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Abstract

Recent progress in large vision-language mod-
els (LVLMs) has shown substantial potential
across a broad spectrum of third-person tasks.
However, adapting these LVLMs to egocen-
tric scenarios remains challenging due to their
third-person training bias. Existing methods
that adapt LVLMs for first-person tasks of-
ten overlook critical agent-environment inter-
actions, limiting their ability to perform ego-
centric reasoning. To address these challenges,
we propose a novel zero-shot paradigm termed
Front-Door Adjustments with Uncertainty Cal-
ibration (FRUIT) to enhance the egocentric
reasoning abilities of LVLMs by simulating hu-
man causal reasoning. Specifically, the FRUIT
operates in two stages: observation and un-
derstanding. Unlike conventional prompting
techniques, we formalize egocentric reason-
ing using a structural causal model. Then, we
ground interaction regions and expand them
into hierarchical visual cues, augmented with
corresponding captions, to form the initial ob-
servations. To reduce noise in these observa-
tions, we employ uncertainty calibration to fil-
ter out unreliable information. These refined
observations as mediators are then incorpo-
rated into the prompt template, guiding the
model to understand semantics from a first-
person perspective. Extensive experiments con-
ducted on the EgoThink benchmark demon-
strate that our FRUIT method consistently en-
hances the performance of existing LVLMs
on six distinct tasks. Our code is available at
https://github.com/Mrshenshen/FRUIT.

1 Introduction

Recently, large vision-language models (LVLMs)
(Bai et al., 2023; Zhu et al., 2024) have made signif-
icant progress in third-person scene understanding
tasks (Li et al., 2023b, 2024a). Meanwhile, the
growing research interest in egocentric tasks has
driven the expansion of LVLMs into domains such
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Figure 1: Illustrative examples of existing problems:
the recent LVLM MiniGPT4 (Zhu et al., 2024) fails to
accurately focus on human-object interactions and rec-
ognize the object held in the right hand as a phone rather
than a suitcase. Such results exemplify the limitations
of existing LVLMs in egocentric reasoning.

as intelligent agents (Liu et al., 2024b) and wear-
able devices (Zhang et al., 2024b).

However, the shift towards egocentric tasks,
which requires models to interpret the dynamic
interactions between agents and their environment
from the subjective viewpoint of the agent, exposes
limitations inherent in current LVLMs. These limi-
tations stem from a critical mismatch: LVLMs typ-
ically trained on third-person data, lack the mech-
anisms necessary to prioritize agent-environment
interactions that are crucial for egocentric reason-
ing. Such reasoning is essential for applications
like intelligent agents and wearable devices.

Existing approaches generally adopt two primary
strategies: 1) fine-tuning models on egocentric
datasets (Kukleva et al., 2024), typically limited
to specific egocentric tasks; 2) applying prompt
engineering techniques (Lin et al., 2024). How-
ever, both paradigms share a fundamental limita-
tion: they fail to adequately explore the underlying
causal relationships from a first-person perspective,
i.e., how actions, events, and contextual factors in-
teract to produce specific outcomes. This drawback
leads to suboptimal egocentric reasoning ability
(Cheng et al., 2024) across a broad spectrum of
first-person tasks. (Wang et al., 2023; Li et al.,
2022). As shown in Figure 1, the recent LVLM
MiniGPT4 (Zhu et al., 2024) fails to accurately rec-
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Figure 2: Pipeline representation through Causal Model-
ing: (a) The Structural Causal Model including prompt
input X, Output O and latent confounder L; (b) The
proposed Egocentric Front-Door Adjustment that helps
model better reason from a first-person perspective.

ognize object interactions and understand spatial
relationships from a first-person perspective, as it
does not prioritize active objects in the agent’s view,
missing key contextual cues for effective reasoning.
To address this problem, inspired by the two-
stage reasoning of human cognition (Clark, 2013),
i.e., first gathering interaction-centric observa-
tions and then deriving contextual understand-
ing, we propose a novel paradigm termed Front-
Door Adjustments with Uncertainty Calibration
(FRUIT) for enhancing the egocentric reasoning
abilities of LVLMs. The FRUIT consists of two
key stages: 1) Mediated Observation: Introducing
hierarchical egocentric interaction cues as causal
mediators, such as human-object affordance visual
grounding, effectively circumventing the confound-
ing biases from third-person training. 2) Contextual
Understanding: The model refines its understand-
ing by focusing on key observations, making more
accurate and context-driven reasoning decisions.
Specifically, as illustrated in Figure 2(a), instead
of conventional prompting methods (Lin et al.,
2024), we first capture the causal relationships be-
tween input prompts and outputs through a Struc-
tural Causal Model (SCM). Building upon this, as
shown in Figure 2(b), we propose an Egocentric
Front-Door Adjustment to introduce hierarchical
multi-modal egocentric cues as mediated observa-
tions within the LVLM reasoning pipeline, using
the grounding model (Liu et al., 2023c). Moreover,
to reduce the influence of noise in cues, we develop
an Uncertainty Calibration Mechanism to select
reliable egocentric cues. Following the front-door
criterion (Shanmugam, 2001), such cues are treated
as mediator variables C' between prompt X and out-
put O, with latent confounder edges L omitted for
simplicity. This framework enables the model to
focus its reasoning on interaction-centric observa-
tions while maintaining a comprehensive under-

standing of the global semantic context. We evalu-
ate our FRUIT method on the EgoThink benchmark
dataset (Cheng et al., 2024). Extensive experimen-
tal results prove that our method can consistently
improve the egocentric reasoning ability of existing
LVLMs on six various egocentric tasks.

Our contributions can be summarized as fol-
lows: 1) We propose a novel paradigm named
Front-Door Adjustments with Uncertainty Calibra-
tion (FRUIT) to improve the egocentric reasoning
ability of LVLMs by simulating the two-stage rea-
soning process in human cognition: observation
and understanding. 2) We propose an Egocentric
Front-Door Adjustment (EFDA) scheme to intro-
duce mediated observation, which aims to guide
the model in focusing on the human-object interac-
tion, thus reasoning from a first-person perspective.
3) We design an Uncertainty Calibration Mecha-
nism (UCM) to effectively filter out unreliable cues
by modeling their inherent uncertainty.

