ki -
Everything s 5 sorens . 1 ey Elements L] e
= S : et (] . S5 Y (o
hell -
- 1 2 Su,ge,.m..o,. system : : o PCG Generatio Multi-modal NN Embeddings Vector DB
“W wfmssmwz is rer's paradise! clud i
e fH wrh:ﬂ:.; -i?;rns ::msh ! glPrsaesse ‘asses whether 1 : Guidance
rujng i-u —everywhere holds | our system can meet 1
meawnm wmtmg to be unveiled by mes” [N
| 1
\

1
ereneses .+ Sketch Prompt i . . eud I <
S -\ %% (Conditional) B S
kS Assets List

\Various Language Style Description /

{ . . .
| Stage-5: Gen&Valid [ -~ — = — === Stage-4:Domain Knowledge Retrieval
Interactive 3D Scenes I\ — Assets List & \ e -
1 - Blueprint Instruction I / \\
v < > Generator O ) ] Node Expert I
1 | According to the scene analysis |
1 and your PCG abount <
: | ;;Zr(; m::(;s configuration, : 'f ;rle\lle;i
A
2Dy, RAG | : \_ Y, p N fs nfo 1
alr Bv y
Pattern Expert N
1 Pa ttern Quei
1 ry
CcoT Promptlng ’l | ﬁA::oyr\;TrgpuC)gle soeneanalys\s ¥ > PCG Knowledge
abount PCG blueprint's < _ Base
______ | connections pattems,... | Retrieved
BV _J+ Pattern Info
Detail Check&\lalldatioy S ——— Z

Figure 3: Overview of our multi-agent PCG automation framework. The system comprises five specialized agents
working in coordination: the Scene Analysis agent processes natural language inputs into structured specifications,
the Asset Manager handles 3D content retrieval through cross-modal matching, while two Expert agents (Node
Expert and Pattern Expert) provide technical guidance through retrieval-augmented generation. The Blueprint
Generator integrates all inputs to construct the final PCG graph, which is then converted to executable Unreal Engine
blueprints.

elements (e.g., nodes, connections, parameters)
and allows for bidirectional conversion with UE’s
native Blueprint format. This design facilitates

scene descriptions, structured element lists, and
strategic generation guidance. This standardized
output ensures consistent interpretation of scene

efficient processing and automated generation of
blueprints by Al agents, supporting template-based
approaches and enabling LLMs to effectively ma-
nipulate PCG logic.

3.3 Multi-agent Framework for PCG
Automation

Based on our text-based blueprint representation,
we develop a multi-agent framework to automate
the PCG graph construction process. The multi-
agent framework decomposes complex PCG ex-
pertise into specialized domains, enabling reliable
scene generation through collaborative problem-
solving. Our framework orchestrates five agents
in a coordinated pipeline to transform natural lan-
guage descriptions into executable PCG graphs.
They are Scene Analyst, Asset Manager, Node Ex-
pert, Pattern Expert and Blueprint Generator.

Scene Analyst At the entry point, the Scene An-
alyst processes user inputs into technically precise
specifications, addressing the challenge of varying
user expression styles by producing standardized

requirements while preserving creative intent.

Asset Manager The Asset Manager operates on
a comprehensive 3D asset library that we con-
structed from MegaScan’s free assets and Obja-
verse (Deitke et al., 2023) dataset. For each asset
in our library, we first establish a rich multi-modal
representation through automated annotation and
encoding. The annotation process leverages a multi-
modal large language model to generate detailed
descriptions:

T(A) = LLM(V (A), M(A)) (1)
where V(A) = {v1,...,v,} represents a set of
rendered views from different angles, and M (A)
contains basic metadata including technical speci-
fications, material properties, and usage contexts.
These multi-modal features are encoded into visual
FE, and textual F; embedding spaces:

[Ev(A), Ey(A)] = [CLIP(V (A)), CLIP(T(A))]  (2)

19420



1

Target 2D/3D space

2

Random/Regularized

Spatial Sampling
&

Randomized
Scattering Generation
Pattern

& &
Hyper-parameters | | Spatial points filtering

setting

3

Assets spawning
&

Poses adjustment

Figure 4: Demonstration of our multi-agent system’s
generation pattern based on spatial sampling and ran-
dom distribution.

The Asset Manager follows a sophisticated work-
flow to ensure optimal asset selection. Initially,
through prompt engineering, the agent develops a
comprehensive understanding of the asset library’s
scope and categories. When receiving input from
the Scene Analysis agent, including scene descrip-
tions and element requirements, it leverages this
knowledge to formulate effective natural language
queries. For a given query g, the retrieval score is
computed as:

S(A,q) = Aicos(Eq, Et(A)) + Av cos(Eq, Ev(A)) (3)

where \; and ), are weights balancing the contribu-
tion of visual and text modality. For each query, the
vector database returns top-k most similar assets.
The agent then evaluates these candidates against
the original scene description, considering both se-
mantic appropriateness and technical constraints,
to select the most suitable assets. Finally, it orga-
nizes the selected assets into a structured text for
other agents in the scene generation process.

Node Expert and Pattern Expert Our frame-
work incorporates two specialized expert agents
that leverage comprehensive PCG knowledge bases.
These knowledge bases, carefully curated by expe-
rienced PCG specialists and UE experts, contain
proven generation strategies and technical spec-
ifications. The expert agents employ retrieval-
augmented generation (RAG) (Lewis et al., 2020)
to bridge the gap between natural language scene
descriptions and domain-specific PCG knowledge,
ensuring reliable generation guidance.

The Node Expert agent maintains a comprehen-
sive knowledge base of PCG nodes and their ap-
plications, documenting node behaviors, parameter
spaces, and connection patterns. This knowledge is
encoded into a dense vector space using specialized
technical embeddings:

1

Matrix formulation &
Hyper Parameters
Setting

2

Random/Regularized
Transformation

Matrix / Grid
Generation Pattern

Assets Spawning
& Pose Adjustment

Figure 5: Demonstration of our multi-agent system’s
generation patterns based on matrices and regularized
spatial grids.

1

Source Mesh
Generation at
specific point

Surface sampling
of source mesh

Surface Sampling

& Generation Pattern
Attribute filtering

Assets Spawning
&

Pose Adjustment

Figure 6: Demonstration of our multi-agent system’s
generation patterns based on mesh surface sampling.

