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Abstract

Large-scale multilingual evaluations, such as
MEGA, often include only a handful of African
languages due to the scarcity of high-quality
evaluation data and the limited discoverabil-
ity of existing African datasets. This lack
of representation hinders comprehensive LLM
evaluation across a diverse range of languages
and tasks. To address these challenges, we
introduce AFROBENCH—a multi-task bench-
mark for evaluating the performance of LLMs
across 64 African languages, 15 tasks and 22
datasets. AFROBENCH consists of nine natural
language understanding datasets, six text gen-
eration datasets, six knowledge and question
answering tasks, and one mathematical reason-
ing task. We present results comparing the
performance of prompting LLMs to fine-tuned
baselines based on BERT and T5-style models.
Our results suggest large gaps in performance
between high-resource languages, such as En-
glish, and African languages across most tasks;
but performance also varies based on the avail-
ability of monolingual data resources. Our find-
ings confirm that performance on African lan-
guages continues to remain a hurdle for current
LLMs, underscoring the need for additional
efforts to close this gap.1

1 Introduction

Large language models (LLMs) have risen to the
forefront of natural language processing (NLP) and
have also become increasingly commercially vi-
able. These models have empirically demonstrated
strong performance across a variety of NLP tasks
and languages (Brown et al., 2020; Lin et al., 2021;
Chowdhery et al., 2022; Chung et al., 2022). How-
ever, their performance on low-resource languages
(LRLs), such as African languages, is largely un-
derstudied. This is problematic because there is a
significant disparity in the coverage of languages
by NLP technologies. Joshi et al. (2020) note
1https://mcgill-nlp.github.io/AfroBench/
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Figure 1: AFROBENCH average score on various LLMs

that over 90% of the world’s 7000+ languages
are under-studied by the NLP community. Ide-
ally, approaches to enhance language understand-
ing should be applicable to all languages.

While there have been evaluations of LLM per-
formance in several languages (Ahuja et al., 2023a;
Lai et al., 2023; Robinson et al., 2023), the evalua-
tions have primarily focused on closed models like
GPT-3.5 (Ouyang et al., 2022) and GPT-4 (OpenAI,
2023). Megaverse (Ahuja et al., 2023b) extended
the evaluation to more models such as PaLM
2 (Anil et al., 2023) and LLaMa 2 (Touvron et al.,
2023), Mistral (Jiang et al., 2023), Gemma (Mes-
nard et al., 2024) and Gemini Pro (Team et al.,
2023). However, previous evaluation face two main
issues: (1) they cover only a few tasks for African
languages, for example, Megaverse only evaluated
on part-of-speech, named entity recognition, and
cross-lingual question answering for African lan-
guages, due to poor discoverability of African lan-
guages benchmarks, limited available evaluation
data, and bias in the selection of languages covered
in the evaluation.2 (2) Evaluation of LLMs needs
2Belebele (Bandarkar et al., 2024) covers over 29 African lan-
guages, but Megaverse did not include any in their evaluation.
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Benchmark # Tasks # Datasets # African Lang. # LLMs Closed LLMs evaluated Dominant task(s)

ChatGPT-MT (Robinson et al., 2023) 1 1 57 1 GPT-3.5 MT
Mega (Ahuja et al., 2023a) 10 16 11 4 GPT-3, GPT-3.5-Turbo, GPT-4 POS, NER
Megaverse (Ahuja et al., 2024) 16 22 16 8 PaLM, GPT-3.5, GPT-4, Gemini Pro POS, NER, XQA
SIB-200 (Adelani et al., 2024a) 1 1 57 2 GPT-3.5, GPT-4 Topic classification
Belebele (Bandarkar et al., 2024) 1 1 28 6 GPT-3.5-Turbo QA
Uhura (Bayes et al., 2024) 1 2 6 6 Claude-3.5-Sonnet, GPT-4, 4o, o1-preview QA
IrokoBench (Adelani et al., 2024b) 3 3 16 16 GPT-3.5,4,4o, Gemini-1.5-Pro, Claude OPUS NLI, MMLU, Math.
AFROBENCH(Ours) 15 22 60 12 Gemini-1.5-Pro, GPT-4o several

Table 1: Overview of Related works that evaluated on African languages. We included the number of tasks,
datasets, African languages, LLMs evaluated, and the dominant tasks covering at least three African languages.

to be continuous, since many new LLMs have been
released with improved multilingual abilities, but
comprehensive evaluations for African languages
remain limited.

In this paper, we address the challenges of pre-
vious large-scale LLM evaluation by introduc-
ing a new carefully curated benchmark known
as AFROBENCH which comprises 15 tasks, 22
evaluation datasets, and 64 indigenous African
languages. AFROBENCH consists of nine natural
language understanding tasks, six text generation
tasks, six question answering (QA) tasks, and one
mathematical reasoning task. Finally, we created
a new evaluation dataset, AFRIADR, a dataset
for restoring diacritic marks and tonal accents in
African language texts. Leveraging AFROBENCH,
we conduct an extensive analysis of LLMs perfor-
mance on African languages from different lan-
guage families and geographical locations.

For our evaluation, we compute the average
performance score over the 15 tasks covered
in AFROBENCH. Additionally, we introduce
AFROBENCH-LITE that only covers a subset
of seven tasks and 14 diverse languages from
AFROBENCH, which reduces the evaluation cost
for a newly introduced LLM on our leaderboard.
Figure 1 shows our evaluation on AFROBENCH.
We find that proprietary models such as GPT-4o and
Gemini-1.5 pro achieve a +13 score improve-
ment over Gemma 2 27B, our best-performing open
model. We also compared the performance on En-
glish to 14 African languages, finding that GPT-4o
and Gemma 2 27B achieve better performance than
African languages by over +25 and +40 points,
respectively. This shows that the gap in the multi-
lingual abilities of open models is wider than that
of proprietary models. Finally, we compare the
performance of LLMs to fine-tuned models based
on AfroXLMR (Alabi et al., 2022), AfriTeVa V2
T5 model (Oladipo et al., 2023) and NLLB (NLLB
Team et al., 2022) when training data is present. Re-
sults show that prompting LLMs often yields lower
average performance than the fine-tuned baselines.

Our findings show that greater effort is needed to
close the performance gap between LLMs on high-
resource and African languages

2 Related Work

Large Language Model Evaluation: Accurate
and reproducible evaluation of LLMs is important
as the number of released models continues to grow.
As these models are integrated into various appli-
cations, developing robust evaluation frameworks
becomes critical for understanding their true capa-
bilities and limitations. As a result, the community
has worked on developing evaluation frameworks
(Gao et al., 2024; Fourrier et al., 2023; Liang et al.,
2023), leaderboards (Chiang et al., 2024; Srivas-
tava et al., 2023; Fourrier et al., 2024) and bench-
marks (Adelani et al., 2024b; Zhou et al., 2023;
Hendrycks et al., 2021). While each of these eval-
uation tools focuses on assessing specific aspects
of language model capabilities, from basic linguis-
tic understanding to complex reasoning tasks, the
development of truly comprehensive benchmarks
remains a significant challenge (Ruder, 2021; Bi-
derman et al., 2024). These challenges stem from
the complex nature of language understanding and
the stochastic nature of language models.

Multilingual LLM Benchmarks: Benchmarks
serve as a standard for measuring how systems
have improved over time on specific tasks and met-
rics. In the context of LLMs, multilingual bench-
marks are crucial for assessing both the quality and
practical utility of these models across diverse lan-
guages and tasks. Our primary focus lies in under-
standing LLM performance specifically for African
languages, with several notable benchmarks hav-
ing emerged in recent years to address this need.
ChatGPT-MT (Robinson et al., 2023) evaluated the
translation capability of GPT-4 and they find that it
demonstrates strong performance on high-resource
languages, but performance on low-resource lan-
guages is subpar. Belebele (Bandarkar et al., 2024)
is a QA task covering 122 languages, including 28
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Figure 2: AFROBENCH: A comprehensive benchmark for evaluating performance of LLMs on African
Language tasks. The benchmark features 15 distinct tasks across 22 datasets and 64 indigenous African languages.
The benchmark covers diverse tasks with geographical coverage spanning different regions in Africa.

African languages, for evaluating reading compre-
hension abilities of LLMs. Mega (Ahuja et al.,
2023a) and Megaverse (Ahuja et al., 2024) are
multi-task, multilingual and multi-modal bench-
marks in 83 languages including 16 African lan-
guages. Table 1 summarizes the related works.

While these existing benchmarks have provided
valuable insights, they collectively highlight a
pressing need for more comprehensive evaluation
that encompasses a broader range of African lan-
guages and diverse tasks. Our research, through
the development of AFROBENCH, addresses this
gap by building upon and complementing existing
work. We introduce a robust evaluation framework
that assesses LLM performance across 64 African
languages, evaluating capabilities across 15 distinct
tasks. This broader scope enables a more nuanced
and thorough understanding of LLM capabilities
in African language contexts.

3 AfroBench

AFROBENCH is a comprehensive LLM evaluation
benchmark designed to assess both proprietary and
open LLMs across diverse Natural Language Pro-
cessing (NLP) tasks in African languages. As
shown in Figure 2, the benchmark encompasses
15 distinct tasks, spanning Natural Language Gen-
eration (NLG) and Natural Language Understand-
ing (NLU), incorporating 22 curated datasets in 64
African languages. These evaluation tasks extend
beyond traditional NLP benchmarks, such as text

classification and named entity recognition, to in-
clude more challenging tasks such as mathematical
reasoning and knowledge QA.

Each task within AFROBENCH has been care-
fully selected to assess different aspects of lan-
guage model capabilities, from basic linguistic
capabilities to more complex reasoning abilities.
AFROBENCH also provides valuable insights into
model behavior across different African language
families and their unique linguistic features. All
tasks within AFROBENCH are evaluated using both
zero-shot and few-shot prompting to guide model
responses. To ensure consistent and reliable eval-
uation, we implement task-specific response con-
straints to facilitate systematic extraction and anal-
ysis of model outputs. For completion, we compare
against state-of-the-art (SoTA) encoder-only and
encoder-decoder architectures that have previously
demonstrated superior performance on individual
tasks within the benchmark. This enables us to
directly compare the performance of specialized
models to general-purpose LLMs. Table 2 sum-
marizes the tasks, the datasets used, number of
languages covered, and total sample size.