2 Related Work

Large Vision-Language Models. Initially con-
fined to natural language processing, LLMs have
recently extended their capabilities to multi-modal
tasks, particularly through the development of
Large Vision-Language Models (LVLMs) (Chen
et al., 2024; Su et al., 2023). These models typ-
ically undergo a two-stage training process: pre-
training for feature alignment and instruction-based
fine-tuning, enabling them to achieve strong per-
formance across tasks like visual question answer-
ing (Wang et al., 2024), object detection (Li et al.,
2024b), and image segmentation (Li et al., 2024c¢).
While most LVLM evaluations are designed based
on third-person data, emerging benchmarks priori-
tize egocentric assessments (Cheng et al., 2024). In
this work, we aim to enhance egocentric processing
and reasoning abilities of LVLMs.

Causal Mechanism. Causal mechanisms (Rohekar
et al., 2023; Zhang et al., 2024a) in LVLMs have
recently garnered significant attention due to their
potential to address complex reasoning tasks. To
refine the reasoning process within LVLMs, several
methods have utilized existing causal frameworks,
such as Invariant Risk Minimization (IRM) (Ar-
jovsky et al., 2019) and Structural Causal Model
(SCM) (Scholkopf et al., 2012), which aim to ex-
plore the causal relationships. For example, SCM
has provided a structured foundation to dissect
causal relationships (Rohekar et al., 2023), allow-
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Figure 3: The overall framework of the proposed FRUIT method. It includes two components: Egocentric
Front-Door Adjustment (EFDA) that contains Interventional Cue Generation (ICG) and Output Influence via Cue
Mediation (OICM), and Uncertainty Calibration Mechanism (UCM). The “Caption’” denotes the deletion of caption.

ing LVLMs to isolate causal factors that contribute
directly to the reasoning process. In this paper, we
model the reasoning pipeline of LVLMs in first-
person scenarios using an SCM.

Uncertainty-based Learning. Uncertainty-based
learning addresses the challenge of quantifying pre-
diction confidence, with uncertainty typically clas-
sified into epistemic and aleatoric types (Kendall
and Gal, 2017). Aleatoric uncertainty arises from
inherent data noise, while epistemic uncertainty
reflects a lack of knowledge about the model struc-
ture. Methods like Bayesian networks (Gal and
Ghahramani, 2016) and Subjective Logic (Jsang,
2018) are used to quantify epistemic uncertainty,
often employing Dempster-Shafer theory (Yager
and Liu, 2008). To effectively filter out the unre-
liable egocentric cues, we design an Uncertainty
Calibration Mechanism to model their uncertainty.

3 Proposed Method

Preliminary Overview. Our primary goal is to
enhance the egocentric reasoning of LVLMs to
generate precise responses in first-person contexts.
Given an input prompt X including an image [
and text T', we first employ a grounding model
to derive hierarchical visual egocentric cues H,
and textual cues H., which can be considered as
mediated observations. After filtering noise in the
observation, we incorporate observations into the
prompt template following the front-door criterion
to obtain a set of answer candidates A. Finally, we
compute the CLIP score between each candidate
in A and the input image, selecting the candidate

with the highest score as the final output O.

3.1 Background of Structural Causal Model

Structural Causal Model. An SCM (Shanmugam,
2001) aims to capture causal mechanisms between
variables. Following prior works (Rohekar et al.,
2023), an SCM can be formalized as a Directed
Acyclic Graph (DAG), denoted as G = (V, E),
where V represents the set of variables and F de-
notes the directed edges that signify direct causal
relationships between these. In this context, the
variables in DAG are topologically ordered, ensur-
ing each variable precedes its causal descendants,
based on fundamental assumptions outlined below:
Definition 1 (Causal Markov). A variable in a
causal graph that satisfies the Causal Markov Con-
dition is independent of all other variables, exclud-
ing its direct effects, given its direct causes.

Definition 2 (Faithfulness). A distribution is faith-
ful to a graph if and only if all independence re-
lations that hold within the distribution are also
captured by the corresponding graphical structure.
Pipeline Modeling through SCM. We use an
SCM to capture the causal relationships and de-
pendencies between input prompts and outputs in
LVLMs for egocentric tasks. Specifically, as il-
lustrated in Figure 2(b), the SCM is represented
as a directed acyclic graph G = (V, E). We de-
fine the components of our SCM as follows: 1) X:
The input prompt, comprising visual and textual
elements from the egocentric environment. 2) O:
The LVLM output in response to the input prompt
X, such as scene descriptions or object identifica-

19154



tion. 3) L: The latent confounder, representing
latent variables that simultaneously affect both in-
put X and output O, potentially introducing biases
or noise in the learned relationships. Moreover,
in Figure 2(b), the notation X — O denotes a di-
rect causal relationship, illustrating that the varying
multi-modal input prompts X in egocentric context
lead to predictable adjustments in outputs O. The
arrows L — X and L — O denote confounding
influences from unobserved variables.

3.2 Egocentric Front-Door Adjustment

Due to the inaccessibility of the confounding vari-
able L, the back-door adjustment is not feasible.
Therefore, we follow the front-door criterion to
integrate hierarchical multimodal egocentric cues
as mediated variables, simulating the human cog-
nition observation stage. It facilitates LVLMs fo-
cusing on human-centric interactions rather than
contextual intentions on all semantics.
Specifically, as illustrated in Figure 2(b), the
proposed EFDA incorporates egocentric cues as a
mediator C between the prompt X and output O,
which serves as a bridge to account for the indirect
influence of the prompt on the answer. Moreover,
following the front-door criterion (Shanmugam,
2001), we ignore the confounder of L with other
variables. To quantify the causal effect between X
and O, we employ the causal intervention through
the do-operation, which is formulated as follows:

P(0ldo(X)) = P(Oldo(C))P(Cldo(X)), (1)

where the causal effect of P(O|do(X)) between
X and O can be split into: P(C'|do(X)) represents
the probability of generating specific egocentric
cues C' from input X, and P(O|do(C)) denotes
the effect of those cues on output O.
Interventional Cue Generation P(C|do(X)). To
improve the egocentric reasoning ability of LVLMs,
given the input X including textual prompts 7" and
images I, we introduce the observation by con-
structing a hierarchical set of multi-modal egocen-
tric cues C. Specifically, for visual cues, we utilize
the grounding model (Liu et al., 2023c) to generate
bounding boxes, b; and bs, corresponding to each
hand. When no hand is detected, the middle-lower
area is designated as the cropped region. Based on
the boxes coordinates, we extract a cropped region,
HY?, containing the hands and objects involved in
the interaction, which can be formulated as:

H? = f(I,b1,by), )

where f represents the cropping function applied
to image I based on the coordinates of by and bs.
However, focusing overly on this cropped re-
gion may exclude global-level semantic informa-
tion. Therefore, we construct a hierarchical set
of cropped regions H, = {H/}? , by expanding
each region by 20% around its center. Here H?
represents the minimal region focusing on the in-
teraction, while higher values of 7 indicate increas-
ingly broader regions. Based on the region set H,.,
LVLMs are prompted to generate a corresponding
hierarchical set of captions H,. as follows:

He = {H}, = IVIM(H,),  (3)
The causal effect between input X and multi-
modal egocentric cues C' can be formulated as:
S (S, HY) + S(H HY))
1]

P(Cldo(X))

where ¢; denotes the i-th pair of multi-modal cues
H! and H, with ||C|| representing the total num-
ber of multi-modal cue pairs. The function S(-) is
used to compute the cosine similarity.