Kpoge(n) = Encode(D(n), P(n), C(n)) (€]

Each PCG node n’s knowledge representation
Kpode(n) is computed by encoding three key com-
ponents: D(n) representing the node’s technical
documentation and usage guidelines, P(n) contain-
ing valid parameter ranges and recommended con-
figurations, and C'(n) describing possible connec-
tion patterns with other nodes. When processing
scene requirements, the agent employs semantic
retrieval to identify relevant node configurations:

R(q) = TopK(Sim(E(q), Knode)v k) ()

For a given query ¢ derived from scene require-
ments, this equation retrieves the top k most rele-
vant node configurations by computing similarity
scores between the query embedding F(q) and the
encoded node knowledge Kpoge-

Working in parallel, the Pattern Expert agent
manages a library of proven PCG strategies and
architectural templates, focusing on higher-level
generation patterns that have demonstrated effec-
tiveness in various scene types. Through careful cu-
ration of successful PCG implementations, we have

19421



“I envision a scene where a
medieval town, surrounded
by dense forests, has a dirt
path running through it.”

oC

I
1
1
1
1
Sketch 1
Agent :

1 Draw a large circle to
] represent the extent of the
forest and a small circle to. |
I represent the town. The. |
| small circle is inside the
Scene large circle, and there isa |
Analyst | road passing through the 1
town within the forest,
| ndicated by a ine

N
1

Figure 7: Demonstration of spline-based scene generation control through a medieval town example. The system
utilizes boundary splines for forest and town areas, and a path spline for the dirt road. These splines, generated by
SketchAgent with semantic labels, serve as geometric controls for PCG blueprint generation.

established a comprehensive pattern library that en-
ables diverse generation capabilities. As shown
in Figure 4, our system supports spatial sampling
with randomized distribution, ideal for natural scat-
tered elements like lotus on water or birds in sky.
Figure 5 demonstrates our matrix-based generation
patterns, enabling precise structural arrangements
such as organized space fleets and gridded town lay-
outs. For complex environmental detailing, Figure
6 showcases our surface-based sampling patterns,
allowing sophisticated combinations like flowers
on terrain or vines on walls. The Pattern Expert
leverages these established patterns through a struc-
tured retrieval and composition process, where the
pattern selection score Spatern (q) for a given query
q is computed as:

Spattem (q ) = Retrieve(q, Lpattern) : ComPOSC(Gscene) (6)

where Lpaern s the expert-curated pattern library,
and Glene represents the scene generation goals de-
rived from the Scene Analysis agent’s output. The
Retrieve function identifies relevant patterns from
the library, while Compose combines these pat-
terns according to the specific scene requirements.
Based on this score, the Pattern Expert selects the
most suitable generation patterns and determines
how to combine them for optimal scene composi-
tion. The collaborative interaction between these
expert agents ensures both technical correctness
and generation intent preservation. The Node Ex-
pert validates technical specifications while the Pat-
tern Expert guides the overall generation strategy.

Blueprint Generator Given the combined exper-
tise flows from both the Node Expert and the Pat-
tern Expert, the Blueprint Generator integrates their
recommendations to construct the final PCG graph.
The Blueprint Generator leverages advanced large
language models (LLMs) like GPT-40 and Claude
3.5, known for their enhanced capabilities in han-
dling complex information streams and generating
structured outputs, to effectively process multiple
information streams from preceding agents: the
structured asset catalog from Asset Manager, tech-
nical specifications from Node Expert, and gener-
ation strategies from Pattern Expert. During the
construction process, it maintains a feedback loop
with Expert agents for iterative refinement. The
final output is encoded in our text-based represen-
tation format and converted to executable Unreal
Engine PCG blueprints through our custom plugin.

3.4 Spline-based Control Enhancement

While our multi-agent framework enables diverse
scene generation through PCG rules, achieving pre-
cise spatial control requires additional guidance
mechanisms. We address this by incorporating
spline-based control into our system, leveraging
the SketchAgent approach (Vinker et al., 2024) to
automatically generate control splines from natural
language descriptions. As illustrated in Figure 7,
this approach enables intuitive geometric control
over complex scene layouts through various spline
primitives: distribution paths for asset placement,
terrain feature shaping, density variation control,
and environmental zone boundaries. For example,
our medieval town scene demonstrates the power

19422



[ SceneX - Realistic ] [

UnrealLLM - Realistic

] [ unrealLtm-stylized ] [  unreallLM-LowPoly |

Figure 8: Comparison of scene generation capabilities. From left to right: SceneX’s photorealistic results and our
method’s results in photorealistic, stylized, and low-poly styles. Each row shows a different scene type (forest,
desert, town). Our approach demonstrates enhanced diversity by supporting multiple artistic styles.

Instruction Node KB Pattern KB Example ER@1 SR@1
v 19.5 12.2
v 39.0 36.6
v v 56.1 49.0
v v v 63.4 53.6
v v v v 75.6 732

Table 1: Ablation study of different prompt components
for 3D scene generation.

of this approach through the orchestration of multi-
ple spline controls: boundary splines define forest
and town areas, while path splines determine road
trajectories, collectively creating a cohesive envi-
ronment. The system represents splines in a hier-
archical format that captures both geometric and
semantic information, allowing users to fine-tune
generated scenes through control point adjustments
while maintaining the intended scene structure.

4 Experiments

Metrics. We use multiple metrics to evaluate the
performance of our system. For technical assess-
ment, we adopt Executability Rate (ER@1) and
Success Rate (SR@1), where ER@1 measures the
proportion of proposed actions that can be executed
in the PCG system, and SR@1 evaluates the cor-
rectness of these actions (Chen et al., 2021). To
quantify aesthetic quality, we employ the GPT Aes-
thetic Score (GAS), extending the aesthetic evalua-

Method ER@] SR@I]
gpt-3.5(Brown et al., 2020) 58.6 41
gpt-4o(Achiam et al., 2023) 68.2 63.4
ol-mini(Jaech et al., 2024) 83.0 78
ol(Jaech et al., 2024) 75.6 73.2

Claude3.5 Sonnet(Anthropic, 2024)  80.1 70.8

Table 2: Comparison of different models’ ER and SR as
the Blueprint Generator

tion methodology from SceneX (Zhou et al., 2024).
While SceneX relies on human assessors for aes-
thetic scoring, we leverage large language models
to provide consistent evaluation across different
methods. Additionally, we employ CLIP (Radford
et al., 2021) similarity to evaluate the semantic
alignment between generated scenes and input text
descriptions. Following established practices (Lin
et al., 2023; Zhou et al., 2024), the CLIP similarity
is computed as the cosine similarity between CLIP
embeddings of rendered scene views and the input
text descriptions, providing a quantitative measure
of how well the generated content matches the in-
tended design.