3.1 Languages

We cover 64 African languages from seven lan-
guage families (Afro-Asiatic, Atlantic-Congo, Aus-
tronesian, Indo-European, Mande, Nilotic, and
English-Creole). 40 languages are from the
Atlantic-Congo family, 12 from the Afro-Asiatic
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Total No. of Per. Lang.
Task Dataset Size Lang. size

POS MasakhaPOS 12,190 20 500–700
NER MasakhaNER-X 18,192 20 900–1000*

TC SIB-200 11,220 55 204
MasakhaNEWS 6,242 16 200–948

SA AfriSenti 37,670 15 950–4500‡

NollySenti 2,500 5 500
Intent Injongo-Intent 10,880 17 640
Hate AfriHate 14,250 15 323–1600
NLI AfriXNLI 9,600 16 600
XQA AfriQA 3,107 9 250–500
RC Belebele 27,900 31 900

NaijaRC 357 3 80–190
QA Uhura-Arc-Easy 3,257 7 300–500
MMLU AfriMMLU 8,500 17 500

MMMLU 42,126 3 14042
Math AfriMGSM 4,500 18 250
MT Flores-200 58,696 58 1012

MAFAND 29,155 21 1000–2000
NTREX 48,000 24 2000
Salt 3,500 7 500

Summ XLSum 25,769 12 500–1300¶

ADR AfriADR 7,567 5 1400–1600

Table 2: AfroBench data statistics: We detail the
dataset evaluated per task, test set size and number
of languages for each dataset as well as the range of
sample per language, *excl. amh: 500 & luo: 185 (in
MasakhaNER-X), ‡excl. tso: 254 (in AfriSenti), and
¶excl. arb: 4689 & eng: 11,535. (in XLSum). The tasks
covered in the Lite version is highlighted in Grey .

family, seven from the Nilotic family, 2 Indo-
European, 2 Creole languages, and 1 Austronesian
language. Figure 2 shows the geographical distribu-
tion of the languages covered in AFROBENCH and
a full list of languages is provided in Appendix F.

3.2 Evaluation tasks

Our evaluation spans multiple datasets across 15
NLP tasks. While some of these multilingual
datasets cover languages from multiple continents,
we focus specifically on the African language sub-
sets, along with select high-resource languages (En-
glish, French, Portuguese, and Arabic), due to their
widespread use in various African regions. Table 2
details the sample size and the number of languages
evaluated per task per dataset. We present a break-
down of the tasks, sub-tasks, and specific datasets
contained in AFROBENCH.

3.2.1 Text Classification
Sentiment Classification (SA): We evalu-
ate NOLLYSENTI (Shode et al., 2023) and
AFRISENTI (Muhammad et al., 2023). AFRISENTI

is a tweet sentiment analysis dataset in 14 African
languages, while NOLLYSENTI focuses on
sentiment in movie reviews in 4 African languages.

Topic Classification (TC): We evaluate SIB-
200 and MASAKHANEWS (Adelani et al., 2023)
which cover 53 and 14 African languages, respec-
tively. The topic categories could be general topic
such as business, entertainment, and health.

Intent Classification: INJONGO-INTENT (Yu
et al., 2025) is an intent classification dataset in
16 African languages. The goal is to classify an
utterance into one of 40 intent types from different
domains such as Banking (e.g. “freeze account”),
Home (e.g. “play music”), Kitchen and Dining (e.g.
“cook time”), and Travel (e.g. “plug type”).

Hate Speech detection: AFRIHATE (Muham-
mad et al., 2025) is a multilingual hate speech and
abusive language dataset covering 15 African lan-
guages for tweets. Each tweet can be categorized
as abusive, hate or neural label.

Natural Language Inference (NLI):
AFRIXNLI(Adelani et al., 2024b) is a dataset
collection in 16 African languages where each
sample is a pair of sentences (a premise and a
hypothesis) and the task is to classify each pair as
an entailment, contradiction, or neural pair.

3.2.2 Token Classification
Named Entity Recognition (NER): We evalu-
ate entity recognition for 20 African languages
on the MASAKHANER-X (Ruder et al., 2023)—
an extension of MASAKHANER dataset (Adelani
et al., 2021, 2022b) which converts NER tags from
CoNLL format into a text generation task of pre-
dicting entities with a delimiter “$” between them.

Part-of-Speech Tagging (POS): MASAKHA-
POS(Dione et al., 2023) is a part-of-speech tagging
dataset in 20 African languages created from news
articles. Each token is categorized into one of the
17 POS tags.

3.2.3 Reasoning:
Mathematical reasoning (Math): We evaluate
on AFRIMGSM (Adelani et al., 2024b), an exten-
sion of the MGSM dataset to 17 African languages.
Each question is at grade school level with a nu-
merical answer.

3.2.4 Question Answering
Cross-Lingual Question Answering (XQA):
AFRIQA (Ogundepo et al., 2023) is a cross-lingual
QA task with questions in 10 African languages
and context passages in English or French. The
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goal is to extract the correct answer span from the
text, similar to a cross-lingual reading comprehen-
sion.

Reading Comprehension (RC): We evaluate on
NAIJARC (Aremu et al., 2024), a multiple-choice
reading comprehension dataset in 3 African lan-
guages and BELEBELE (Bandarkar et al., 2024), a
multiple-choice reading comprehension dataset in
122 languages, including 29 African languages.

Knowledge QA: We focus on two human-
translated MMLU datasets: OPENAI-MMLU and
AFRIMMLU (Adelani et al., 2024b) covering 3
and 16 African languages respectively.3 Both tasks
span multiple subjects and follow a four-option
multiple-choice format. However, AFRIMMLU
covers only five subjects. We also extend our
evaluation to the human-translated version of the
scientific Arc-Easy benchmark in 6 African lan-
guages UHURA (Bayes et al., 2024).

3.2.5 Text Generation
Machine translation (MT): Our MT benchmark
includes the following datasets: FLORES(Goyal
et al., 2022), MAFAND(Adelani et al., 2022a),
NTREX-128(Federmann et al., 2022) and SALT
(Akera et al., 2022) covering 57, 21, 23 and 7
translation directions into African languages. All
translations are from English, except for MAFAND,
which includes a few languages with French as the
source.

Summarization (Summ): Given a news article,
our goal is to generate its summary based on the
widely-used XL-SUM dataset (Hasan et al., 2021)
covering 10 African languages.

Automatic Diacritics Restoration (ADR): This
is a new benchmark we introduce called AFRI-
ADR. Given a sentence in a language, say “Sugbon
sibesibe, Mama o gbagbo” (in Yorùbá), the model’s
goal is to add the missing tonal marks and accents,
say “S. ùgbó. n síbè. síbè. , Màmá ò gbàgbó. ”. We cover
5 African languages for this task: Ghomálá’, Fon,
Igbo, Wolof, and Yorùbá. To create AFRIADR,
we selected the five languages with extensive use
of diacritics from MAFAND MT dataset, then, we
strip all accents and diacritics on each sentence,
and use it as the “source” text, and the “target” as
the fully diacritized texts. Table 3 provides the data
size and an example sentence for each language in
AFRIADR.
3https://huggingface.co/datasets/openai/MMMLU

Lang. Size Example sentence

Ghomálá’ 1430
Input: A jw@ guN ts@ awε a l@ n@N kwit@
Target: Â jw@́ guN ts@́ awέ a l@ n@́N kwít@́

Fon 1579
Input: Din O‚ nu lεε bi jεwexo.
Target: Din O‚ nú lέε bǐ jε wexo.

Igbo 1500
Input: Akuko ndi ga-amasi gi:
Target: Aku. ko. ndi. ga-amasi. gi.:

Wolof 1500
Input: Naari taggatkat lanu yu xaran lu kawe.
Target: Ñaari tàggatkat lañu yu xarañ lu kawe.

Yorùbá 1558
Input: Isokan awon Oniroyin naa fe oro naa loju:
Target: Ís.ò. kan àwo.n Oníròyìn náà fe. ò. rò. náà lójú:

Table 3: AfriADR dataset: Language, test size, and
Example sentence

3.3 AfroBench-Lite: A cost-effective bench

Following the idea of Global-MMLU-Lite (Singh
et al., 2024), which aims to create a cost-effective
benchmark with fewer languages and samples.
We introduce AFROBENCH-LITE, a subset of
AFROBENCH covering 14 languages and seven
datasets (and tasks): SIB-200 (TC), INJONGO

(Intent), AFRIXNLI (NLI), BELEBELE (RC),
AFRIMMLU (MMLU), AFRIMGSM (Math), and
FLORES (MT). The selected languages are highly
typologically diverse, and have varying resource
levels (Kudugunta et al., 2023). These languages
include: English, Kiswahili, Kinyarwanda, Hausa,
Amharic, isiXhosa, chiShona, isiZulu, Igbo, Yorùbá,
Sesotho, Lingala, Oromo, Luganda, and Wolof.

4 Experimental setup

4.1 Evaluation Framework

We model all tasks as text-generation problems,
where we combine inputs with prompts to guide
language models in generating outputs under spe-
cific constraints. To ensure robust evaluation, we
employ multiple prompts for each task with with
few-shot and zero-shot examples, which help main-
tain consistency and minimize potential bias across
different models.

Our evaluation framework is fully integrated
with Eleuther LM Evaluation Harness (Gao et al.,
2024) with custom evaluation scripts to run open-
source models.4 However, for the proprietary mod-
els, we developed a custom framework for prompt-
ing various LLMs via API including open models
available on TogetherAI API.5 These tools are open
source, easily accessible, and reproducible. Details
4https://github.com/EleutherAI/
lm-evaluation-harness/tree/main/lm_eval/tasks/
afrobench

5https://github.com/McGill-NLP/AfroBench/tree/
main/prompt_with_API
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of the custom framework and its integration with
the Eleuther LM Evaluation Harness are provided
in Appendix C.

4.2 Fine-tuned baselines

For the tasks with available training data, we
use available task-specific trained models, such
as NLLB-200 3.3B for MT, and fine-tuned mul-
tilingual encoders or encoder-decoder T5 mod-
els on applicable datasets. We fine-tune AfroX-
LMR (Alabi et al., 2022)—one of the SoTA BERT-
style encoders for African languages for each
NLU task. For summarization and ADR, we fine-
tune AfriTeVa V2 Large (Oladipo et al., 2023) on
the available training data of each task. While
AfriTeVa V2 outperformed mT5 (Xue et al., 2021)
overall, its tokenization failed for Fon language, so
we fine-tune mT5-large, which has a more diverse
tokenizer, for the language.

4.3 LLMs Evaluated

We evaluate two broad categories of Large Lan-
guage Models (LLMs): Open Models and Closed
Models. We evaluate 10 open models: LLaMa 2
7B (Touvron et al., 2023), Gemma 1.1 7B (Mes-
nard et al., 2024), LLAMA 3 series (3 8B, 3.1 8B
& 3.1 70B) (Dubey et al., 2024), LLaMaX 8B (Lu
et al., 2024) (an adapted LLaMa 3 8B to 100 lan-
guages), AfroLlama 8B(an adapted LLaMa 3 8B
to Swahili, Xhosa, Zulu, Yoruba, Hausa and En-
glish languages),6 GEMMA 2 (9B & 27B) (Riv-
iere et al., 2024), and Aya-101(an instruction-tuned
mT5 encoder-decoder model on massively multi-
lingual prompted dataset). Finally, we evaluate
on two popular proprietary models: GPT-4o and
Gemini-1.5 pro (Reid et al., 2024). A full de-
scription of the LLMs evaluated is provided in Ap-
pendix B.

Prompts used for evaluation We make use of
five different prompts in the evaluation of each task
except the text generation tasks, and we report the
best prompt in the paper. For text generation tasks,
we reduce the number of prompts to three since the
generation is often time-consuming and computa-
tionally expensive, especially for summarization
tasks. Moreover, we observe that performance is
less sensitive to prompt variations, unlike natural
language understanding (NLU) tasks. The prompt
templates are provided in Appendix H.