Output Influence via Cue Mediation
P(O|do(C)). Based on the generated multi-modal
egocentric cues C, i.e., mediated observations, we
guide the LVLMs to perform egocentric scene
understanding. Specifically, given the egocentric
cues C, we construct the final input prompt P,
after mediation, which can be expressed as follows:

P =[X,C], ®)

The prompt details are available in supplementary
materials. Then we query the LVLMs N times,
obtaining N answers A = {A*}YV_ using the final
prompt P,.. We estimate the probability of outputs
by calculating CLIP score (Deng et al., 2024) be-
tween each answer and input image as follows:

P(Oldo(C)) = CLIP(O, I). (6)

3.3 Reasoning Uncertainty Modeling

While the front-door adjustment helps the model
focus on relevant egocentric cues, there remains the
challenge of noise in these cues, i.e., not all egocen-
tric cues generated from the proposed EFDA are re-
liable. To address this, we introduce an uncertainty-
based mechanism to selectively filter out unreliable
cues. In specific, we employ the Subjective Logic
(SL) (Jsang, 2018) principle to quantify the un-
certainty associated with the hierarchical textual
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Object . . Localization Reasonin;
Methods Exist At.:r Afford Activity Loc  Spatial Fore. Count Compar 8 Situated
LLaVA-1.5-7B (2023) 33.0 47.0 54.0 35.5 35.0 49.0 27.0 20.0 47.0 37.0
+ FRUIT 61.0 75.0 61.0 58.0 79.0 61.0 39.5 31.0 47.0 52.0
LLaVA-1.5-7B-LoRA (2023) 63.0 60.0 63.0 55.0 79.0 49.0 26.0 50.0 63.0 61.0
+ FRUIT 85.0 71.0 66.0 77.0 85.0 63.0 58.0 53.0 70.0 70.5
InstructBLIP-7B (2023) 50.0  33.0 45.0 47.5 77.0 38.0 40.5 18.0 43.0 67.0
+ FRUIT 61.0 57.0 49.0 50.0 90.0 57.0 45.5 31.0 56.0 70.0
Otter-1-7B (2023) 48.0 56.0 39.0 44.0 60.0 44.0 38.0 39.0 48.0 42.0
+ FRUIT 570 62.0 45.0 44.5 63.0 49.0 45.5 42.0 50.0 44.0
PandaGPT-7B (2023) 40.0 56.0 41.0 37.0 61.0 52.0 43.0 19.0 52.0 44.0
+ FRUIT 49.0 57.0 46.0 48.0 63.0 57.0 48.0 30.0 54.0 48.0
MiniGPT4-7B (2024) 50.0 56.0 37.0 39.0 55.0 49.0 41.5 14.0 48.0 31.0
+ FRUIT 550 57.0 40.0 50.0 56.0 53.0 43.0 18.0 48.0 46.0
ShareGPT4V-7B (2024) 67.0 75.0 53.0 55.5 77.0 62.0 47.0 30.0 38.0 66.0
+ FRUIT 750 76.0 58.0 60.5 81.0 63.0 51.0 39.0 44.0 67.0
mPLUG-OwI2-7B (2024) 58.0 61.0 44.0 41.0 84.0 45.0 36.0 44.0 54.0 45.0
+ FRUIT 67.0 74.0 52.0 57.0 86.0 48.0 56.0 50.0 62.0 56.0
Janus-Pro-7B (2025) 71.0  76.0 54.0 66.5 88.0 71.0 55.0 56.0 68.0 56.5
+ FRUIT 81.0 79.0 70.0 78.5 95.0 75.0 58.0 64.0 76.0 63.0

Table 1: Comparisons with existing 7B-sized LVLMs on the EgoThink benchmark (Cheng et al., 2024), including
Object, Activity, Localization, Reasoning, and Forecasting. Results presented under the shaded area indicate they
have been pre-trained on first-person data. Bolded values represent the best performance.

egocentric cues, which can detect unreliable cap-
tions within the set H,. Initially, we calculate the
similarity S(H,, H,.) between the generated cap-
tions H. and corresponding regions H,. to derive
the caption evidence e = {e;}3_, as follows:

€= fe(S(Her)) = epr(S(HC’HT))a (7)

where F’ denotes the ReLLU activation function.
Based on the caption evidence e;, we compute
«; and characterize the uncertainty U as follows:

u=2 ®)

Oéi:€i+]., Sd7

where S; = vaz 1 @ serves as the intensity param-
eter for the Dirichlet distribution. The distribution
can be formulated as:

N a1
% Hj:l p?] p € Sy,

D(pla) =
(ple) 0 else,

(©))
where B(a) denotes the N-dimensional beta func-
tion, and Sy represents the N-dimensional unit
simplex. The uncertainty u; € U acts as a quan-
titative measure of the reliability of each textual
cue ¢;. To filter out the unreliable textual cues, we
obtain the refined multi-modal cues C by setting a
threshold ), removing the noisy cues when u; > .
Final Outputs. Based on the above uncertainty-
based refinement, the final answer is obtained by:

max P(Oldo(X)) = P(O]do(C))P(Cldo(X)),

(10)
We choose the answer with the largest probability
as the final output of LVLMs.

4 Experiments

4.1 Experimental Setup

Datasets. The EgoThink dataset (Cheng et al.,
2024) consists of 700 first-person images from the
Ego4D (Grauman et al., 2022) video resource, each
paired with a detailed question-answer set. It is or-
ganized into six core abilities, including Activity,
Localization, Reasoning, Forecasting, and Plan-
ning, which are employed to evaluate the capacity
of LVLMs to understand first-person images.
Evaluation Metrics. Following (Cheng et al.,
2024), we use GPT-4 (Achiam et al., 2023) as an
automatic evaluator to assess generated answers.
By comparing the model’s output with the refer-
ence answer, GPT-4 determines accuracy based on
answer similarity. A scoring system is applied: 0
points for incorrect answers, 0.5 for partial correct-
ness, and 1 for correct answers.