4.1 Experimental Setup

Dataset. To evaluate our system, we curated a test
set of over 40 diverse scene generation scenarios,
covering natural landscapes (forests, mountains,
coastlines), towns (buildings, villages), and fantasy
scenes (magical forests, alien landscapes). Each

19423



Method GAS?T
DreamFusion (Poole et al., 2022)  4.83
Magic 3D (Lin et al., 2023) 6.39
WonderJ (Yu et al., 2024a) 7.38
Infinigen (Raistrick et al., 2023) 6.61
3D-GPT (Sun et al., 2023) 6.76
SceneX (Zhou et al., 2024) 7.31
Ours 7.71

Table 3: Comparative analysis of GPT Aesthetic Scores.

Method ViT-L14 ViT-B/161 ViT-B/321
Magic 3D (Lin et al., 2023) 27.86 31.78 31.94
DreamFusion (Poole et al., 2022) 29.40 35.37 31.60
Text2Room (Hollein et al., 2023)  23.51 30.10 29.29
WonderJ (Yu et al., 2024a) 18.78 25.70 25.45
BlenderGPT 21.23 25.65 26.19
3D-GPT (Sun et al., 2023) 18.67 25.80 25.59
SceneCraft (Hu et al., 2024) 22.04 25.82 25.30
SceneX (Zhou et al., 2024) 22.82 27.82 26.89
Ours 26.34 3249 3141

Table 4: Comparative analysis of text-image similarity
predicted by different CLIP models.

scenario is designed to test different aspects of our
system’s generation capabilities.

4.2 Results and Analysis

Ablation Studies. We conduct ablation studies
to evaluate our prompt template’s different com-
ponents. As shown in Table 1, each component
contributes positively to the system’s performance.
The components include: Instruction (basic task
description and requirements), Node KB (technical
knowledge about PCG nodes and operations), Pat-
tern KB (proven generation strategies and patterns),
and Example (reference scenes with similar gener-
ation logic). Using instruction alone yields modest
results (ER@1: 19.5%, SR@1: 12.2%), while in-
corporating Node KB significantly improves per-
formance (ER@1: 39.0%, SR@1: 36.6%). The
full system with all components achieves the best
results (ER@1: 75.6%, SR@1: 73.2%).

Model Comparison. We evaluate different lan-
guage models as the Blueprint Generator, as shown
in Table 2. While GPT-3.5 shows moderate per-
formance (ER@1: 58.6%, SR@1: 41.0%), GPT-
40 achieves better results (ER@1: 68.2%, SR@1:
63.4%). More recent models demonstrate even
stronger capabilities, with ol-mini achieving the
best overall performance (ER@1: 83.0%, SR@1:
78.0%), followed by Claude 3.5-Sonnet (ER@1:
80.1%, SR@1: 70.8%) and ol (ER@1: 75.6%,
SR@1: 73.2%).

Generation Diversity. As shown in Figure 8, our
approach demonstrates superior flexibility in scene

Magic3D DreamFusion InfiniGen SceneX 3D-GPT  Ours

Text Guidance v v x v v v
Parameter Control x x v v v v
Spline Control X X v X X v
Game Interaction X X X X X v
Generation Scale limited limited unlimited unlimited unlimited unlimited

Table 5: Feature comparison of different methods (v':
supported, x: unsupported).

generation compared to existing methods. While
SceneX can only generate photorealistic scenes due
to its reliance on Infinigen’s fixed asset pipeline,
our framework supports multiple artistic styles
including photorealistic, stylized, low-poly, and
other styles. This enhanced diversity is enabled
by our comprehensive asset library and flexible
PCG blueprint system, allowing for versatile scene
creation across different environment types.
Feature Comparison. We further analyze different
methods’ capabilities in Table 5. While most meth-
ods support text guidance, our approach uniquely
combines parameter control, spline-based control,
and game interaction capabilities. This comprehen-
sive feature set, coupled with unlimited generation
scale, enables more flexible and practical scene cre-
ation. Notably, we are the first to support direct
game interaction with generated scenes, allowing
for dynamic gameplay mechanics like character
movement and object interaction.

Aesthetic Quality and Comparative Analysis.
We compare our method with state-of-the-art ap-
proaches using both aesthetic and technical metrics,
as shown in Tables 3 and 4. Our method achieves a
GAS of 7.71, surpassing previous methods includ-
ing SceneX (7.31), 3D-GPT (6.76), and Infinigen
(6.61). While methods like Magic3D and DreamFu-
sion show higher CLIP similarity scores across dif-
ferent ViT models, this is primarily because these
methods incorporate text-to-image alignment in
their training or optimization process. In contrast,
our approach focuses on generating functionally
complete 3D scenes with diverse artistic styles and
interactive capabilities, while maintaining compet-
itive semantic alignment with input descriptions.
This comprehensive capability set, coupled with
strong aesthetic scores, demonstrates our system’s
effectiveness in creating both visually appealing
and functionally complete 3D scenes.

5 Conclusion

In this paper, we present a novel multi-agent frame-
work that bridges natural language interaction with
professional PCG systems in Unreal Engine 5. Our
approach combines large language models with pro-

19424



cedural generation techniques through text-based
blueprint representation and comprehensive knowl-
edge bases, enabling intuitive control over scene
generation. Experimental results demonstrate our
system’s effectiveness in technical reliability, aes-
thetic quality, and gameplay interactivity. We be-
lieve our work represents a significant step toward
democratizing professional PCG systems, benefit-
ing both novice users and professional designers in
automated 3D content creation.