6https://huggingface.co/Jacaranda/AfroLlama_V1

Few-shot evaluation We restrict the few-shot
evaluation to top-performing open and proprietary
models. We fixed the number of examples to five,
except for AfriMGSM whose number of examples
is eight.7

5 Results

5.1 AfroBench Evaluation

Table 4 presents the overall results across all 15
tasks and 22 datasets. We report only the best
prompt results. Average results across all five
prompts, along with confidence intervals, are pro-
vided in Appendix D.

Our first observation is that closed models such
as GPT-4o and Gemini-1.5 pro outperform the
best open model, Gemma 2 27B by +12 or more
points on average. This shows that the gap in per-
formance is wider for low-resource African lan-
guages compared to high-resource languages like
English, especially with open models. Secondly,
we find that the performance gap varies across tasks.
Knowledge-intensive and reasoning tasks such as
ARC-EASY, MMLU, MATH have the largest gaps
of +29.4, +19.9, +22.6 points, respectively, when
comparing GPT-4o to Gemma 2 27B. Overall, per-
formance improves with newer LLM versions (e.g.
Gemma 1.1 7B vs. Gemma 2 9B and LLaMa 2
7B vs. LLaMa 3.1 8B) and larger model sizes
(Gemma 2 9B and Gemma 2 27B). This suggests
that newer iterations of models are getting better
on low-resource languages, though improvements
on knowledge-intensive tasks remain limited. Fi-
nally, while LLMs have made significant progress,
they still lag behind fine-tuned baselines (FT. AVG)
when training data is available for a task. The per-
formance gap is around +11.5 on average, high-
lighting the continued value of curating annotated
datasets for low-resource languages, as LLMs still
underperform. We provide task and per-language
results in Appendix A and I.

5.2 AfroBench-Lite Evaluation

In the AFROBENCH-LITE evaluation, we restrict
evaluation to seven LLMs, and seven tasks, com-
paring their performance to English.

Large gap in performance when compared to
English One striking observation is that open
models such as LlaMa 3.1 70B and Gemma 2 27B
have competitive performance to closed models

78-shot samples is the standard setting for MGSM datasets
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natural language understanding QA knowledge reasoning text generation
Tasks POS NER SA TC Intent Hate NLI XQA RC Arc-E MMLU Math MT Summ ADR ALL FT.
Metrics acc F1 F1 acc acc F1 acc F1 F1 acc acc EM ChrF BertScore ChrF AVG AVG

Fine-tuned baselines en/fr-xx xx-en/fr
AfroXLMR 89.4 84.6 72.1 74.4 93.7 77.2 61.4
mT5/AfriTeVa V2 1B 52.5 N/A N/A N/A N/A 72.3 79.4 70.4
NLLB 3.3B 40.4 47.8

Prompt-based baselines
open models
Gemma 1.1 7B 38.6 27.9 43.3 45.3 9.4 24.3 34.0 17.4 38.1 32.2 28.6 4.6 11.7 9.7 49.1 50.8 29.1 29.7
LLaMa 2 7B 27.9 15.6 42.3 19.4 1.5 21.9 33.8 13.7 24.3 23.3 25.6 2.0 10.5 20.3 46.9 30.4 22.5 22.2
LLaMa 3 8B 48.5 22.7 43.6 37.0 2.1 27.8 35.4 12.6 27.6 32.0 27.4 5.1 15.9 27.7 66.2 26.1 28.6 28.6
LLaMaX 8B 41.6 0.0 51.9 49.8 5.6 28.6 40.8 2.2 29.7 39.9 28.3 4.0 22.7 35.0 50.7 49.4 30.0 29.0
LLaMa 3.1 8B 47.1 11.5 50.5 46.7 6.0 23.6 36.6 21.8 39.5 32.8 31.4 6.8 16.4 28.5 43.7 25.9 29.3 28.1
AfroLLaMa 8B 0.0 3.5 43.4 19.8 0.8 18.4 35.9 21.8 24.1 37.2 25.8 3.7 8.4 9.5 50.8 5.2 19.3 17.6
Gemma 2 9B 51.9 40.3 60.0 56.0 29.2 29.9 40.3 45.9 51.6 53.4 37.1 18.7 24.8 29.1 66.1 51.6 42.9 42.9
Aya-101 13B 0.0 0.0 63.4 70.3 42.4 31.0 51.5 62.5 60.7 59.6 30.9 4.4 23.4 37.9 52.4 50.4 40.1 37.7
Gemma 2 27B 55.1 50.8 63.4 62.4 33.0 45.5 42.8 50.5 53.9 56.3 40.5 27.0 27.9 32.9 66.4 55.1 47.7 48.3
LlaMa 3.1 70B 54.1 14.4 52.2 57.7 34.0 49.0 38.0 44 49.7 54.9 39.9 23.2 25.1 37.9 67.6 51.7 43.3 42.6

proprietary models
Gemini 1.5 pro 60.8 41.8 68.3 76.7 74.3 62.1 62.0 40.5 52.7 84.8 57.6 52.3 37.6 41.7 66.7 55.6 58.5 58.9
GPT-4o (Aug) 62.8 40.7 68.0 74.8 74.0 63.5 64.3 43.4 69.2 85.7 60.4 49.8 35.1 40.7 66.5 54.9 59.6 58.1

Table 4: AfroBench Evaluation Results on Fine-Tuned Models and LLMs. We cover 15 tasks, 22 datasets, and
64 African languages in the evaluation. The best closed and open LLMs are highlighted in Cyan . We bolden the
best result per task in each column. We provide average on ALL tasks and on those with fine-tuned baselines (FT)

MT
Model Lang Intent TC NLI RC MMLU Math en/fr-xx AVG

Gemma 1.1
7B

eng 72.1 86.3 59.2 87.9 44.6 20.8 26.1 56.7
africa 10.2 42.0 34.6 34.1 27.3 5.1 10.9 23.5

Gemma 2
9B

eng 36.3 82.5 70.7 93.7 69.8 68.8 67.9 70.0
africa 27.8 64.0 40.9 49.3 36.1 21.7 37.2 39.6

Aya-101
13B

eng 78.0 82.8 67.0 86.1 42.8 11.6 64.2 61.8
africa 40.2 76.0 52.4 59.7 30.3 4.9 31.8 42.2

Gemma 2
27B

eng 84.0 89.3 67.8 93.4 75.6 85.6 68.5 80.6
africa 31.4 66.6 43.7 52.1 40.8 30.6 39.1 43.5

LLaMa 3.1
70B

eng 84.5 88.3 59.5 93.2 76.4 86.8 71.6 80.0
africa 36.9 61.9 38.4 45.3 40.6 26.5 29.6 39.9

Gemini 1.5
pro

eng 86.8 88.7 88.5 69.6 88.8 86.8 69.1 82.6
africa 75.6 81.3 63.6 54.4 62.6 57.7 44.2 62.8

GPT-4o
(Aug)

eng 86.2 89.2 89.2 84.3 88.0 88.8 70.2 85.1
africa 78.4 83.0 66.3 70.3 63.1 57.3 43.6 66.0

Table 5: AfroBench-Lite Evaluation: LLM baselines
on 7 datasets spanning 14 African languages. Tasks
were selected for broad NLP coverage, prioritizing lan-
guage consistency. The best score per task is in bold.

on English with −5 to −2 point performance gap.
However, when compared to African languages,
GPT-4o and Gemini-1.5 pro achieve an average
score better than Gemma 2 27B by over 20 points
on AFROBENCH-LITE. These results suggest that
current LLMs, especially open models, are biased
toward English and a few high-resource languages.
Adapting LLMs for a region of African languages
could help bridge the gap. For instance, we see
that continually pre-training LLaMa 3 8B, that re-
sulted in LLaMaX 8B yields a modest performance
gain of +1.4 points or more compared to vanilla
LLaMa 3 8B in Table 4. However, to further im-
prove performance, better adaptation techniques
are needed.

Performance varies across languages Figure 3
shows the results for per-language performance
scores of 14 languages in AFROBENCH-LITE.
Our results show a correlation between perfor-
mance and available monolingual text on the
web (Kudugunta et al., 2023). We find that Swahili
(swa) with over 2.4GB of monolingual text has the
highest performance among the African languages,
while Wolof with the smallest monolingual data
(5MB) has the lowest performance. While these
data size estimates are approximate, it shows that
there is a need to invest more in developing lan-
guage texts for many African languages for them
to benefit in the LLM age. For most languages,
GPT-4o gives the best overall results except for
Amharic (amh) where Gemini-1.5 pro was bet-
ter. For the open models, Gemma 2 27B outper-
forms other open models on 8 of the 14 languages,
even better than LlaMa 3.1 70B, which is more
than twice its number of parameters. Although
Aya-101covers 100 languages in its pre-training
and often achieves better performance on NLU
tasks in AFROBENCH-LITE, it often struggles with
math reasoning and MMLU, resulting in lower
overall performance.

5.3 Few-shot Results

Table 6 shows the results of zero-shot and few-
shot evaluation for three LLMs: Gemma 2 27B,
Gemini-1.5 pro and GPT-4o. The benefit of few-
shot varies for different LLMs and tasks. For
GPT-4o, we find that across all tasks, there is an av-
erage improvement of +1.8 while the other LLMs
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Figure 3: AfroBench-Lite performance of various models across African languages, plotted against the availability
of monolingual data (MADLAD byte size).

MT MT
Tasks # shots POS NER SA TC Intent Hate NLI XQA RC MMLU Math en/fr-xx xx-en/fr SUMM ADR AVG

Gemma 2 27B 0-shot 55.1 50.8 58.6 57.3 35.2 45.5 42.8 50.5 53.6 39.9 27.0 32.4 32.4 66.4 55.1 46.8
5-shot 43.9 14.5 59.7 62.5 56.7 57.3 56.0 52.4 58.3 44.8 27.5 22.7 34.9 55.5 31.2 45.2

Gemini 1.5 pro
pro

0-shot 60.8 41.8 62.6 74.5 74.3 62.1 62.0 40.5 53.0 60.2 52.3 35.4 41.7 66.7 55.6 56.2
5-shot 33.2 37.4 64.5 77.3 73.4 64.1 35.9 28.7 24.4 46.0 49.0 37.4 43.1 70.4 63.4 49.9

GPT-4o (Aug)
(Aug)

0-shot 62.8 40.7 62.6 72.5 74.0 63.5 64.3 43.4 69.1 60.0 49.8 31.5 41.0 66.5 54.9 57.1
5-shot 62.4 45.0 62.3 72.9 71.6 69.3 64.2 40.0 71.9 59.7 54.7 33.9 43.3 67.9 62.7 58.8

Table 6: Few-shot Evaluation. The better score between each model’s 0-shot and few-shot is in underlined.

dropped in performance on average. The tasks that
benefit the most from the few-shot examples are
math reasoning, hate speech detection and ADR
with respective improvements of +4.9, +5.8, and
+7.8 points. The result shows that few-shot ex-
amples are important for teaching LLM a new
task it is unfamiliar with such as ADR since the
rules of adding diacritics are not provided during
the zero-shot, therefore, five examples provide a
demonstration to the LLMs on how to perform
the task especially for low-resource languages like
Ghomálá’ and Fon, which have very limited mono-
lingual data online. These two languages improved
by +16.4 and 7.2 points, respectively. While the
other languages such as Igbo, Wolof and Yorùbá
achieved over +5.0 boost in chrF scores. Similarly,
for Gemini-1.5 pro, we observed a consistent per-
formance boost for ADR with five demonstration
examples.