Implementation Details. In this study, we employ
the PyTorch framework to implement our model.
We conducted experiments utilizing 14 commonly
used large vision-language models (LVLMs). To
ensure a fair comparison and account for potential
parameter influences, the models were divided into
two groups: 7B and 13B. All models were evalu-
ated under a zero-shot setting using the EgoThink
benchmark. Given the multi-modal inputs, we first
utilize the GroundingDINO (Liu et al., 2023¢) iden-
tify and crop regions proximal to the hand in the im-
ages. Base on these, we generate the corresponding
captions and then select appropriate image-caption
pairs as hierarchical multi-modal egocentric cues.
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Object . . Localization Reasonin;
Methods Exist At{r Afford Activity Loc  Spatial Fore. Count Compar 8 Situated
LLaVA-1.5-13B (2023) 54.0 62.0 52.0 46.0 53.0 46.0 44.0 26.0 44.0 29.0
+ FRUIT 75.0 70.0 54.0 61.0 77.0 69.0 48.0 38.0 57.0 62.0
MiniGPT4-13B (2024) 47.0 48.0 31.0 28.0 60.0 40.0 38.5 33.0 33.0 46.0
+ FRUIT 60.0 50.0 39.0 47.5 64.0 43.0 40.0 35.0 53.0 48.0
LLaVA-NeXT-13B (2024) 65.0 72.0 36.0 34.0 60.0 57.0 28.0 43.0 46.0 18.5
+ FRUIT 86.0 79.0 69.0 69.5 78.0 69.0 43.0 44.0 65.0 40.0

Table 2: Comparisons with existing 13B-sized LVLMs on the EgoThink (Cheng et al., 2024).

These cues are introduced to make front-door ad-
justments for the LVLM reasoning process.

4.2 Overall Comparsion Results

LVLM baselines. We evaluate the efficacy of
our FRUIT method on 11 widely used LVLMs.
Overall, we divide them into two groups: (/) 7B-
sized Models: 1.LLaVA-1.5-7B (Liu et al., 2023b),
InstructBLIP-7B (Dai et al., 2023), MiniGPT4-7B
(Zhu et al., 2024), Otter-1-7B (Li et al., 2023a),
PandaGPT-7B (Su et al., 2023), ShareGPT4V-7B
(Chen et al., 2024), mPLUG-OwI2-7B (Ye et al.,
2024), Janus-Pro-7B (Chen et al., 2025). (2) 13B-
sized Models: LLaVA-1.5-13B (Liu et al., 2023b),
MiniGPT4-13B (Zhu et al., 2024), LLaVA-NeXT-
13B (Liu et al., 2024a). More results are provided
in supplementary materials.

Results on the EgoThink benchmark. According
to the comparison on EgoThink reported in Table
1 and Table 2, we can find that: (1) Our FRUIT
method demonstrates marked improvements in ac-
curacy across various partitions of the EgoThink
dataset. These results suggest that our method en-
hances the model’s ability to accurately extract cru-
cial information in first-person context. (2) More-
over, even when compared to the latest LVLM
Janus-Pro-7B (Chen et al., 2025) proposed by
DeepSeek or LLaVA-1.5 pretrained on egocentric
data, our FRUIT method shows a substantial im-
provement across various metrics. We hypothesize
that this performance enhancement is attributed
to the proposed egocentric front-door adjustments,
which incorporate mediated observations to help
guide LVLMs in more effectively interpreting se-
mantics from a first-person perspective.

Results on the Planning Task. As illustrated
in Figure 4, we evaluated our FRUIT method on
both the planning assistant and planning naviga-
tion tasks. The results reveal several findings: (1)
Our method achieved superior results in two data
categories across the six models evaluated, indi-
cating its efficacy in extracting information from
a first-person perspective. (2) Compared to the re-

Planning Assistant Planning Navigation

LLaVA LLaVA

Mini ' Owl  Mini . Owl

Otter \ BLIP  Otter BLIP

Share

Share

LVLM Baselines O w/o Textual Cues O FRUIT(Ours)

Figure 4: Performance comparison of 7B-sized LVLMs
on Planning Assistant and Planning Navigation. Six
models are evaluated: LLaVA-1.5 (LLaVA), mPLUG-
Owl (Owl), InstructBLIP (BLIP), ShareGPT4V (Share),
Otter-Image (Otter) and MiniGPT4 (Mini).

sults obtained w/o textual cues, our FRUIT method
achieves superior performance across both evalua-
tion metrics. These improvements underscore the
critical role of incorporating hierarchical, multi-
modal egocentric cues in capturing the key infor-
mation from a first-person perspective.

4.3 Further Analysis

Ablation Study. As presented in Table 3, we
list the following conclusions: (1) The compari-
son with No.0 and No.3 reveals that our proposed
EFDA significantly enhances the performance of
LVLMs on a wide range of egocentric tasks. Such
results demonstrate the efficacy of integrating hi-
erarchical multi-modal egocentric cues as media-
tors. It can help LVLMs capture both global-level
semantics and human-object interactions, thereby
facilitating reasoning from a first-person perspec-
tive. (2) From the comparison of No.1 and No.3,
No.2 and No.3, we speculate that the interaction
between the ICG and OICM is crucial for under-
standing knowledge within an egocentric context.
One reasonable reason is that the ICG provides a
structured representation of class hierarchies and
relational mappings, while the OICM enhances this
framework by adding contextual interactions that
are unique to the egocentric perspective. More
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Components Metrics
No. UCM EFDA . Object Activity Localizatio.n Reasoning .
ICG OICM | Exist Attr  Afford Loc  Spatial | Count Compar Situated
0 - - - 33.0 47.0 54.0 35.5 350  49.0 20.0 41.0 37.0
1 - 4 - 580 620 575 455 63.0 54.5 29.0 42.0 45.5
2 - - 4 56.0 610 565 42.0 61.0 58.0 28.0 47.0 42.0
3 - 4 4 69.0 700 580 57.0 76.0 58.0 37.5 45.5 50.0
4 4 4 - 63.0 650 580 55.0 68.0 55.5 32.0 43.0 46.5
5 v v v 73.0 750 61.0 58.0 79.0 61.0 41.0 47.0 52.0