Limitations

While our framework demonstrates promising re-
sults, there are several limitations worth noting.
First, the system’s performance heavily relies on
the quality and coverage of our PCG knowledge
base. For novel or unconventional scene types
not well-represented in our knowledge base, the
generation quality may be compromised. Second,
although our multi-modal asset library supports di-
verse scene generation, the system is still bounded
by the available assets. Creating scenes with highly
specific or unique artistic requirements might be
limited by the asset collection. Additionally, while
our framework supports basic gameplay interac-
tions, implementing complex, multi-step interac-
tion patterns or specialized gameplay mechanics
may require manual adjustments to the generated
scenes. Finally, the multi-agent architecture and
comprehensive knowledge retrieval process can
be computationally intensive, potentially affecting
real-time performance in resource-constrained en-
vironments.

Ethics Statement

Our research aims to democratize professional 3D
content creation while maintaining high-quality
standards. We recognize the computational inten-
sity of our system and its potential environmental
impact, and future work should focus on optimizing
resource usage and reducing energy consumption.
While our system makes PCG more accessible, we
ensure transparency about its capabilities and limi-
tations to prevent misuse or unrealistic expectations.
Regarding content usage, our asset library is built
using a combination of properly licensed content
from MegaScan’s free assets, the Objaverse dataset,
and commercially licensed assets from the Unreal
Engine Marketplace, with all assets being used
in accordance with their respective license agree-
ments and attribution requirements. Furthermore,

we actively work to ensure our knowledge base and
asset library represent diverse artistic styles and
cultural perspectives, avoiding potential biases in
scene generation. Through these considerations,
we strive to develop a system that not only ad-
vances technical capabilities but also adheres to
ethical principles in Al-driven content creation.

Acknowledgements

This work was partially supported by National Nat-
ural Science Foundation of China under Grant No.
62272122, the Guangzhou Municipal Joint Fund-
ing Project with Universities and Enterprises under
Grant No. 2024A03J0616, Guangzhou Municipal-
ity Big Data Intelligence Key Lab (2023A03J0012),
and Hong Kong CRF grants under Grant No.
C7004-22G and C6015-23G.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv:2303.08774.

Al Anthropic. 2024. Claude 3.5 sonnet model card
addendum. Claude-3.5 Model Card, 3(6).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Proc. of NIPS, pages 1877-1901.

Tingfeng Cao, Chengyu Wang, Bingyan Liu, Ziheng
Wu, Jinhui Zhu, and Jun Huang. 2023. Beautiful-
Prompt: Towards automatic prompt engineering for
text-to-image synthesis. In Proc. of EMNLP, pages
1-11.

Haoxuan Che, Xuanhua He, Quande Liu, Cheng Jin,
and Hao Chen. 2025. Gamegen-x: Interactive open-
world game video generation. In Proc. of ICLR.

Kevin Chen, Christopher B Choy, Manolis Savva,
Angel X Chang, Thomas Funkhouser, and Silvio
Savarese. 2019. Text2shape: Generating shapes from
natural language by learning joint embeddings. In
Proc. of ACCV, pages 100-116.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large language
models trained on code. arXiv:2107.03374.

Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia.
2023. Fantasia3d: Disentangling geometry and ap-
pearance for high-quality text-to-3d content creation.
arXiv:2303.13873.

19425



Zhaoxi Chen, Jiaxiang Tang, Yuhao Dong, Ziang Cao,
Fangzhou Hong, Yushi Lan, Tengfei Wang, Haozhe
Xie, Tong Wu, Shunsuke Saito, et al. 2025. 3dtopia-
x1: Scaling high-quality 3d asset generation via prim-
itive diffusion. arXiv:2409.12957.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca
Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and
Ali Farhadi. 2023. Objaverse: A universe of anno-
tated 3d objects. In Proc. of CVPR, pages 13142—
13153.

Ziya Erkog, Fangchang Ma, Qi Shan, Matthias NieBner,
and Angela Dai. 2023. Hyperdiffusion: Generating
implicit neural fields with weight-space diffusion. In
Proc. of ICCV, pages 14300-14310.

Rao Fu, Xiao Zhan, Yiwen Chen, Daniel Ritchie, and
Srinath Sridhar. 2022. Shapecrafter: A recursive text-

conditioned 3d shape generation model. In Proc. of
NIPS, pages 8882-8895.

Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and
Sanja Fidler. 2022. Get3d: A generative model of
high quality 3d textured shapes learned from images.
In Proc. of NIPS, pages 31841-31854.

Cristina Gasch, José Sotoca, Miguel Chover, Inmac-
ulada Remolar, and Cristina Rebollo. 2022. Pro-
cedural modeling of plant ecosystems maximizing
vegetation cover. Multimedia Tools and Applications,
81:16195-16217.

Lukas Hollein, Ang Cao, Andrew Owens, Justin John-
son, and Matthias Niefner. 2023. Text2room: Ex-
tracting textured 3d meshes from 2d text-to-image
models. In Proc. of ICCV, pages 7909-7920.

Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf,
Yisong Yue, David A Ross, Cordelia Schmid, and
Alireza Fathi. 2024. Scenecraft: An llm agent for
synthesizing 3d scenes as blender code. In Proc. of
ICML, pages 19252—-19282.

Yangyi Huang, Hongwei Yi, Yuliang Xiu, Tingting Liao,
Jiaxiang Tang, Deng Cai, and Justus Thies. 2023.
Tech: Text-guided reconstruction of lifelike clothed
humans. In Proc. of 3DV, pages 1531-1542.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai ol system card. arXiv preprint
arXiv:2412.16720.

Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter
Abbeel, and Ben Poole. 2022. Zero-shot text-guided
object generation with dream fields. In Proc. of
CVPR, pages 867-876.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation

for knowledge-intensive nlp tasks. In Proc. of NIPS,
pages 9459-9474.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki
Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis,
Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. 2023.
Magic3d: High-resolution text-to-3d content creation.
In Proc. of CVPR, pages 300-309.

Markus Lipp, Daniel Scherzer, Peter Wonka, and
Michael Wimmer. 2011. Interactive modeling of city
layouts using layers of procedural content. Computer
Graphics Forum, 30:345-354.

Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Zexi-
ang Xu, Hao Su, et al. 2023. One-2-3-45: Any single
image to 3d mesh in 45 seconds without per-shape
optimization. In Proc. of NIPS, pages 22226-22246.

Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes,
and Daniel Cohen-Or. 2023. Latent-nerf for shape-
guided generation of 3d shapes and textures. In Proc.
of CVPR, pages 12663-12673.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
2021. Nerf: Representing scenes as neural radiance
fields for view synthesis. Communications of the
ACM, 65:99-106.

Yoav Parish and Pascal Miiller. 2001. Procedural mod-
eling of cities. In Proc. of SIGGRAPH, volume 2001,
pages 301-308.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben
Mildenhall. 2022. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv:2209.14988.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In Proc. of ICML,
pages 8748-8763.

Alexander Raistrick, Lahav Lipson, Zeyu Ma, Lingjie
Mei, Mingzhe Wang, Yiming Zuo, Karhan Kayan,
Hongyu Wen, Beining Han, Yihan Wang, et al. 2023.
Infinite photorealistic worlds using procedural gener-
ation. In Proc. of CVPR, pages 12630-12641.

Anton Razzhigaev, Arseniy Shakhmatov, Anastasia
Maltseva, Vladimir Arkhipkin, Igor Pavlov, Ilya
Ryabov, Angelina Kuts, Alexander Panchenko, An-
drey Kuznetsov, and Denis Dimitrov. 2023. Kandin-
sky: An improved text-to-image synthesis with image
prior and latent diffusion. In Proc. of EMNLP, pages
286-295.

Chitwan Saharia, William Chan, Saurabh Saxena,
Lala Li, Jay Whang, Emily L Denton, Kam-
yar Ghasemipour, Raphael Gontijo Lopes, Burcu
Karagol Ayan, Tim Salimans, et al. 2022. Photo-
realistic text-to-image diffusion models with deep
language understanding. In Proc. of NIPS, pages
36479-36494.

19426



Nikolaos Sarafianos, Tuur Stuyck, Xiaoyu Xiang, Yilei
Li, Jovan Popovic, and Rakesh Ranjan. 2025. Gar-
ment3dgen: 3d garment stylization and texture gen-
eration. arXiv:2403.18816.

Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie
Li, and Xiao Yang. 2023. Mvdream: Multi-view
diffusion for 3d generation. In Proc. of ICLR.

Chunyi Sun, Junlin Han, Weijian Deng, Xinlong Wang,
Zishan Qin, and Stephen Gould. 2023. 3d-gpt: Pro-
cedural 3d modeling with large language models.
arXiv:2310.12945.

Jerry O Talton, Yu Lou, Steve Lesser, Jared Duke,
Radomir Mech, and Vladlen Koltun. 2011. Metropo-
lis procedural modeling. ACM Transactions on
Graphics, 30:1-14.

Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi
Fruchter. 2025. Diffusion models are real-time game
engines. In Proc. of ICLR.

Carlos Vanegas, Tom Kelly, Basil Weber, Jan Halatsch,
Daniel Aliaga, and Pascal Miiller. 2012. Procedural
generation of parcels in urban modeling. Computer
Graphics Forum, 31:681-690.

Yael Vinker, Tamar Rott Shaham, Kristine Zheng, Alex
Zhao, Judith E Fan, and Antonio Torralba. 2024.
Sketchagent: Language-driven sequential sketch gen-
eration. arXiv preprint arXiv:2411.17673.

Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A
Yeh, and Greg Shakhnarovich. 2023a. Score jaco-
bian chaining: Lifting pretrained 2d diffusion models
for 3d generation. In Proc. of CVPR, pages 12619—
12629.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao,
Chongxuan Li, Hang Su, and Jun Zhu. 2023b. Pro-
lificdreamer: High-fidelity and diverse text-to-3d gen-
eration with variational score distillation. In Proc. of
NIPS, pages 8406-8441.

Zongyu Wu, Hongcheng Gao, Yueze Wang, Xiang
Zhang, and Suhang Wang. 2024. Universal prompt
optimizer for safe text-to-image generation. In Proc.
of NAACL, pages 6340—6354.

Yong-Liang Yang, Jun Wang, Etienne Vouga, and Pe-
ter Wonka. 2013. Urban pattern: layout design by
hierarchical domain splitting. ACM Transactions on
Graphics, 32:1-12.

Jianglong Ye, Peng Wang, Kejie Li, Yichun Shi, and
Heng Wang. 2024. Consistent-1-to-3: Consistent
image to 3d view synthesis via geometry-aware dif-
fusion models. In Proc. of 3DV, pages 664—674.

Hong-Xing Yu, Haoyi Duan, Junhwa Hur, Kyle Sargent,
Michael Rubinstein, William T Freeman, Forrester
Cole, Deqing Sun, Noah Snavely, Jiajun Wu, et al.
2024a. Wonderjourney: Going from anywhere to
everywhere. In Proc. of CVPR, pages 6658—6667.

Zhengming Yu, Zhiyang Dou, Xiaoxiao Long, Cheng
Lin, Zekun Li, Yuan Liu, Norman Miiller, Taku Ko-
mura, Marc Habermann, Christian Theobalt, et al.
2024b. Surf-d: High-quality surface generation for
arbitrary topologies using diffusion models. In Proc.
of ECCV, pages 419-438.

Jian Zhang, Chang-bo Wang, Hong Qin, Yi Chen, and
Yan Gao. 2019. Procedural modeling of rivers from
single image toward natural scene production. The
Visual Computer, 35:223-237.

Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu,
Anqgi Pang, Haoran Jiang, Wei Yang, Lan Xu, and
Jingyi Yu. 2024. Clay: A controllable large-scale
generative model for creating high-quality 3d assets.
ACM Transactions on Graphics, 43:1-20.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023.
Adding conditional control to text-to-image diffusion
models. In Proc. of ICCV, pages 3836-3847.

Mengqi Zhou, Yuxi Wang, Jun Hou, Chuanchen Luo,
Zhaoxiang Zhang, and Junran Peng. 2024. Scenex:
Procedural controllable large-scale scene generation
via large-language models. In Proc. of AAAI, pages
10806-10814.