For both GPT-4o and Gemini-1.5 pro, there is
a significant boost in performance across all the
text generation tasks we evaluated, which shows
that the current models have weaker generative ca-
pabilities in these low-resource languages, unless
provided with few-shot examples. For Hate speech,
we provided a detailed explanation of the distinc-
tion between “abusive” content and “hate” in the
prompt, but this is often confusing even for native
speakers of the language, who often need examples

of such sentences to improve annotation. We found
that LLMs also require such additional examples to
be able to better predict if a tweet is offensive. In
general, Gemma 2 27B improved on several NLU
tasks but showed no gains from few-shot examples
in token classification, math reasoning, summariza-
tion and ADR tasks.

6 Discussion

6.1 Prompt Variability

In our evaluation, we present results for the Best
prompt rather than the Average results over sev-
eral prompts to ensure no LLM is penalized due to
sensitivity to prompt templates. Here, we analyze
the difference in the performance scores between
the Best prompt and the average over five prompts
(or three prompts for the NLG tasks).

Figure 4 presents results from our analysis across
18 tasks. Our first observation is that LLMs are
not sensitive to different prompts when evaluating
text generation tasks, all LLMs exhibit less than a 6
point difference, and the task that is the least sensi-
tive is machine translation (FLORES). The second
observation is that Gemini-1.5 pro exhibits the
lowest sensitivity to different prompt templates on
average. The gap in performance across different
prompts is often small for several NLU tasks. In-
terestingly, we find that GPT-4o is highly sensitive
to prompts for a tasks such as hate speech, cross-
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Figure 4: Prompt Variability: Heatmap of the difference between the Best and Average prompt results.

Lang. Shot Input / Output

ADR: Gemini-1.5 pro

bbj
Input: A jw@ guN ts@ awε a l@ n@N kwit@
Target: Â jw@́ guN ts@́ awέ a l@ n@́N kwít@́
0-shot à jwε̌ gûN ts@ áwέ à l@ n@̂N kẅit@ (ChrF: 21.4)
5-shot a jw@́ guN ts@́ awέ a l@ n@́N kwit@ (ChrF: 81.6)

Hate speech: Gemini-1.5 pro

yor
Input: oloriburuku ni pupo ninu awon igbo yii

English: these igbo people are brainless
Label: hate
0-shot abuse
5-shot hate

Math reasoning: GPT-4o

yor
Input: Ryan gbin òdòdó 2 ní ojúmó. sí inú o. gbaà rè. . Lé.yìn o. jó.

15, òdòdó mélòó ní ó ní tí 5 ò bá wù?
English: Ryan plants 2 flowers a day in his garden. After 15

days, how many flowers does he have if 5 did not grow?
Answer: 25
0-shot ryan ní òdòdó 30 tí ó bá ń gbin 2 ní ojúmó.
8-shot ìdáhùn: ryan gbin òdòdó 2 ní ojúmó. . lé.yìn o. jó. 15, ó

máa gbin òdòdó 2 * 15 = 30. tí 5 ò bá wù, ó ní òdòdó
30 - 5 = 25. ìdáhùn náà ni 25.

Table 7: Qualitative Analysis comparison of the 0-shot
and 5-shot samples on ADR, Hate speech and Math.

lingual QA and math reasoning—which explains
the large difference in performance scores. This
analysis shows the benefit of using several prompts
in evaluation, although the benefit for text genera-
tion tasks are limited. Finally, the largest variability
is observed in the smaller Gemma 2 9B model, sug-
gesting that smaller LLMs require more prompt
template tuning than larger models, as evidenced
by the lower sensitivity of GEMMA 2 27B.

6.2 Qualitative Analysis

Table 7 shows the benefit of few-shot examples on
ADR, hate speech and math reasoning—the three
tasks that improved the most with few-shot exam-
ples. For the ADR evaluation on Ghomálá’, we
observed an improvement of over 60.0 chrF point,
and noticed that only a few characters had incorrect
diacritics unlike the zero-shot setting. Similarly,
for hate speech, without the few-shot example, the
LLM focused on the abusive word “oloriburuku”
(i.e. brainless), however, when we consider the
target to tweet, it is obvious that it was referring to
an entire tribe in Nigeria, which is “hate”. With the

definition of “hate” provided in the prompt, and ex-
amples provided, this becomes clearer to the model
than without demonstration examples. Finally, for
the math reasoning, in zero-shot setting, the LLM
often produces incorrect or incomplete reasoning
steps about the Yorùbá question which leads to an
incorrect answer. However, when provided with
few-shot in the language, GPT-4o came up with
more appropriate reasoning steps, leading to the
correct answer. This observation is particularly
promising for many low-resource languages.

7 Conclusion

In this paper, we introduce a new benchmark,
AFROBENCH, that aggregates existing evalua-
tion datasets for African languages, and adds
a new dataset focused on diacritics restoration.
AFROBENCH comprises 15 NLP tasks, 22 datasets,
and 64 African languages under-represented in
NLP. We evaluate the performance of several
closed and open LLMs on these tasks, showing that
they consistently fall behind the fine-tuned base-
lines. We also observe a large performance gap
compared to English, although the gap is smaller
for closed models such as GPT-4o and Gemini-1.5
pro. Through this benchmark, we have created
a leaderboard focusing on LLM evaluation for
African languages, which will be maintained go-
ing forward with additional tasks, LLMs, and lan-
guages. We will be releasing our prompt and task
configurations to Eleuther’s lm-eval. We hope
this encourages the development of more African-
centric LLMs for African languages.8 Our aim
is to continuously add newer LLMs to the leader-
board, we demonstrate this by adding the following
LLMs to the AFROBENCH-LITE: Lugha-LLaMa
(an African-centric LLM) (Buzaaba et al., 2025),
GPT-4.1, Gemini-2.0-Flash, and LLaMa 4 400B
(Maverick), as shown in Appendix E.

8Our evaluation suite is available at:
The-African-Research-Collective/afrobench-eval-suite.
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9 Limitation

In today’s NLP landscape, large language models
are general-purpose models capable of performing
multiple NLP tasks without the need for special
training on these tasks. These models are often
multilingual and can perform tasks in multiple lan-
guages. Our research examines how these models
perform specifically with African languages, re-
vealing performance disparities when compared to
more resourced languages. In this section, we dis-
cuss some of the limitations of our research method-
ology and findings.

1. Training Data Transparency and Contamina-
tion: One of the challenges in evaluating large lan-
guage models lies in the limited visibility into their
training data composition. While organizations
frequently publish training documentation, many
reports lack comprehensive details about data mix-
tures and language distributions across different
training stages. This lack of transparency impacts
our findings in several ways. Without knowledge
of the data mixture — or to what extent — our
evaluation sets overlap with the training data. Thus,
we cannot conclude that superior performance on
certain tasks is a true demonstration of general-
ization or merely the model’s exposure to similar
content during training. In the context of African
languages, knowledge of the training data enables
us to examine other factors such as cross-lingual
transfer, which may inform our interpretation of
evaluation results. A clear understanding of train-
ing data composition serves as a crucial foundation
for meaningful model evaluation. It helps establish
the validity of performance metrics and provides

essential context for interpreting results across dif-
ferent languages and tasks.

2. Limited Selection of LLMs and Evaluation
Costs: We are only able to evaluate a limited
set of LLMs due to the computational and finan-
cial costs associated with model access and infer-
ence. Language models are accessed using two
primary methods; loading the pretrained check-
points directly or using an API service. While
providers like Together AI offer access to open-
source models and companies like OpenAI provide
proprietary model access, both approaches incur
considerable costs that directly impact the scope of
evaluation studies. In our evaluation, the costs were
substantial, requiring approximately $2,500 each
for Gemini-1.5 pro and GPT-4o model access,
with an additional $1,200 for utilizing the Together
AI platform. The total evaluation costs manifest in
two key dimensions; first, when running the mod-
els locally, the GPU requirements for larger models
are substantial; second, when using API services,
the cost scales directly with the size of the evalu-
ation dataset and number of models. These cost
implications impose a limitation on the breadth and
depth of our evaluation studies. We had to make
strategic decisions about which models to include
in our benchmark and how extensively to test them.
This financial constraint introduces selection bias
in terms of which models and tasks to prioritize,
ultimately limiting the scope of our evaluation.
3. Long-tail Distribution of Languages Across
Tasks & Datasets: Another limitation of
AFROBENCH is the uneven distribution of lan-
guages across tasks and datasets. While our eval-
uation covers 64 languages in total, the coverage
across tasks and datasets exhibits a long-tail dis-
tribution. As shown in Table F, 60% of the lan-
guages appear in fewer than 5 of the 21 datasets.
This poses two challenges; first, it limits our abil-
ity to accurately assess the performance of LLMs
across these underrepresented languages. Secondly,
it highlights the gap in the availability of evalua-
tion datasets even among low-resource languages.
Without extensive dataset coverage for these lan-
guages, conclusions about LLM capabilities across
these languages remain tentative.
4. Constraints in Machine Translation Met-
rics: Machine translation is often evaluated using
BLEU and ROUGE, which rely on word-level re-
call and precision, and chrF, which operates at the
character level. Research has shown these met-
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rics sometimes demonstrate poor correlation with
human judgments of translation quality. Other
evaluation metrics that utilize embedding similar-
ity, such as BERTScore (Zhang* et al., 2020) and
COMET (Rei et al., 2020) / AfriCOMET (Wang
et al., 2024), which leverages pretrained encoder
models to generate scores by comparing transla-
tions against reference texts, are promising alter-
natives. However, these neural evaluation models
have limited language coverage, making them un-
suitable for many of the languages in our study. As
a result, we rely on chrF++, which combines uni-
gram and character n-gram overlap measurements.
While this metric provides broader language cover-
age, it is a compromise between evaluation quality
and practical applicability.
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A Task Based Results

We group tasks using similar evaluation metrics to
analyze model performance systematically.

B LLMs evaluated

Models are selected to cover a range of open- and
closed-source LLMs with diverse parameter sizes,
multilingual capabilities, and recent advancements.
We prioritize models with strong multilingual sup-
port, accessibility for research, and relevance to
African languages.

B.0.1 Open Models
These are LLMs whose architectures, weights, and
often training datasets are publicly available, al-
lowing researchers and practitioners to fine-tune or
adapt them to specific use cases. These models pro-
mote transparency, replicability, and accessibility,
particularly for low-resource language tasks.