Table 3: Ablation analysis of key components on the EgoThink benchmark dataset. The baseline is LLaVA-7B here.
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Figure 5: Performance comparison of our FRUIT
method against In-Context Learning (ICL) and Chain-
of-Thought (COT) prompting strategies across distinct
subsets: Affordance (Aff.), Activity (Act.), Spatial
(Spa.), Counting (Co.), and Forecasting (Fore.).

details are available in supplementary materials.
Analysis on Different Prompting Techniques.
We compare the performance of our proposed
FRUIT with conventional prompting methods, in-
cluding In-Context Learning (ICL) and Chain-of-
Thought (CoT). Note that all methods under con-
sideration incorporate grounded interactions to en-
sure a fair comparison. By observing Figure 5,
we can find that: The performance comparisons
reveal a substantial improvement using the FRUIT
method compared to traditional prompting tech-
niques. These results indicate that these methods
fail to capture causal reasoning relationships be-
tween interacting objects and user’s intentions. In
contrast, FRUIT enables LVLMs to process and rea-
son from an egocentric perspective, reinforcing our
rationale that simulating human causal reasoning
can enhance egocentric reasoning.

Probability Estimation Selection in P(O|do(C)).
We investigate the influence of different probabil-
ity estimations in P(O|do(C)) on Reasoning and
Object tasks. Observations drawn from Figure 6
are as follows: (1) The majority voting strategy
demonstrates a more accurate output in reasoning
tasks involving high uncertainty, likely due to the
aggregation of individual judgments, effectively
mitigating the impact of outlier predictions. In con-
trast, the CLIP score exhibits a higher sensitivity
to contextual variations, leading to more nuanced
predictions, especially in tasks that require intricate

Figure 6: Effect of P(O|do(C)) estimation strategies.
Performance compared across w/o P(O|do(C')), major-
ity voting, and CLIP score (Ours).
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Figure 7: (a) Visualization of the uncertainty distribu-
tion of textual cues, illustrating the density of uncer-
tainty levels. (b) Comparison on the Localization subset
across different noise selection methods: without UCM,
using cosine similarity (Sim), and with UCM (Ours).

understanding of semantic relationships between
objects and actions. (2) When using the first pre-
dicted answer without applying P(O|do(C)), the
performance of w/o P(O|do(C)) consistently suf-
fers across all tasks. This indicates that relying
solely on direct predictions, without incorporating
egocentric reasoning through causal intervention,
undermines the accuracy of final decision-making.
Visualization and Effect of Uncertain Cues. To
further substantiate the presence of uncertain cues
and validate the importance of our proposed Uncer-
tainty Calibration Mechanism (UCM), we visual-
ize the distribution of uncertainty for textual cues
and compare the impact of various noise selection
strategies, employing the MiniGPT4-7b model. As
depicted in Figure 7, we can find that: (1) In Fig-
ure 7(a), the distribution of normalized uncertainty
differs between regular tokens and hallucinations.
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Models P@l1 P@3 P@5
LLaVA-1.5-7b (Liu et al., 2023a) 31.0 460 520
+FRUIT 59.0 79.0 80.0
ShareGPT4V-7b (Chen et al., 2024) 28.0 46.0 55.0
+FRUIT 60.0 77.0 85.0

Table 4: Evaluation of object interaction focus for
LLaVA-1.5 and ShareGPT4V using our proposed PQK,
with and without the FRUIT. Higher P@QK means better
top-K relevant object identification accuracy.

80 ——FRUIT(Ours) o —— FRUIT(Ours)
70 —VCD —VCD
OPERA 60 OPERA
860 8
£%0 £
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ZE_ N E “ /\\/
30 30
20 - 20bL
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Loc. Loc.
LLavA-15-7B InstructBLIP-7B

Figure 8: Performance comparison of the proposed
FRUIT method against VCD (Leng et al., 2024) and
OPERA (Huang et al., 2024).

Hallucinations have a higher density at the upper
end of the uncertainty scale, while regular tokens
cluster towards lower levels. This difference val-
idates the effectiveness of our proposed UCM in
detecting unreliable textual cues. (2) As illustrated
in Figure 7(b), our FRUIT method consistently out-
performs the similarity-based strategy w/ Sim. The
improvement reflects the efficacy of our approach
in reducing the impact of noisy cues, which in turn
enhances egocentric reasoning ability.

Evaluation of Object Interaction Focus. To eval-
uate the LVLMs’ ability to focus on correct objects
in first-person scenarios, we define the PQK, a
metric that quantifies the probability that the cor-
rect answer appears in the top-K candidate predic-
tions. For example, given 10 image-question pairs,
if there are 4 correct answers within the top-5 can-
didate predictions from LVLMs, then P@5 = 4/10
= 0.4. From results in Table 6, we can list the
following conclusions: (1) LVLMs with FRUIT
demonstrate a higher likelihood of identifying rele-
vant objects, due to the cues from the observation
stage, which guide the model to focus on human-
object interaction regions. (2) While multimodal
cues from local interaction regions can generate
descriptions centered on human-object interactions,
they may lack essential global semantic context.
Qualitative Analysis. As shown in Figure 9,
we present a qualitative comparison of the per-
formance between the LVLM baselines (LLaVA-
1.5 (Liu et al., 2023a) and PandaGPT (Su et al.,
2023)) and these models enhanced with our FRUIT
method. For example, when involving multiple

Original Question & Groundtruth

Question: What am | doing now?
Groundtruth: Watering

Model Predicti
PandaGPT: You are holding a tennis racket and hit a tennis ball.

Activity

@ +FRUIT (Ours): | am standing outside, watering the lawn with a
hose in my right hand.

Original Question & Groundtruth

Question: What's the use of the object in my left hand? ~oObject-
Groundtruth: Painting Afford

Model Predictions

LLaVA-1.5: In the image, a person is holding a small figurine in
their left hand. The figurine appears to be a toy or a model.

Y +FRUIT (Ours): The object in your left hand is a paintbrush,
which is being used to paint the miniature figure.

Figure 9: Comparative analysis between LVLM base-
lines and our proposed FRUIT method in the Activity
and Object subsets. Incorrect descriptions are high-
lighted in red. Correct predictions are bolded in blue.

interacting objects, LLaVA-1.5 with our proposed
FRUIT can consistently maintain accurate object
localization in dynamic environments. However,
the LLaVA-1.5 baseline often erroneously identi-
fies the relationships between the object and hands
in egocentric context. This comparison shows the
importance of our FRUIT method in focusing on
human-object interaction, thus guiding LVLMs to
reason from a first-person perspective.