19427



A PCG Fundamentals

To better understand our system’s foundation, we
introduce the basic principles and workflow of Pro-
cedural Content Generation (PCG). PCG systems
operate through a series of well-defined steps that
transform simple primitives into complex, orga-
nized content. At its core, PCG in Unreal Engine
is implemented as a node-based system, as demon-
strated in Figure 9. Each node in the system repre-
sents a specific operation or rule, with parameters
that can be fine-tuned to control the generation pro-
cess. The workflow proceeds from left to right,
with nodes processing and passing data to subse-
quent nodes, allowing for intuitive creation and
modification of generation logic. This visual pro-
gramming interface enables developers to construct
sophisticated generation systems while maintaining
precise control over each step of the process.

The power of PCG systems lies in their abil-
ity to handle content generation at various scales
of complexity. As illustrated in Figure 10, PCG
can generate content ranging from simple individ-
ual elements to complex, hierarchically structured
scenes. The figure demonstrates this scalability
through a progression from a single tree to a cluster
of trees, and finally to a structured forest with mul-
tiple layers of organization. As the target scene’s
complexity increases, the generation logic can be
accordingly expanded and refined. This flexibility
allows developers to construct appropriate gener-
ation rules based on the specific requirements of
their target scenes, whether simple or complex.

To provide a concrete understanding of the PCG
workflow, Figure 11 breaks down the generation
process using a simple yet illustrative example of
creating a plate of dumplings. This step-by-step
demonstration reveals the typical components of
a PCG pipeline: initial sampling and projection
of the target space to establish the basic layout,
3D pose transformation to create natural variation,
composition rules to ensure proper arrangement,
filtering to maintain realistic constraints, and fi-
nally, asset selection and generation to produce the
final result. Each step builds upon the previous
ones, demonstrating how simple geometric opera-
tions can progressively create realistic and visually
appealing arrangements.

Through these examples, we can see that PCG
systems provide a powerful and flexible framework
for automated content generation. The combination
of node-based visual programming, scalable com-

plexity handling, and well-defined generation steps
enables the creation of diverse and sophisticated
3D content while maintaining precise control over
the generation process. This foundation is crucial
for understanding how our system leverages PCG
capabilities to transform natural language descrip-
tions into interactive 3D environments.

B Evaluation Process

Our evaluation process consists of two main com-
ponents: GPT Aesthetic Score (GAS) assessment
and CLIP similarity computation. For GAS eval-
uation, we employ a carefully designed prompt
template to ensure consistent aesthetic assessment:

You are an art critic evaluating the
aesthetic quality of a rendered image.
Please analyze the image and provide
a score from 1 to 10, where:

1-2 (Poor): Serious issues with
composition, colors, or details

3-4 (Below Average): Notable problems
affecting viewing experience

5-6 (Average): Basic aesthetic quality,
balanced but not unique

7-8 (Good): High quality with
sophisticated composition

9-10 (Excellent): Outstanding artistic
quality and impact

You MUST provide your response in
exactly this format:

Score: [X]1/10

Analysis: [Your detailed analysis
covering composition, colors, technical
quality, and artistic impact]

The GAS evaluation process is designed to as-
sess multiple aspects of scene quality, including
composition, lighting, material quality, and overall
artistic impact. As shown in Figure 13, our system
consistently achieves high scores across different
scene types, with particularly strong performance
in natural environments and architectural scenes.
The evaluation results demonstrate that our sys-
tem can maintain high aesthetic standards while
handling diverse generation requirements.

For semantic alignment evaluation, we imple-
ment a comprehensive CLIP-based similarity com-
putation process, as detailed in Figure 14. Our
implementation utilizes different clip models to en-
code both rendered images and text descriptions

19428



Get Landscape Data

.l

[\
Transform Points

] out

w

Trangform Pointa
n ot

w

Self Pruning

5

" Difference “Difference ("Static Mesh Spawner

out @] —= @

-

Self Pruning Static Mesh Spawner
n out

w

("Static Mesh 5 paw n-ér

out
" Difference

("Static Mesh Spavner
out

v

Figure 9: Example of a PCG system implementation in Unreal Engine, showing the node-based workflow that
enables procedural scene generation. The visual programming interface allows for intuitive creation and modification

of generation rules.

Figure 10: Demonstration of PCG’s capability in han-
dling varying complexity: from a single tree (left) to a
cluster of trees (middle), and finally to a hierarchically
structured forest (right), showing how PCG can scale
from simple elements to complex scene compositions.

into a shared embedding space. The computa-
tion process includes several key steps: image pre-
processing to ensure consistent input format, text
prompt normalization, and cosine similarity cal-
culation between the resulting embeddings. To
handle multiple viewpoints of each scene, we com-
pute similarities for multiple rendered views and
aggregate the results.

Figure 12 presents a detailed analysis of CLIP
similarity scores across our test scenarios. The
results show consistently high alignment between
generated scenes and their corresponding text de-
scriptions. This strong performance is maintained
across different scene categories, from simple nat-
ural environments to complex architectural com-
positions. Notably, our system achieves higher
scores for scenes with distinct visual elements and
clear spatial relationships, demonstrating its abil-
ity to accurately interpret and implement spatial

and stylistic requirements from natural language
descriptions.

C Text Representation of PCG Scenes

Following the discussion of PCG fundamentals and
our evaluation process, this section further elabo-
rates on the text-based PCG blueprint representa-
tion, a core mechanism of UnrealLLLM introduced
in Section 3.2. This representation method is piv-
otal in bridging the natural language understanding
capabilities of Large Language Models (LLMs)
with the complex Procedural Content Generation
(PCG) system in Unreal Engine 5 (UES). Figure 15
visually presents several excerpts of such textual
representations alongside the corresponding scenes
generated in UES, offering a concrete look at its
structure and output.

As detailed in Section 3.2, our representation
employs a JSON-based Domain-Specific Language
(DSL) for the textual depiction of PCG blueprints.
The choice of JSON is primarily motivated by two
key considerations.

Firstly, the structured nature of JSON allows for
precise programmatic parsing, facilitating reliable
bidirectional conversion with UES blueprints. Our
custom UES plugin is designed to parse informa-
tion defined in the JSON text, such as nodes, their
parameters (or settings), and connections. This
information is then accurately mapped and trans-
formed into the internal PCG blueprint structures
and corresponding parameter configurations within
the UES engine. Significantly, this design supports
the bidirectional conversion between our textual
representation and UE’s native blueprint format, as

19429



Step 2

Plate surface
possion sampling

setting

Step 1

Plate mesh spawning
& Table surface
projection

Hyper-parameters

Normal vector
based points
filtering

Step 4

Poses radomization
&
Dumpling assets
spawning

Figure 11: A simple workflow demonstration of PCG (Procedural Content Generation). Typically, PCG steps
include: sampling and projection of the target space, 3D pose transformation, composition, filtering, and asset
selection and generation. This image showcases how a realistic plate of dumplings can be generated through simple

steps.