Aya-101 (Üstün et al., 2024) is a T5-style
encoder-decoder model fine-tuned for low-resource
multilingual applications, including African lan-
guages. It was fine-tuned on a curated dataset,
consisting of public multilingual corpora, and ma-
chine & human translated datasets from more than
100 languages. The model adopts a text-to-text
paradigm and emphasizes cross-lingual transfer
learning, allowing for robust generalization across
various multilingual text-based tasks.

LLaMa 2 7B Chat LLaMa 2 (Touvron et al.,
2023) is a collection of open-source pretrained
and fine-tuned generative text models developed by
Meta, ranging from 7 billion to 70 billion parame-
ters. The 7B Chat variant allows for dialogue use
cases. It employs an auto-regressive transformer
architecture and has been fine-tuned using super-
vised fine-tuning (SFT) and reinforcement learning
with human feedback (RLHF). These models are
pretrained on multiple languages, but have limited
coverage of African languages.

LLaMa 3 8B Instruct Llama 3 (Dubey et al.,
2024) is an updated variant of the LlaMa 2 series
(Touvron et al., 2023). The models are instruction-
fine-tuned to handle a wide range of text-based
tasks. Similar to LLaMa 2, it supports multiple
languages, though coverage of African languages
remains limited. The number of parameters ranges
from 8B to 70B; we use the 8B variant for this
evaluation.
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Figure 5: Performance of models across various NLP tasks, grouped by metric-based evaluation categories. Tasks
include Token Classification, Text classification, Reading Comprehension QA, Knowledge QA, Math Reasoning,
Machine Translation (MT), and Summarization (SUMM) and Diacritics Restoration (ADR).

LLaMa 3.1 Instruct (8B, 70B) LLaMa 3.1 (AI,
2024) is an updated variant of the LLaMa 3 se-
ries. Compared to LLaMa 3 (Dubey et al., 2024),
LLaMa 3.1 (AI, 2024) introduces improvements
in multilingual capabilities and general instruction-
following. We use the instruction-tuned variants,
fine-tuned for a broad range of NLP tasks. While
these models support multiple languages, coverage
of African languages remains limited. LLaMA 3.1
is available in parameter sizes ranging from 8B to
405B; due to computational cost, we evaluate only
the 8B and 70B variants.

Gemma 1.1 7B IT (Mesnard et al., 2024) is a
lightweight open model from Google, built from
the same research and technology used to create the
Gemini models. It is a text-to-text, decoder-only
large language models, available in English, with
open weights, pre-trained variants, and instruction-
tuned variants. However, it does not have strong
multilingual support. We evaluate the instruction-
tuned 7B variant of this model.

Gemma 2 IT (9B, 27B) (Riviere et al., 2024) is
an improved iteration of the Gemma model series
optimized for efficiency. Compared to Gemma
1, Gemma 2 incorporates enhanced instruction-
following capabilities and more robust parameter
scaling. We evaluate the instruction-tuned variants
of Gemma 2 at 9B and 27B parameter sizes.

AfroLlama-V1 (Health et al., 2024) is a decoder-
only transformer model, optimized for African
language applications. It leverages proprietary
datasets, including text from social media, news-
papers, and government publications in African
languages. Its architecture is based on LLaMa 3
8B (Dubey et al., 2024), but includes additional
pretraining on African-centric text.

B.0.2 Proprietary Models
These are proprietary systems developed and main-
tained by organizations. Their training data and
architectures are typically undisclosed.

GPT-4o (Aug) GPT-4o (OpenAI, 2024) is an op-
timized version of OpenAI’s GPT-4 model (Ope-
nAI, 2023). It is an autoregressive omni model,
trained end-to-end across text, vision, and audio on
both public and proprietary data. While specific
details about its architecture and datasets are not
publicly disclosed, the GPT series is designed to
adapt effectively to various language tasks, making
it suitable for applications involving African lan-
guages. We evaluated the August 2024 version of
this model.

Gemini 1.5 Pro 002. Gemini (Reid et al., 2024)
is a cutting-edge proprietary model with strong
multilingual capacity. It’s a compute-efficient mul-
timodal model whose training data is tailored for
diverse linguistic contexts, including low-resource
languages. Although its training data and archi-
tecture remain undisclosed, Gemini is designed to
adapt effectively to various language tasks, mak-
ing it suitable for applications involving African
languages.

C Evaluation Tools and Framework

AfroBench and AfroBench-Lite are fully integrated
with Eleuther LM Evaluation Harness (Gao et al.,
2024) for open models, with sample run scripts
and instructions on how to run the benchmark.
We chose Eleuther LM Evaluation Harness due
to its open-source and reproducible nature and
widespread adoption within the industry. The eval-
uation methodology varies by task type: text clas-
sification and multiple-choice tasks are assessed
using log-likelihood evaluation, which measures
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the probability of a prompt-generated continuation
containing the expected response, while all other
tasks utilize free-form generation approaches.

For proprietary models accessed through their
API, we developed a custom framework to prompt
and evaluate these models. This framework is also
open-sourced with sample run scripts and instruc-
tions on how to reproduce the benchmarks. The
same prompt and evaluation methodology for task
is used in both the LM Evaluation Harness and our
custom API framework.

D AfroBench Evaluation with Confidence
Scores

We computed 95% confidence intervals for
AfroBench results to quantify statistical signifi-
cance. The calculation was based on the results
of 5 prompts for each task (3 prompts for NLG
tasks). Table 9 presents the average performance
and confidence intervals across prompts to assess
variability and significance.

E Newer LLM evaluation on
AfroBench-Lite

We extend our evaluation for AFROBENCH-LITEto
include newer LLMs such as Lugha-LLaMa (an
African-centric LLM) (Buzaaba et al., 2025), GPT-
4.1, Gemini-2.0-Flash, and LLaMa 4 400B (Mav-
erick) in Table 8.

F Languages covered in the evaluation

Table 10 lists the languages and corresponding
tasks evaluated.
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MT
Model Lang Intent TC NLI RC MMLU Math en/fr-xx AVG

Lugha-Llama
8B

eng 16.7 43.6 46.8 22.4 31.8 6.4 51.3 31.3
africa 4.1 34.1 36.7 23.0 25.2 1.8 22.1 21.0

Gemma 1.1
7B

eng 72.1 86.3 59.2 87.9 44.6 20.8 26.1 56.7
africa 10.2 42.0 34.6 34.1 27.3 5.1 10.9 23.5

Gemma 2
9B

eng 36.3 82.5 70.7 93.7 69.8 68.8 67.9 70.0
africa 27.8 64.0 40.9 49.3 36.1 21.7 37.2 39.6

LLaMa 3.1
70B

eng 84.5 88.3 59.5 93.2 76.4 86.8 71.6 80.0
africa 36.9 61.9 38.4 45.3 40.6 26.5 29.6 39.9

Aya-101
13B

eng 78.0 82.8 67.0 86.1 42.8 11.6 64.2 61.8
africa 40.2 76.0 52.4 59.7 30.3 4.9 31.8 42.2

Gemma 2
27B

eng 84.0 89.3 67.8 93.4 75.6 85.6 68.5 80.6
africa 31.4 66.6 43.7 52.1 40.8 30.6 39.1 43.5

LLaMa 4
405B

eng 88.9 84.8 49.2 25 11.2 97.6 73 61.4
africa 73.9 80.6 45.5 24.6 15.8 65.0 42.8 49.7

Gemma 3
27B

eng 79.6 87.3 65.5 93.4 74.2 87.6 68.9 79.5
africa 55.2 74.2 51.2 62.4 44.4 47.5 33.1 52.6

Gemini 1.5
pro

eng 86.8 88.7 88.5 69.6 88.8 86.8 69.1 82.6
africa 75.6 81.3 63.6 54.4 62.6 57.7 44.2 62.8

GPT-4o
(Aug)

eng 86.2 89.2 89.2 84.3 88.0 88.8 70.2 85.1
africa 78.4 83.0 66.3 70.3 63.1 57.3 43.6 66.0

Gemini 2.0
Flash

eng 87.6 86.8 87 63 80.8 92.8 73.1 79.7
africa 82.5 84.9 66.5 56.8 57.8 67.5 49.6 66.5

GPT-4.1
(April)

eng 87.8 89.7 88.5 73.9 71.4 82.4 73.1 81.0
africa 84.4 84.8 67.5 64.8 60.2 59.9 47.3 67.0

Table 8: AfroBench-Lite Evaluation (NEW): LLM baselines on 7 datasets spanning 14 African languages
(sorted by performance on African languages). Tasks were selected for broad NLP coverage, prioritizing language
consistency. The best score per task is in bold.

Task LLaMa2 7B LLaMa3 8B LLaMaX 8B LLaMa3.1 8B AfroLLaMa 8B Gemma2 9B Aya-101 13B Gemma2 27B LLaMa3.1 70B Gemini1.5 Pro GPT-4o (Aug)

POS 22.6±13.6 45.8±4.4 38.7±4.4 42.9±6.5 0.0±0.0 47.9±7.9 0.0±0.0 53.6±3.1 52.0±4.7 59.5±3.0 60.1±5.9
NER 11.1±10.7 17.3±8.3 0.0±0.0 7.7±5.6 2.9±2.2 25.9±30.8 0.0±0.0 43.1±11.4 12.9±5.8 40.6±3.6 37.1±6.8
SA 37.5±17.0 39.7±16.3 44.5±17.1 45.7±18.4 39.8±25.2 48.3±29.0 60.0±9.8 58.4±17.3 43.4±18.3 65.4±15.2 64.6±17.7
TC 15.3±14.5 24.6±26.9 23.5±32.0 37.5±26.4 16.9±22.1 51.6±15.9 68.9±4.4 59.4±8.7 47.0±17.5 73.5±10.2 73.3±4.9
Intent 0.8±1.5 0.9±2.3 3.1±3.8 4.0±5.0 0.3±1.0 29.2±5.6 42.4±4.6 33.0±4.9 31.8±7.4 68.4±12.2 70.4±6.6
Hate 16.8±10.8 21.8±11.0 23.0±12.5 19.3±5.9 15.2±8.1 21.3±13.0 28.7±— 36.6±15.0 36.5±29.3 49.7±33.5 49.5±37.6
NLI 33.4±1.5 33.7±2.7 35.0±6.8 34.3±3.8 34.2±4.4 36.3±6.6 48.3±5.3 37.3±7.3 35.2±5.4 56.1±15.9 58.4±11.4
XQA 10.4±5.7 9.6±5.6 2.0±0.5 14.1±14.3 19.2±5.2 39.3±13.8 61.9±1.6 47.7±7.6 37.1±8.7 34.8±11.8 31.6±25.0
RC 24.3±3.5 28.0±8.2 24.6±5.7 36.2±16.2 24.4±2.5 47.7±26.2 55.2±29.4 47.6±28.8 44.5±16.8 52.7±7.6 71.4±3.2
Arc-E 21.0±4.3 30.8±3.8 39.3±2.6 31.7±3.0 35.8±2.8 52.9±1.8 59.3±1.4 55.5±1.9 55.4±4.3 83.8±2.1 85.2±1.4
MMLU 24.5±2.4 26.7±2.2 28.0±1.4 30.3±4.5 25.1±1.9 34.8±8.8 30.4±4.0 38.9±9.6 37.9±8.6 50.7±12.2 55.3±15.5
Math 1.8±1.3 4.2±3.2 3.7±2.5 5.5±3.4 0.1±0.4 14.1±8.0 4.3±1.6 25.4±4.8 20.3±5.4 46.6±20.3 48.7±4.2
MT (en-xx) 7.9±7.1 15.0±4.7 21.9±4.6 16.1±2.5 7.4±3.2 24.5±1.2 23.0±2.9 27.5±2.8 24.7±5.2 37.6±1.9 34.4±2.9
MT (xx-en) 17.8±7.5 23.1±11.0 34.0±5.0 27.7±3.8 8.3±3.0 28.8±0.8 36.9±4.1 32.7±1.5 35.8±8.8 41.7±0.8 40.5±1.5
ADR 22.8±19.2 24.1±7.4 47.2±6.6 23.1±6.8 4.3±2.4 50.3±4.4 49.8±1.8 53.5±4.4 48.2±16.2 54.5±4.2 52.9±5.0