Comparison with Hallucination Mitigation
Methods. In this study, we evaluate the perfor-
mance of our FRUIT method by comparing it with
recent hallucination mitigation techniques, VCD
(Leng et al., 2024) and OPERA (Huang et al.,
20234). As illustrated in Figure 8, our FRUIT
method consistently outperforms both VCD and
OPERA across all evaluation metrics. This im-
provement indicates that while VCD and OPERA
effectively address hallucination issues in tradi-
tional third-person data, they do not enhance the
reasoning capabilities of large multimodal models
in first-person contexts. In contrast, our FRUIT
approach directs Large Vision-Language Models
(LVLMs) to perform first-person reasoning in a
manner that aligns with human cognitive processes.

5 Conclusion

In this work, we introduced the Front-Door Adjust-
ments with Uncertainty Calibration (FRUIT) frame-
work to enhance the egocentric reasoning capabili-
ties of large vision-language models (LVLMs). By
incorporating Egocentric Front-Door Adjustments,
FRUIT guide the model focus on interaction ob-
jects, while the Uncertainty Calibration Mechanism
filters out unreliable information. In future work,
we will explore additional strategies to further en-
hance LVLM performance in first-person contexts.
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6 Limitations

The current evaluation relies exclusively on image-
text pairs from EgoThink, which cannot fully cap-
ture the temporal dynamics of real-world egocen-
tric perception. Video understanding requires mod-
eling continuous viewpoint changes and action-
state transitions—capabilities our hierarchical cues
currently lack due to fixed spatial grounding. Fu-
ture work should extend the causal mediation
framework to incorporate temporal attention mech-
anisms for long-horizon reasoning.
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A Appendix

A.1 Overview

In this supplementary material, we provide more
analyses of our proposed FRUIT method, which
are difficult to describe in the main paper due to
space limitations. The content of the additional
material is shown below:

* We augmented the experimental results from
two state-of-the-art models using the Ego-
Think (Cheng et al., 2024).

* We reported experimental outcomes for two
additional excellent models, evaluated using
our proposed P@K metric.

* We further explore the effect of varying hyper-
parameter A.

* We conducted additional experiments to ana-
lyze the optimal number of visual egocentric
cues. Specifically, we evaluated the effective-
ness of the FRUIT method on images that do
not contain hands.

* We included further examples of experimental
results based on the EgoThink (Cheng et al.,
2024).

* We provided a comprehensive list of all
prompts utilized in the experiment.

A.2 Results on the EgoThink benchmark

To further validate the efficacy of our FRUIT
method in enhancing the interpretation of egocen-
tric images, we conducted experiments on the Ego-
Think (Cheng et al., 2024) dataset using three state-
of-the-art models, mPLUG-Owl1 (Ye et al., 2023),
LLaVA-NeXT (Liu et al., 2024a) and PandaGPT
(Su et al., 2023). The results of these experiments
are summarized in Table 5.

Our evaluation covered 10 categories within Ego-
Think (Cheng et al., 2024), excluding the planning
category. Notably, our method consistently im-
proved model performance across all 10 categories.
These findings suggest that our approach signif-
icantly enhances the model’s ability to interpret
first-person perspective images, including various
aspects such as object identification, spatial context,
and behavioral understanding.
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Figure 10: Comparative analysis of Localization (Loc.)
and Forecasting (Fore.) performance metrics across
varying values of the parameter A within the range [0.1,
0.6].

A.3 Results on the P@K benchmark

Our P@K metric employs 100 labeled images, each
representing an object with the highest degree of
interaction with the character. By requiring the
model to identify the top K objects with the highest
human interaction and utilizing GPT-4 (Achiam
et al., 2023) to verify the presence of labeled ob-
ject among the K selected objects, we evaluate
the model’s capability to interpret egocentric im-
ages from a first-person perspective. We imple-
mented this metric using the two latest state-of-the-
art models, LLaVA-NeXT(Liu et al., 2024a) and
MiniGPT4 (Zhu et al., 2024). The experimental
results in Table 6 demonstrate that our method sig-
nificantly enhances the performance of the model,
particularly in identifying key items. This find-
ing substantiates the fact that our approach effec-
tively improves the model’s comprehension of first-
person images.

A.4 Effect of Varying Hyper-parameter \

In this section, we further explore the influence of
the hyper-parameter A\, which is designed to filter
out unreliable cues when the uncertainty exceeds a
threshold, with A = 0.4 serving as a critical value.
Figure 10 presents the performance trends for Lo-
calization (Loc.) and Forecasting (Fore.) metrics
as A varies from 0.1 to 0.6. Localization perfor-
mance peaks around A = 0.4, demonstrating stabil-
ity and robustness within the range A € [0.2,0.5].
This suggests that the model effectively handles
moderate variations in A. The Fore. performance
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Object . Localization Reasonin;
Methods Exist At{r Afford Activity Loc  Spatial Fore. Count Compar . Situated
mPLUG-owl-7B (2023) 56.0 58.0 47.0 53.0 60.0 53.0 49.5 25.0 49.0 44.0
+ FRUIT 57.0 60.0 51.0 62.5 62.0 55.0 60.0 40.0 49.0 51.0
LLaVA-NeXT-7B (2024) 53.0 56.0 33.0 24.5 51.0 53.0 34.0 27.0 10.0 23.0
+ FRUIT 68.0 66.0 43.0 51.5 66.0 59.0 38.0 38.0 22.0 30.0
PandaGPT-13B (2023) 350 520 41.0 40.5 68.0 31.0 45.5 32.0 40.0 47.0
+ FRUIT 61.0 71.0 57.0 57.0 71.0 48.0 55.0 34.0 43.0 49.0

Table 5: Comparisons with existing three LVLMs on the EgoThink (Cheng et al., 2024). Bolded values represent

the best performance.

Models P@l1 P@3 P@5
LLaVA-NeXT (Liu et al., 2024a) 31.0 52.0 56.0
+FRUIT 350 67.0 70.0
MiniGPT4 (Zhu et al., 2024) 35.0 38.0 39.0
+FRUIT 60.0 65.0 66.0

Table 6: Evaluation of object interaction focus us-
ing the proposed PQK metrics for LLaVA-NeXT
and MiniGPT4, with and without the FRUIT method.
Higher PQK values signify improved accuracy in iden-
tifying relevant objects across the top-K predictions.

increases slightly at intermediate A values, achiev-
ing marginal improvement around A = 0.3. These
findings highlight the pivotal role of A in mitigating
the impact of noisy egocentric cues, with A = 0.4
emerging as the optimal trade-off point for achiev-
ing balanced performance across both metrics.