Underilater?-JellyFish.png:

Prompt: A lively underwater scene with vibrant pink jellyfish gliding among lu
sh green seaweed, bathed in blue light with diffused sunlight and coral textur
es.

Similarity: 8.2556

Underilaters-JellyFish.png:

Prompt: A group of translucent pink jellyfish float gracefully in deep blue wa
ter, illuminated by soft ambient light, with realistic aquatic textures and ge
ntle surface ripples.

Similarity: 8.3372

Underilatere-Fishes.png:

Prompt: A clear underwater scene features a school of small fish in vibrant bl
ue water, with sunlight dappling through and casting soft shadows on the sandy
seabed.

Similarity: 8.3285

Average similarity: 8.3141
Highest similarity: ©.3882
Lowest similarity: ©.2556
Standard deviation: @.8278

Figure 12: CLIP similarity scores across test scenar-
ios, demonstrating strong alignment between generated
scenes and input descriptions.

Evaluating image 2: Brickialla-Vines.png
Evaluating image. ..

Score: 7/10

Analysis:

The composition of the rendered image depicts a stone wall that is skillfully entuined with greenery, creating a visually pleas
ing contrast betueen the rugged texture of the stones and the softness of the foliage. The use of natural elements enhances the
overall appeal, giving a sense of life and onganic growth.

The colors are well-balanced, with earthy tones in the stone contrasting effectively with the vibrant green of the plants. This
color scheme adds warmth and invites the vieuer to appreciate the natural beauty depicted.

In terms of technical quality, the detailing on both the stones and leaves is commendable, lending a realistic look to the elen
ents. However, there could be improved variation in the shades of green and stone textures to add depth.

Artistically, uhile the image is high quality and evokes a sense of tranquility, it may lack a unique perspective or dramatic
lair that would elevate it further. Some additional dynamics or narrative elements could enhance its inpact. Overall, a solid r
endering with good aesthetic qualities.

Score: 7.6/10.8

Evaluating image 3: Deserti-Realistic.png
Evaluating image. ..

Score: 6/10

Analysis:

The rendered inage captures a desert landscape with a defined sense of environment, shoucasing sandy dunes and sparse vegetatio
n. The composition is relatively balanced, with the placement of rocks and dry shrubs contributing to the overall scene. Houeve
r, the inage lacks dynanic elements or focal points, which could enhance its visual interest.

Color-uise, the warm tones of orange and beige effectively convey a dry and arid atmosphere, though they can feel one-dimension
al. There’s a subtle variation in shading and texture that adds depth, but the overall palette could benefit fron more contrast
ing colors to evoke a stronger emotional response.

Technically, the details in the vegetation and dunes are commendable, and the serene nature of the landscape is conveyed well.
However, the artistic impact is diminished due to the lack of a narrative or vivid subject matter. Overall, it presents a decen
t yet average aesthetic quality that could shine with more inventive composition and color interplay.

Score: 6.6/10.8

Figure 13: Example GAS evaluation results across dif-
ferent scene types, showing consistent aesthetic quality
assessment.

def load_prompts(json_file="human_prompts_inputs.json"}):
with open(json_file, 'r’, encoding="utf-8') as f:
return json.load(f)

def compute_similarities():
print("Loading CLIP model...")
model = SentenceTransformer(’clip-ViT-B-32")
print("Loading prompt data...")
prompts = load_prompts()
similarities = {}
scores = []
image_folder = "RendersForEvaluation”
print("\nStarting to compute similarities...”
for image_name, prompt in prompts.items():
Try:
image_path = os.path.join(image_folder, image_name)
img_emb = model.encode(Image.open(image_path))
text_emb = model.encode([prompt])
cos_score = float(util.cos_sim(img_emb, text_emb)[e@][&])
similarities[image_name] = cos_score

scores.append({cos_scaore)
print(f"{image_name}:")
print(f"Prompt: {prompt}")
print(f"similarity: {cos_score:.4f}\n")
except Exception as e:
print(f"Error processing {image_name}: {str{e)}in")
continue
if scores:
average_score = np.mzan(scoras)
print(f"\nAverage similarity: {average_score:.4f}")
print(f"Highest similarity: {max(scores):.4f}")
print(f"Lowest similarity: {min(scores):.4f}")
print(f"Standard deviation: {np.std(scores):.4f}"})
else:
print("No similarity scores were computed")

Figure 14: Implementation of CLIP similarity computa-
tion, showing the process of encoding and comparing
scene renders with text descriptions.

19430



mentioned in Section 3.2. We have implemented
this bidirectional capability using custom parsers
that extract and preserve the hierarchical structure
of nodes, execution flows, and data dependencies.
This opens up possibilities for LLMs to understand
and edit existing PCG assets, or for visually con-
structed blueprints in UES to be exported into a
textual format for further processing by LLMs.

Secondly, the JSON format is highly compati-
ble with current Large Language Models. As a
widely adopted standardized data interchange for-
mat, JSON’s concise syntax and clear hierarchical
structure are well-suited for LLM processing and
generation. Many advanced LLMs, such as GPT-
40 and Claude 3.5 as utilized in our framework
(see Section 3.3), are capable of directly produc-
ing structured JSON output. Even smaller mod-
els can achieve high accuracy and conformance
in JSON generation through techniques like con-
strained decoding. This LLM-friendliness greatly
facilitates the task of the Blueprint Generator agent
within the Unreal LLM framework, enabling it to
construct and modify PCG logic textually based on
analytical and planning outcomes. This structured
intermediate format is also crucial for effectively
constraining and validating LLM outputs, thereby
enhancing the accuracy and reliability of the gener-
ated content.