Table 9: Model performance based on average with standard deviation at 95% confidence intervals
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Language Branch Region (of Africa) Script # speakers
A

fr
o-

A
si

at
ic

Algerian Arabic (arq) Semitic North Arabic 36M
Amharic (amh) Ethio-Semitic East Ge’ez 57M
Egyptian Arabic (arz) Semitic North Arabic 41M
Hausa (hau) Chadic West Latin 77M
Kabyle (kab) Berber North Arabic 3M
Oromo (orm) Cushitic East Latin 37M
Moroccan Arabic (ary) Semitic North Arabic 29M
Somali (som) Cushitic East Latin 22M
Tamasheq (taq) Berber East Latin 1M
Tamazight (tzm) Berber East Latin -
Tigrinya (tig) Ethio-Semitic East Ge’ez 9M
Tunisian Arabic (aeb) Semitic North Arabic 12M

N
ig

er
-C

on
go

N
ig

er
-C

on
go

Akan (aka) Tano West Latin 10M
Bambara (bam) Mande West Latin 14M
Bemba (bem) Bantu South/East/Central Latin 4M
Chichewa (nya) Bantu South-East Latin 14M
chiShona (sna) Bantu Southern Latin 11M
Chokwe (cjk) Bantu South/Central Latin 1M
Dyula (dyu) Mande West Latin 3M
Éwé (ewe) Kwa West Latin 7M
Fon (fon) Volta-Niger West Latin 14M
Ghomálá’ (bbj) Grassfields Central Latin 1M
Igbo (ibo) Volta-Niger West Latin 31M
isiXhosa (xho) Bantu Southern Latin 19M
isiZulu (zul) Bantu Southern Latin 27M
Kabiyè (kbp) Gur West Latin 1M
Kamba (kam) Bantu East Latin 5M
Kikongo (kon) Bantu South/Central Latin 5M
Kikuyu (kik) Bantu East Latin 8M
Kimbundu (kmb) Bantu Southern Latin 2M
Kinyarwanda (kin) Bantu East Latin 10M
Kiswahili (swa) Bantu East/Central Latin 71-106M
Lingala (lin) Bantu Central Latin 40M
Luba-Kasai (lua) Bantu Central Latin 6M
Luganda (lug) Bantu Central Latin 11M
Lugbara (lgg)
Mossi (mos) Gur West Latin 8M
Nigerian Fulfulde (fuv) Senegambia West Latin 15M
N’Ko (nqo) Mande West Latin -
Northern Sotho (nso) Bantu Southern Latin 4M
Rundi (run) Bantu East Latin 11M
Runyankole (nyn)
Sango (sag) Ubangian Central Latin 5M
Setswana (tsn) Bantu Southern Latin 14M
Southern Sotho (sot) Bantu Southern Latin 7M
Swati (ssw) Bantu Southern Latin 1M
Twi (twi) Kwa West Latin 9M
Tumbuka (tum) Bantu South/East Latin 2M

Continued on next page
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Language Branch Region (of Africa) Script # speakers

Umbundu (umb) Bantu Southern Latin 7M
Xitsonga (tso) Bantu Southern Latin 7M
Wolof (wol) Senegambia West Latin 5M
Yoruba (yor) Volta-Niger West Latin 46M

N
ilo

-S
ah

ar
an

Acholi (ach) Nilotic East Latin 1.5M
Ateso (teo) Nilotic East Latin 2.8M
Dinka (dik) Nilotic Central Latin 4M
Kanuri (knc) Saharan West/Central Latin 10M
Kanuri (knc) Saharan West/Central Arabic 10M
Luo (luo) Nilotic East Latin 4M
Neur (nus) Nilotic Central Latin 2M

A
us

tr
on

es
ia

n

Malagasy (plt) Malayo-Polynesian Southern Latin 25M

In
do

-E
ur

op
ea

n

Afrikaans (afr) Germanic Southern Latin 7M
Mozambican Portuguese (pt-MZ) Italic South East Latin 13M

C
re

ol
es Nigerian Pidgin (pcm) English-based West Latin 121M

Kabuverdianu (kea) Portuguese-based West Latin 1M

Table 10: Languages covered in each of our evaluation tasks: language family, region, script, number of L1/L2
speakers
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Classification Reasoning Question Generation
Answering

Lang. A
F

R
IH

A
T

E

A
F

R
IS

E
N

T
I

A
F

R
IX

N
L

I
IN

JO
N

G
O

-I
N

T
E

N
T

N
O

L
LY

S
E

N
T

I

M
A

S
A

K
H

A
N

E
W

S
M

A
S

A
K

H
A

N
E

R
M

A
S

A
K

H
A

P
O

S
S

IB
-2

00

A
F

R
IM

G
S

M

A
F

R
IM

M
L

U
A

F
R

IQ
A

B
E

L
E

B
E

L
E

N
A

IJ
A

R
C

O
P

E
N

A
I-

M
M

L
U

U
H

U
R

A

A
F

R
IA

D
R

F
L

O
R

E
S

M
A

FA
N

D

N
T

R
E

X
-1

28
S

A
LT

X
L

-S
U

M

# Tasks

aeb ✓ ✓ 2
ach ✓ 1
afr ✓ ✓ ✓ 3
aka ✓ ✓ 2
amh ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 14
ara ✓ ✓ 2
arq ✓ ✓ 2
ary ✓ ✓ ✓ ✓ ✓ 5
arz ✓ ✓ ✓ 3
bam ✓ ✓ ✓ ✓ ✓ ✓ 6
bbj ✓ ✓ ✓ ✓ 4
bem ✓ ✓ ✓ ✓ 4
cjk ✓ ✓ 2
dik ✓ ✓ 2
dyu ✓ ✓ 2
ewe ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10
fon ✓ ✓ ✓ ✓ ✓ ✓ 6
fuv ✓ 1
gaz ✓ ✓ 2
hau ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 19
ibo ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 19
kab ✓ ✓ 2
kam ✓ ✓ 2
kbp ✓ ✓ 2
kea ✓ ✓ 2
kik ✓ ✓ 2
kin ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 13
kmb ✓ ✓ 2
knc ✓ ✓ 2
kon ✓ ✓ 2
lgg ✓ 1
lin ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
lua ✓ ✓ 2
lug ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11
luo ✓ ✓ ✓ ✓ ✓ 5
mos ✓ ✓ ✓ ✓ ✓ 5
nde ✓ 1
nso ✓ ✓ ✓ 3
nus ✓ ✓ 2
nya ✓ ✓ ✓ ✓ ✓ ✓ 6

Continued on next page
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Classification Reasoning Question Generation
Answering

Lang. A
F

R
IH

A
T

E

A
F

R
IS

E
N

T
I

A
F

R
IX

N
L

I
IN

JO
N

G
O

-I
N

T
E

N
T

N
O

L
LY

S
E

N
T

I

M
A

S
A

K
H

A
N

E
W

S
M

A
S

A
K

H
A

N
E

R
M

A
S

A
K

H
A

P
O

S
S

IB
-2

00

A
F

R
IM

G
S

M

A
F

R
IM

M
L

U
A

F
R

IQ
A

B
E

L
E

B
E

L
E

N
A

IJ
A

R
C

O
P

E
N

A
I-

M
M

L
U

U
H

U
R

A

A
F

R
IA

D
R

F
L

O
R

E
S

M
A

FA
N

D

N
T

R
E

X
-1

28
S

A
LT

X
L

-S
U

M

# Tasks

nyn ✓ 1
orm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9
pcm ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
plt ✓ ✓ ✓ 3
run ✓ ✓ ✓ 3
sag ✓ ✓ 2
sna ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 12
som ✓ ✓ ✓ ✓ ✓ ✓ 6
sot ✓ ✓ ✓ ✓ ✓ 5
ssw ✓ ✓ ✓ 3
swa ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 18
taq ✓ 1
teo ✓ 1
tir ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
tsn ✓ ✓ ✓ ✓ ✓ 5
tso ✓ ✓ ✓ 3
tum ✓ ✓ 2
twi ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11
tzm ✓ ✓ 2
umb ✓ ✓ 2
ven ✓ 1
wol ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 12
xho ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 13
yor ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 21
zul ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 14

Table 11: Languages covered in each of our evaluation tasks: check marks (✓) indicate that a language is covered
by the task in that column. While 13 languages are covered by ≥ 10 tasks, 44 languages are covered by ≤ 5 tasks.
SIB-200 and FLORES have the broadest coverage of African languages. In general, classification and generation
tasks have better coverage of African languages than reasoning and question answering tasks.
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G Best Performing Prompt

The table below details which prompt performed
best for each model on each dataset. The actual
prompts can be found in Appendix H.
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Task Dataset AfroLLaMa 8B LLaMAX3 8B LLaMa2 7b LLaMa3 8B LLaMa3.1 8B LLaMa3.1 70B Aya-101 13B Gemma1.1 7b Gemma2 9b Gemma2 27b Gemini 1.5 Pro GPT-4o (Aug)

SA AfriSenti T4 T3 T5 T5 T5 T5 T3 T5 T5 T5 T3 T2
NollySenti T5 T3 T4 T3 T4 T4 T5 T4 T4 T4 T1 T3

TC Masakhanews T3 T3 T4 T3 T3 T3 T2 T2 T3 T3 T2 T2
SIB T3 T3 T5 T2 T2 T3 T4 T4 T5 T3 T5 T3

TokC MasakhaNER T4 T1 T5 T3 T3 T5 T1 T5 T2 T1 T3 T3
MasakhaPOS T1 T5 T1 T2 T2 T2 T1 T2 T2 T3 T3 T3

Intent InjongoIntent T1 T5 T4 T5 T3 T4 T5 T5 T5 T5 T5 T4

Hate AfriHATE T5 T4 T3 T1 T4 T4 T1 T4 T1 T4 T1 T4

NLI AfriXNLI T2 T1 T3 T2 T2 T2 T4 T2 T2 T2 T3 T3

XQA AfriQA T5 T4 T5 T5 T5 T2 T2 T2 T2 T2 T2 T2

RC NaijaRC T4 T5 T4 T1 T5 T5 T4 T3 T4 T5 T3 T2
Belebele T2 T5 T4 T1 T5 T5 T5 T3 T5 T5 T1 T1