A.5 Effect of number of visual egocentric cues

In this section, we investigate the impact of the
number of images used in visual egocentric cues
on model performance. Given an input prompt X
including an image [ and text 7', we first employ a
grounding model to derive hierarchical visual ego-
centric cues H;.. To determine the optimal number
of images for generating visual egocentric cues H,.,
we conduct experiments using 1 to 4 cropped ver-
sions of the initial images on the LLaVA-1.5-7B
model (Liu et al., 2023b). The results, illustrated
in Figure 11, demonstrate that using 3 cropped im-
ages yields the best performance on the EgoThink
benchmark. This improvement can be attributed to
the fact that a greater number of images provide
richer visual egocentric information to the LVLMs,
as they encompass a wider variety of focus areas at
different scales. However, an excessive number of
images may lead to minimal differences between
them, potentially resulting in the selection of less
accurate visual cues.

A.6 Results on Images without Hands

To isolate the influence of hand regions in visual
egocentric cues, we selected 43 image-annotation
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Figure 11: Comparative analysis between different num-
ber of visual egocentric cues. We use 3 crops of initial

image in our FRUIT method.
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Figure 12: Comparative analysis using images that
do not contain hands. Based on three LVLMs: Owl
(mPLUG-owl2-7B (Ye et al., 2024)), Mini (MiniGPT4-
7B (Zhu et al., 2024)) and Otter (Otter-Image-7B (Li
et al., 2023a)).

pairs from the EgoThink database to evaluate
the performance of our FRUIT method. The re-
sults, depicted in Figure 12, demonstrate that the
FRUIT method significantly enhances the ability
of LVLMs to interpret egocentric images more ac-
curately, even in the absence of hands.

A.7 Supplementary Examples

In Figure 13, Figure 14 and Figure 15 we present a
series of exemplar cases from the EgoThink (Cheng
et al., 2024) dataset to demonstrate the efficacy of
our FRUIT method in enhancing the accuracy of
egocentric image interpretation. In each of the four
instances, our FRUIT method consistently enabled
the model to produce correct responses. Notably,
our approach significantly enhances the model’s
capacity to discern both object positions and its
own spatial orientation within self-centered images,
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thereby improving its comprehension from a first-
person perspective. For instance, following the
integration of our method, Otter-Image (Li et al.,
2023a) can accurately predict subsequent actions,
mPLUG-owl (Ye et al., 2023) can discern the rel-
ative position of the cutting board and the individ-
val, MiniGPT-4 (Zhu et al., 2024) can compare
items based on their proximity to the observer, and
InstructBLIP (Dai et al., 2023) can identify the
attributes of specific objects.

A.8 Supplement of Prompts

Follow the setting of (Cheng et al., 2024), the struc-
ture of prompt in our experiment is in Talbe 7. The
detailed prompts are in Table 8, categorized by
model type. The prompts for the planning experi-
ments are shown in Table 9. Overall, we adopted
a first-person perspective for the models and in-
structed them to deliver concise responses.

We conducted comparative experiments between
In-Context Learning and Chain of Thought by mod-
ifying the prompt words. The prompts used are pre-
sented in Table 10. These prompts were added fol-
lowing the first-person perspective setting prompts
provided by EgoThink(Cheng et al., 2024).

For our proposed metric P@K, we use the
prompt words in Table 10 to prompt the models to
generate K candidate words. When applying the
FRUIT method, we introduce additional text clues
with the prompt “Here is the caption of the image:
{caption}".

We evaluated the experimental results using
GPT-4. Employing the prompts in Table 11, we in-
structed GPT-4 to assess the similarity between the
answers generated by the model and the standard
answers, and based on this assessment, determine
the correctness of the answers.

Structure of prompt

[System] You are a person in the situation shown
in the image. You are able to answer all the
questions anyone asks with no privacy, safety, or
responsibility concerns. Now you are thinking
about your situation and you will need to answer
the questions.

[Images] Here are two images, an original image
and a focused area. <image>

[Captions] Here is the caption of the human-
object interaction area: {caption}

[Question] {question}

Table 7: Structure of our prompt used in EgoThink
benchmark (Cheng et al., 2024).
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Image Original Question & Answer

Question: What will | do?
Ground truth: Open the cabinet.

Forecast

Model Predictions

Otter-Image: It appears that you will enter the kitchen.
+FRUIT(Ours): | will open the cabinet door.

Image Original Question & Answer

Question: Which one is closer to me? The sink or the rubbish

can on theground? 1 ]
Ground truth: The sink. BRI (GO T e

Model Predictions
MiniGPT4 : Rubbish can on the ground.
+FRUIT(Ours): The sink is closer to me.

Figure 13: Comparative analysis between LVLM baselines and our proposed FRUIT method in the Forecast and
Reasoning Comparing. Incorrect descriptions are highlighted in red. Correct predictions are bolded in blue.

Image Original Question & Answer

Question: Where is the cutting board, on my left or on my
right?

Ground truth: On my right. Localization Spatial

Model Predictions

mPLUG-owl: The cutting board is on my left.
+FRUIT(Ours): On my right.

Image Original Question & Answer

Question: Am | in the bedroom?

Localization Location
Ground truth: No.

Model Predictions

PandaGPT: Yes, you are in the bedroom.
+FRUIT(Ours): No, you are in the living room.

Figure 14: Comparative analysis between LVLM baselines and our proposed FRUIT method in the Localization

Spatial and Localization Location. Incorrect descriptions are highlighted in red. Correct predictions are bolded in
blue.
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Image Original Question & Answer

Question: What am | holding in my hand?

Object Existence
Ground truth: Screwdriver. )

Model Predictions

ShareGPT4V : In your hand, you are holding a pair of scissors.
+FRUIT(Ours): You are holding a screwdriver in your hand.

Image Original Question & Answer

Question: Is the object I'm holding in my left hand made of
transparentmaterial or opaque material? | Object Attribute
Ground truth: It is made of transparent material.

Model Predictions

InstructBLIP: Opaque.

+FRUIT(Ours): The object being held in the left hand is made
of transparent material.