Typically, this JSON text includes a top-level ob-
ject describing the entire PCG graph. Its core con-
tent generally comprises an array of nodes, where
each node object defines its type (e.g., Surface-
Sampler, StaticMeshSpawner), a unique identifier
within the graph (NodeID), and a parameters (or
settings) object containing parameters specific to
that node type. Examples include model asset paths
(e.g., MeshEntries) for a static mesh spawner, or
point density (e.g., PointsPerSquareMeter) for
a surface sampler, as illustrated in Figure 15 (left
column). Additionally, an array of connections
is included to define the input-output relationships
between nodes, thereby establishing the data flow
and logical execution order of the PCG graph.

This carefully designed textual representation en-
ables LLM agents to systematically define, modify,
and iterate on PCG logic without needing to di-
rectly interact with UES’s complex visual program-
ming interface. This lowers the barrier for LLMs
to drive professional-grade PCG tools and provides
a solid foundation for achieving more fine-grained
and flexible automation of procedural content gen-
eration. Once the LLM has generated or modi-

fied the blueprint text in JSON format, our custom
plugin converts it into executable PCG blueprints
within the UES engine (as described in Section
3.3), which subsequently generate the desired 3D
scenes.

D More Generations

To demonstrate the versatility and capabilities of
our UnrealLLM system, we present an extensive
collection of generated scenes across various en-
vironments and styles. Figure 16 showcases our
system’s ability to interpret diverse natural lan-
guage inputs, from underwater environments with
detailed marine vegetation to fairytale villages with
atmospheric lighting. Each scene demonstrates not
only visual fidelity but also complete interactiv-
ity, allowing users to explore and interact with the
generated environments.

Figure 17 and Figure 18 extends this demon-
stration with specialized environments that high-
light our system’s technical capabilities. These
include challenging scenarios such as: underwater
ecosystems with complex caustic lighting, large-
scale space fleet formations in cosmic settings, styl-
ized forest environments requiring coordinated vi-
sual aesthetics, and maritime scenes with realistic
water surface interactions. Notably, all generated
environments support rich gameplay interactions
ranging from basic character navigation to com-
plex physics-based responses, particularly evident
in spacecraft formation controls and water surface
physics simulations.

19431



[ Text Representation of PCG Blueprint ] [ Generated Scenes J

“PLGGraph” :
~description™: "A wall consists of concret bricks®,
“nodes™: |
“GetsplineData_0"
“sattings”
“Actorselector™: {
“Actorfilter”: "Self”

“input_pins”
“output_pinsT: |
"out”: {
“type™: "Poly”,
“connected”: true,

“connections®: [
~splineSampler_1.Spline™

Brick |
Wa" 'épuncsuolu-,r

“settings™
"SamplerParams™: |
“Dimension™: “OnSpline”,
"Mode": "Distance”,
“DistanceIncrement™: 10.8,
“InteriorDensityFalloffCurve™:
“ExternalCurve™: null

“PCGGraph™: |
“description™: “MossyStump with wild grass onto its surface °,
“nodes”™: |

“GetActorData_8": |
“settings™:
“ActorSelector™: |
“ActorFilter®: “self”

- “input_pins®: {},
“output_pins®: {
"out™: |
“type™: "Point”,
“connected™: true,

Mossy TeERA
Stump ]

"StaticMeshSpawner 1": |
“settings":
“MeshSelector™: {
“MeshSelectorType™: ~PCGMeshSelectordeighted”,
“MeshEntries”: [

\ “PCGGraph™:
“description”: "A realistic forest”
“nodes”:
"GetLandscapeData_8"
"settings":

“SamplingProperties™: |
“bGetHeightonly”: false,
“bGetLayerbieights™: true,
“bGetActorReference”: false,
“bGetPhysicalMaterial”: false,
“bGetComponentCoordinates”: false

“input_pins™:
Forest S
“out®: {
“type": "Landscape”,
“connected”: true,
“connections”: [“SurfaceSampler 1.Surface”,"SurfaceSampler 2.Surf

"SurfaceSampler_1":
“settings”:

\ / “PointsPerSquaredMeter™: 1.0,

Figure 15: Examples of our JSON-based text for PCG blueprints (left) and the 3D scenes they generate in Unreal
Engine 5 (right). These snippets show how PCG nodes, parameters, and connections are structured.

19432



f

“I want to ereate a scene of
a lotus pond, with various
lotus flowers floating on the
water's surface—some fully
bloomed and others partially
opened —survounded by
patehes of lily pads of
different sizes and shapes.”

“I want to create an
exploration base on the
surface of Mavs, featuring
living modules, robotic
explorers, solar panels, and
other equipment.”

(o

“A wind-powered sailboat
gliding across the ocean's
surface, surrounded by a
flurry of seagulls soaring
around it.”

»
“An underwater world

teems with vibrant coral
reefs, swaying seagrass, and
a dazzling array of marine

life, creating a breathtaking
tapestry of nature's beauty.”

“A faivytale-style village
surr-ourr?ded by %rees, u'?ith
meadows lush with a variety
of blooming flowers and
greenery.”

“A lush bamboo grove scene,
with the ground ¢overed in
wild grasses and shrubs,
and leaves gently falling
from the trees.”

Figure 16: Our UnrealLLM converts natural language input from users into a variety of interactive 3D scenes,
enhancing the ease of use of programmatic content generation technology

19433



"Add some large rocks to the surface of the Martian environment to enhance the realism of the scene, along W|th
smaller rocks scattered around them."

"Construct a Mars exploration base on the surface, featuring living modules, solar panels, and a robotic explorer "

"Please add a layer of gravel as the seabed in this underwater environment, and then create some corals and
marine plants like seagrass on the riverbed."

"To make this underwater environment more vibrant, please add some marine life, such as schools of fish being
chased by sharks, swarms of glowing jellyfish, and ocean fish swimming around the coral reefs."

Figure 17: Demonstration of text to 3D scenes.

19434



[ "Create a cosmic space with astarry skies and the planets. Then, generate a fleet of spacecraft within this cosmic

space, arranged in a dense formation."

"Add a water droplet probe as described in the 'Three-Body Problem' novels, and add a tail flame ring to it, as if it ’
is moving at high speed."

"I want to create a fairy-tale like forest, with a ground cover of colorful flowers, herbaceous plants, and shrubs, as
well as trees of varying heights."

"Generate a wind-powered sailboat on the water surface, as if it is sailing along. To add vitality, have flocks of
seagulls flying around and following the sails."

Figure 18: Demonstration of text to 3D scenes.

19435