Arc-E Uhura-Arc Easy T1 T4 T1 T5 T3 T2 T2 T1 T4 T4 T1 T3

MMLU AfriMMLU T5 T5 T1 T4 T3 T1 T2 T1 T1 T1 T1 T1
Openai-MMLU T5 T4 T3 T5 T5 T5 T5 T5 T3 T5 T1 T1

Math AfriMGSM T1 T4 T3 T4 T4 T4 T1 T1 T2 T4 T5 T2

MT

Flores en_xx T3 T2 T1 T1 T2 T2 T1 T2 T2 T2 T2 T3
Flores xx_en T1 T3 T3 T1 T3 T2 T3 T1 T2 T2 T1 T2
Mafand en_xx T1 T2 T2 T2 T2 T2 T1 T1 T2 T2 T3 T1
Mafand xx_en T3 T2 T2 T2 T2 T2 T2 T1 T2 T1 T3 T1
NTREX en_xx T3 T2 T1 T1 T2 T2 T2 T1 T1 T3 T2 T2
NTREX xx_en T1 T2 T3 T1 T2 T2 T2 T1 T2 T2 T2 T2
Salt en_xx T2 T1 T1 T2 T1 T2 T3 T1 T3 T2 T2 T3
Salt xx_en T1 T2 T3 T1 T3 T3 T3 T1 T2 T2 T2 T2

Summ XLSUM T3 T3 T3 T3 T3 T3 T1 T3 T1 T1 T3 T1

ADR ADR T4 T4 T2 T4 T4 T3 T1 T3 T4 T3 T2 T1

Table 12: Best-performing prompts per model for each dataset. These prompts achieved the highest scores reported
in the paper
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H Prompt Bank

In this section, we list all prompts used in our ex-
periments. We use zero-shot cross-lingual prompts,
where the context and query are in English, while
the input text is in the target African language. This
approach leverages LLMs’ stronger ability to fol-
low instructions in English (Lin et al., 2021; Shi
et al., 2022). The prompts are grouped by task
category, as shown in Figure 2.

H.1 Natural Language Understanding
POS prompts:

Listing 1: MasakhaPOS Prompt 1
Please provide the POS tags for each word in the

input sentence. The input will be a list of
words in the sentence. The output format should
be a list of tuples , where each tuple consists
of a word from the input text and its

corresponding POS tag label from the tag label
set: ['ADJ ', 'ADP ', 'ADV ', 'AUX ', 'CCONJ , 'DET
', 'INTJ ', 'NOUN ', 'NUM ', 'PART ', 'PRON ', '
PROPN ', 'PUNCT ', 'SCONJ ', 'SYM ', 'VERB ', 'X'].

Your response should include only a list of tuples ,
in the order that the words appear in the input
sentence , including punctuations , with each

tuple containing the corresponding POS tag
label for a word.

Sentence: {{text}}
Output:

Listing 2: MasakhaPOS Prompt 2
You are an expert in tagging words and sentences in

{{ language }} with the right POS tag.

Please provide the POS tags for each word in the {{
language }} sentence. The input is a list of
words in the sentence. POS tag label set: [ '
ADJ ', 'ADP ', 'ADV ', 'AUX ', 'CCONJ , 'DET ', 'INTJ
', 'NOUN ', 'NUM ', 'PART ', 'PRON ', 'PROPN ', '
PUNCT ', 'SCONJ ', 'SYM ', 'VERB ', 'X' ]. The
output format should be a list of tuples , where
each tuple consists of a word from the input

text and its corresponding POS tag label from
the POS tag label set provided.

Your response should include only a list of tuples ,
in the order that the words appear in the input
sentence , including punctuations , with each

tuple containing the corresponding POS tag
label for a word.

Sentence: {{text}}
Output:

Listing 3: MasakhaPOS Prompt 3
Acting as a {{ language }} linguist and without making

any corrections or changes to the text ,
perform a part of speech (POS) analysis of the
sentences using the following POS tag label
annotation ['ADJ ', 'ADP ', 'ADV ', 'AUX ', 'CCONJ ,
'DET ', 'INTJ ', 'NOUN ', 'NUM ', 'PART ', 'PRON ',

'PROPN ', 'PUNCT ', 'SCONJ ', 'SYM ', 'VERB ', 'X'].
The input will be a list of words in the

sentence. The output format should be a list of
tuples , where each tuple consists of a word

from the input text and its corresponding POS
tag label from the POS tag label set provided.

Your response should include only a list of tuples ,
in the order that the words appear in the input
sentence , including punctuations , with each

tuple containing the corresponding POS tag
label for a word.

Sentence: {{text}}
Output:

Listing 4: MasakhaPOS Prompt 4
Annotate each word in the provided sentence with the

appropriate POS tag. The annotation list is
given as: ['ADJ ', 'ADP ', 'ADV ', 'AUX ', 'CCONJ ,
'DET ', 'INTJ ', 'NOUN ', 'NUM ', 'PART ', 'PRON ', '
PROPN ', 'PUNCT ', 'SCONJ ', 'SYM ', 'VERB ', 'X'].
The input sentence will be a list of words in
the sentence. The output format should be a
list of tuples , where each tuple consists of a
word from the input text and its corresponding
POS tag label from the POS tag label set
provided\nYour response should include only a
list of tuples , in the order that the words
appear in the input sentence , including
punctuations , with each tuple containing the
corresponding POS tag label for a word.

Sentence: {{text}}
Output:

Listing 5: MasakhaPOS Prompt 5
Given the following sentence , identify the part of

speech (POS) for each word. Use the following
POS tag set:

NOUN: Noun (person , place , thing),
VERB: Verb (action , state),
ADJ: Adjective (describes a noun),
ADV: Adverb (modifies a verb , adjective , or adverb),
PRON: Pronoun (replaces a noun),
DET: Determiner (introduces a noun),
ADP: Adposition (preposition or postposition),
CCONJ: Conjunction (connects words , phrases , clauses

)
PUNCT: Punctuation ,
PROPN: Proper Noun ,
AUX: Auxiliary verb (helper verb), \nSCONJ:

Subordinating conjunction
PART: Particle ,
SYM: Symbol ,
INTJ: Interjection ,
NUM: Numeral ,
X: others. The output format should be a list of

tuples , where each tuple consists of a word
from the input text and its corresponding POS
tag label key only from the POS tag set
provided

Your response should include only a list of tuples ,
in the order that the words appear in the input
sentence , including punctuations , with each

tuple containing the corresponding POS tag
label for a word.

Sentence: {{text}}
Output:

NER prompts:

Listing 1: MasakhaNER Prompt 1
Named entities refers to names of location ,

organisation and personal name.
For example , 'David is an employee of Amazon and he

is visiting New York next week to see Esther '
will be

PERSON: David $ ORGANIZATION: Amazon $ LOCATION: New
York $ PERSON: Esther

Ensure the output strictly follows the format: label
: entity $ label: entity , with each unique
entity on a separate label line , avoiding
grouped entities (e.g., avoid LOC: entity ,
entity) or irrelevant entries like none.

Text: {{text}}
Return only the output

Listing 2: MasakhaNER Prompt 2
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You are working as a named entity recognition expert
and your task is to label a given text with

named entity labels. Your task is to identify
and label any named entities present in the
text. The named entity labels that you will be
using are PER (person), LOC (location), ORG (
organization) and DATE (date). Label multi -word
entities as a single named entity. For words

which are not part of any named entity , do not
return any value for it.

Ensure the output strictly follows the format: label
: entity $$ label: entity , with each unique
entity on a separate label line , avoiding
grouped entities (e.g., avoid LOC: entity ,
entity) or irrelevant entries like none. Return
only the output

Text: {{text}}

Listing 3: MasakhaNER Prompt 3
You are a Named Entity Recognition expert in {{

language }} language.
Extract all named entities from the following {{

language }} text and categorize them into PERSON
, LOCATION , ORGANIZATION , or DATE.

Ensure the output strictly follows the format; label
: entity $$ label: entity , with each unique
entity on a separate label line , avoiding
grouped entities (e.g., avoid LOC: entity ,
entity) or irrelevant entries like none. Return
only the output

Text: {{text}}
Return only the output

Listing 4: MasakhaNER Prompt 4
As a {{ language }} linguist , label all named entities

in the {{ language }} text below with the
categories: PERSON , LOCATION , ORGANIZATION , and
DATE. Ensure the output strictly follows the

format; label: entity $$ label: entity , with
each unique entity on a separate label line ,
avoiding grouped entities (e.g., avoid LOC:
entity , entity) or irrelevant entries like none
. Return only the output.

Text: {{text}}
Return only the output

Listing 5: MasakhaNER Prompt 5
Provide a concise list of named entities in the text

below. Use the following labels: PERSON ,
LOCATION , ORGANIZATION , and DATE. Ensure the
output strictly follows the format; label:
entity $$ label: entity , with each unique
entity on a separate label line , avoiding
grouped entities (e.g., avoid LOC: entity ,
entity) or irrelevant entries like none. Return
only the output.

Text: {{text}}
Return only the output

Sentiment prompts:

Listing 1: AfriSenti Prompt 1
Does this statement; "{{ tweet }}" have a Neutral ,

Positive or Negative sentiment? Labels only

Listing 2: AfriSenti Prompt 2
Does this {{ language }} statement; "{{ tweet }}" have a

Neutral , Positive or Negative sentiment?
Labels only

Listing 3: AfriSenti Prompt 3

You are an assistant able to detect sentiments in
tweets.

Given the sentiment labels Neutral , Positive or
Negative; what is the sentiment of the {{
language }} statement below? Return only the
labels.

text: {{ tweet }}
label:

Listing 4: AfriSenti Prompt 4
Label the following text as Neutral , Positive , or

Negative. Provide only the label as your
response.

text: {{ tweet }}
label:

Listing 5: AfriSenti Prompt 5
You are tasked with performing sentiment

classification on the following {{ language }}
text. For each input , classify the sentiment as
positive , negative , or neutral. Use the

following guidelines:

Positive: The text expresses happiness , satisfaction
, or optimism.

Negative: The text conveys disappointment ,
dissatisfaction , or pessimism.

Neutral: The text is factual , objective , or without
strong emotional undertones.

If the text contains both positive and negative
sentiments , choose the dominant sentiment. For
ambiguous or unclear sentiments , select the
label that best reflects the overall tone.
Please provide a single classification for each
input.

text: {{ tweet }}
label:

Listing 6: NollySenti Prompt 1
Does this movie description "{{ review }}" have a

Positive or Negative sentiment? Labels only

Listing 7: NollySenti Prompt 2
Does this {{ language} movie description; "{{ review

}}" have a Positive or Negative sentiment?
Labels only

Listing 8: NollySenti Prompt 3
You are an assistant able to detect sentiment in

movie reviews.

Given the sentiment labels Positive or Negative;
what is the sentiment of the English statement
below? Return only the labels

Review: {{ review }}"

Listing 9: NollySenti Prompt 4
Label the following text as Positive , or Negative.