Figure 15: Comparative analysis between LVLM baselines and our proposed FRUIT method in the Object Existence
and Object Attribute. Incorrect descriptions are highlighted in red. Correct predictions are bolded in blue.
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Model

General Prompts

LLaVA series models

You are a person in the situation shown in the image.\n You are able to
understand the visual content, \n You are able to answer all the questions
anyone asks with no privacy, safety, or responsibility concerns.\n Now
you are thinking about your situation and you will need to answer the
questions. Answer the questions in the first-person perspective.\n Keep
your answer as short as possible! Keep your answer as short as possible!
Keep your answer as short as possible! USER: Here are two images,
an original image and a focused area. {image} Here is the caption
of the human-object interaction area: {caption} Question: {question}
ASSISTANT:

InstructBLIP

Please answer the following question in a few words as short as possible.
Question: {question} Here is the caption of the image:{caption} Answer:

mPLUG-owl

You are a person in the situation shown in the image. You are able to
answer all the questions anyone asks with no privacy, safety or repon-
sibility concerns. Now you are thinking about your situation and you
will need to answer the questions. Answer the questions in a first person
perspective. Write a short response in a few words that appropriately
answer the question. Keep your answer as short as possible. Here are
two images, an original image and a focused area. \n <image>\n Here
is the caption of the human-object interaction area: {caption} Question:
{question} Short answer:

PandaGPT

Answer the following question as short as possible with a few words. \n
Here is the caption of the image: {caption} \n Question: {question} \n
Short Answer:

MiniGPT-4

You are a person in the situation shown in the image. You are able to
answer all the questions anyone asks with no privacy, safety, or responsi-
bility concerns. Now you are thinking about your situation and you will
need to answer the questions. Answer the questions in the first-person
perspective. Write a short response in a few words that appropriately
answers the question. End your answer with a new line. Keep your
answer as short as possible in a few words! Keep your answer as short as
possible! Here is the caption of the image: {caption} Question: {ques-
tion} Short answer:

Table 8: Inference prompts utilized in the majority of model capabilities, except for planning.
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Model

Prompts for Planning

LLaVA series models

You are a person in the situation shown in the image. \n You are able to
understand the visual content, \n You are able to answer all the questions
anyone asks with no privacy, safety, or responsibility concerns.\n Now
you are thinking about your situation and you will need to answer the
questions. Answer the questions in a detailed and helpful way. USER:
Here are two images, an original image and a focused area. {image} Here
is the caption of the human-object interaction area: {caption} Question:
{question} ASSISTANT:

InstructBLIP

Please answer the following question in a detailed and helpful way. List
steps to follow if needed. Question: {question} Here is the caption of
the image:{caption} Answer:

mPLUG-owl

You are a person in the situation shown in the image. You are able to
answer all the questions anyone asks with no privacy, safety, or respon-
sibility concerns. Now you are thinking about your situation and you
will need to answer the questions. Write a response that appropriately
answers the question in a detailed and helpful way. \n Here are two
images, an original image and a focused area. \n <image>\n Here is
the caption of the human-object interaction area: {caption} Question:
{question} Short answer:

Otter Image

You are a person in the situation shown in the image. Answer your
question in a detailed and helpful way. Here is the caption of the human-
object interaction area: {caption} Question: {question}

PandaGPT

Answer the following question in a detailed and helpful way.\n Here is
the caption of the human-object interaction area: {caption} \n Question:
{question} \n Short Answer:

MiniGPT-4

You are a person in the situation shown in the image. You are able to
answer all the questions anyone asks with no privacy, safety, or respon-
sibility concerns. Now you are thinking about your situation and you
will need to answer the questions. Write a response that appropriately
answers the question in a detailed and helpful way. End your answer
with a new line. Here is the caption of the image: {caption} Question:
{question} Short answer:

Table 9: Inference prompts utilized in planning.
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Method

Prompts for Analysis

In-Context Learning

When analyzing image, follow these steps step by step to solve the
problem: \n 1.Understand the Question. \n 2.0bserve Key Elements
in the Image. \n 3.Connect Image Observations to the Question. \n
4. Formulate an Answer. \n 5.Summarize the Conclusion. \n USER:
Here are two images, an original image and a focused area. {image} \n
Here is the caption of the image: {caption} \n Question: {question} \n
ASSISTANT:

Chain-of-Thought

Answer this question using a step-by-step Chain-of-Thought approach.
Start by analyzing the question carefully and identifying the main factors
involved. Then, break down the problem into smaller, manageable parts,
addressing each one individually. As you progress through each step,
explain your thought process and reasoning behind each conclusion you
make. Continue this structured approach until you have fully explored
the question, considered any potential alternatives, and arrived at a well-
reasoned answer. If possible, summarize the final answer and reasoning
at the end. \n USER: Here are two images, an original image and a
focused area. {image} \n Here is the caption of the image: {caption} \n
Question: {question} \n ASSISTANT:

P@K

You are a person in the situation shown in the image. \n You are able
to understand the visual content.\n Now you are thinking about your
situation and you will need to answer the question. \n USER: Which
K objects am I currently interacting with? Answer the question with
K objects, Use . to separate five objects! Please only answer the name
of this object and do not provide any additional information! \n For
example: book.phone.keyboard.bottle.paper \n ASSISTANT:

Table 10: Prompts utilized in method of in-Context learning, chain-of-Thought and P@XK.

Model

Prompts for Evaluation

GPT-4(in EgoThink(Cheng et al., 2024)) [Instruction] Please act as an impartial judge and evaluate the quality of

the response provided by an Al assistant to the user question displayed
below. Your evaluation should consider correctness and helpfulness. You
will be given a reference answer and the assistant’s answer. Begin your
evaluation by comparing the assistant’s answer with the reference answer.
Identify and correct any mistakes. The assistant has access to an image
alongwith questions but you will not be given images. Therefore, please
consider only how the answer is close to the reference answer. If the
assistant’s answer is not exactly same as or similar to the answer, then he
must be wrong. Be as objective as possible. Discourage uninformative
answers. Also, equally treat short and long answers and focus on the
correctness of answers. After providing your explanation, you must rate
the response with either 0, 0.5 or 1 by strictly following this format:
“[[rating]]”, for example: “Rating: [[0.5]]”.\n [Question]\n question\n
\n [The Start of Reference Answer]\n {ref answer 1} \n [The End of
Reference Answer]\n \n [The Start of Assistant’s Answer|\n {answer }\n
[The End of Assistant’s Answer]

GPT-4(in P@K)

There are a label and an answer. Please determine whether the objects
in the answer contain the object in the label. As long as the same item
is described, it is considered included. If included, answer yes. If not
included, answer no. Answer with only one word!\n Label:{label }\n
Answer:{answer}

Table 11: Inference prompts utilized in judgment.
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