Provide only the label as your response.

text: {{ review }}
label:

Listing 10: NollySenti Prompt 5
You are tasked with performing sentiment

classification on the following English text.
For each input , classify the sentiment as
positive , negative. Use the following
guidelines:
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Positive: The text expresses happiness , satisfaction
, or optimism.

Negative: The text conveys disappointment ,
dissatisfaction , or pessimism.

If the text contains both positive and negative
sentiments , choose the dominant sentiment. For
ambiguous or unclear sentiments , select the
label that best reflects the overall tone.
Please provide a single classification for each
input.

text: {{ review }}
label:

Topic Classification prompts:

Listing 1: SIB Prompt 1
Given the categories science/technology , travel ,

politics , sports , health , entertainment , or
geography; what category does the text: '{{text
}}' belong to:

Listing 2: SIB Prompt 2
Does this {{ language }} topic; '{{text}}' belong to

one of the following categories: science/
technology , travel , politics , sports , health ,
entertainment , or geography? category only

Listing 3: SIB Prompt 3
You are an assistant able to classify topics in

texts.

Given the categories science/technology , travel ,
politics , sports , health , entertainment , or
geography; what is the topic of the {{ language
}} statement below? Return only the category.

text: {{text}}
category: "

Listing 4: SIB Prompt 4
Label the following text as science/technology ,

travel , politics , sports , health , entertainment
, or geography. Provide only the category as
your response.

text: {{text}}
category:

Listing 5: SIB Prompt 5
You are tasked with performing topic classification

on the following {{ language }} text. For each
input , classify the topic as science/technology
, travel , politics , sports , health ,
entertainment , or geography. Use the following
guidelines:

science/technology: The text discusses scientific
discoveries , technological advancements , or
related topics.

travel: The text describes travel experiences ,
destinations , or related topics.

politics: The text covers political events , policies
, or related topics.

sports: The text talks about sports events , athletes
, or related topics.

health: The text addresses health issues , medical
advancements , or related topics.

entertainment: The text pertains to movies , music ,
celebrities , or related topics.

geography: The text involves geographical
information , locations , or related topics.

If the text contains multiple topics , choose the
dominant topic. For ambiguous or unclear topics
, select the category that best reflects the
overall content. Please provide a single
classification for each input.

text: {{text}}
category:

Listing 6: MasakhaNEWS Prompt 1
Given the categories technology , business , politics ,

sports , health , entertainment , or religion;
what category does the text: '{{headline}}'
belong to:

Return only the one category

Listing 7: MasakhaNEWS Prompt 2
Does this {{ language }} topic; '{{headline}}' belong

to one of the following categories: technology ,
business , politics , sports , health ,

entertainment , or religion? category only

Listing 8: MasakhaNEWS Prompt 3
You are an assistant able to classify topics in

texts.

Given the categories technology , religion , politics ,
sports , health , entertainment , or business;

what is

text: {{ headline }}
category:

Listing 9: MasakhaNEWS Prompt 4
Label the following text as technology , religion ,

politics , sports , health , entertainment , or
geography. Provide only the category as your
response.

text: {{ headline }}
category:

Listing 10: MasakhaNEWS Prompt 5
You are tasked with performing topic classification

on the following {{ language }} text. For each
input , classify the topic as technology ,
business , politics , sports , health ,
entertainment , or religion. Use the following
guidelines:

technology: The text discusses scientific
discoveries , technological advancements , or
related topics.

politics: The text covers political events , policies
, or related topics.

sports: The text talks about sports events , athletes
, or related topics.

health: The text addresses health issues , medical
advancements , or related topics.

entertainment: The text pertains to movies , music ,
celebrities , or related topics.

religion: The text talks about relgions , religious
institutions and beliefs or related topics.

business: The text covers economy , business , or
related topics.

If the text contains multiple topics , choose the
dominant topic. For ambiguous or unclear topics
, select the category that best reflects the
overall content. Please provide a single
classification for each input.

text: {{ headline }}
category:

Intent Detection prompts:

Listing 1: IngongoIntent Prompt 1
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Given the text: '{{text}}', classify it into one of
these intents: [alarm , balance , bill_balance ,
book_flight , book_hotel , calendar_update ,
cancel_reservation , car_rental ,
confirm_reservation , cook_time , exchange_rate ,
food_last , freeze_account , ingredients_list ,
interest_rate , international_visa , make_call ,
meal_suggestion , min_payment , pay_bill ,
pin_change , play_music , plug_type , recipe ,
restaurant_reservation , restaurant_reviews ,
restaurant_suggestion , share_location ,
shopping_list_update , spending_history , text ,
time , timezone , transactions , transfer ,
translate , travel_notification ,
travel_suggestion , update_playlist , weather ].
Only output one intent from the list.

Listing 2: IngongoIntent Prompt 2
Analyze the text: '{{text}}'. Choose the most

appropriate intent from these options: [alarm ,
balance , bill_balance , book_flight , book_hotel ,
calendar_update , cancel_reservation ,

car_rental , confirm_reservation , cook_time ,
exchange_rate , food_last , freeze_account ,
ingredients_list , interest_rate ,
international_visa , make_call , meal_suggestion ,
min_payment , pay_bill , pin_change , play_music ,
plug_type , recipe , restaurant_reservation ,

restaurant_reviews , restaurant_suggestion ,
share_location , shopping_list_update ,
spending_history , text , time , timezone ,
transactions , transfer , translate ,
travel_notification , travel_suggestion ,
update_playlist , weather ]. Respond with only
the selected intent.

Listing 3: IngongoIntent Prompt 3
You are a linguistic analyst trained to understand

user intent. Based on the text: '{{text}}',
choose the intent that best matches from this
list: [alarm , balance , bill_balance ,
book_flight , book_hotel , calendar_update ,
cancel_reservation , car_rental ,
confirm_reservation , cook_time , exchange_rate ,
food_last , freeze_account , ingredients_list ,
interest_rate , international_visa , make_call ,
meal_suggestion , min_payment , pay_bill ,
pin_change , play_music , plug_type , recipe ,
restaurant_reservation , restaurant_reviews ,
restaurant_suggestion , share_location ,
shopping_list_update , spending_history , text ,
time , timezone , transactions , transfer ,
translate , travel_notification ,
travel_suggestion , update_playlist , weather ].
Return only the intent.

Listing 4: IngongoIntent Prompt 4
You are a English linguistic analyst trained to

understand {{ language }} user intent. Based on
the {{ language }} text: "{{ text}}", choose the
intent that best matches from this list: [alarm
, balance , bill_balance , book_flight ,
book_hotel , calendar_update , cancel_reservation
, car_rental , confirm_reservation , cook_time ,
exchange_rate , food_last , freeze_account ,
ingredients_list , interest_rate ,
international_visa , make_call , meal_suggestion ,
min_payment , pay_bill , pin_change , play_music ,
plug_type , recipe , restaurant_reservation ,

restaurant_reviews , restaurant_suggestion ,
share_location , shopping_list_update ,
spending_history , text , time , timezone ,
transactions , transfer , translate ,
travel_notification , travel_suggestion ,
update_playlist , weather ]. Return only the
intent.

Listing 5: IngongoIntent Prompt 5

The following text is in {{ language }}: '{{text}}'.
Given the list of intents: [alarm , balance ,
bill_balance , book_flight , book_hotel ,
calendar_update , cancel_reservation , car_rental
, confirm_reservation , cook_time , exchange_rate
, food_last , freeze_account , ingredients_list ,
interest_rate , international_visa , make_call ,
meal_suggestion , min_payment , pay_bill ,
pin_change , play_music , plug_type , recipe ,
restaurant_reservation , restaurant_reviews ,
restaurant_suggestion , share_location ,
shopping_list_update , spending_history , text ,
time , timezone , transactions , transfer ,
translate , travel_notification ,
travel_suggestion , update_playlist , weather],
identify the intent expressed in the text.
Return only the identified intent.

Hate Speech prompts:

Listing 1: AfriHate Prompt 1
I am providing you with the definition Hate speech ,

Abusive language and Normal tweets.
Hate speech is a language content that expresses

hatred towards a particular group or individual
based on their political affiliation , race ,

ethnicity , religion , gender , sexual orientation
, or other characteristics. It also includes
threats of violence

Abusive language is any form of bad language
expressions including rude , impolite , insulting
or belittling utterance intended to offend or

harm an individual.
Normal does not contain any bad language.

Tweet: {{ tweet }}

Which category does the tweet above belong to: 'Hate
', 'Abuse ' or 'Normal '. Pick exactly one
category. Return only the label

Listing 2: AfriHate Prompt 2
Read the following label definitions and provide a

label without any explanations.

Hate: Hate speech is public speech that expresses
hate or encourages violence towards a person or
group based on something such as race ,

religion , gender , ethnicity , sexual orientation
or other characteristics.

Abusive: Abusive and offensive language means verbal
messages that use words in an inappropriate

way and may include but is not limited to
swearing , name -calling , or profanity. Offensive
language may upset or embarrass people because
it is rude or insulting.

Normal: Normal language is neither hateful nor
abusive or offensive. It does not contain any
bad language.

Text: {{ tweet }}
Label:

Listing 3: AfriHate Prompt 3
Read the following text and definitions:

Text: {{tweet }}.

Definitions:
Hate: Hate speech is public speech that expresses

hate or encourages violence towards a person or
group based on something such as race ,

religion , gender , ethnicity , sexual orientation
or other characteristics.

Abuse: Abusive and offensive language means verbal
messages that use words in an inappropriate way
and may include but is not limited to swearing

, name -calling , or profanity. Offensive
language may upset or embarrass people because
it is rude or insulting.
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Normal: Normal language is neither hateful nor
abusive or offensive. It does not contain any
bad language.

Which of these definitions (hate , abuse , normal)
apply to this tweet?, return only the label

Listing 4: AfriHate Prompt 4
Read the following definitions and text to

categorize:

Definitions:
Hate: Hate speech is public speech that expresses

hate or encourages violence towards a person or
group based on something such as race ,

religion , gender , ethnicity , sexual orientation
or other characteristics.

Abuse: Abusive and offensive language means verbal
messages that use words in an inappropriate way
and may include but is not limited to swearing

, name -calling , or profanity. Offensive
language may upset or embarrass people because
it is rude or insulting.

Normal: Normal language is neither hateful nor
abusive or offensive. It does not contain any
bad language.

Text: {{ tweet }}.

Which of these definitions (hate , abuse , normal)
apply to this tweet? Return only the label

Listing 5: AfriHate Prompt 5
You will be given a text snippet and 3 category

definitions.
Your task is to choose which category applies to

this text.

Your text snippet is: {{ tweet }}.

Your category definitions are:
HATE category definition: Hate speech is public

speech that expresses hate or encourages
violence towards a person or group based on
something such as race , religion , gender ,
ethnicity , sexual orientation or other
characteristics.

ABUSE category definition: Abusive and offensive
language means verbal messages that use words
in an inappropriate way and may include but is
not limited to swearing , name -calling , or
profanity. Offensive language may upset or
embarrass people because it is rude or
insulting.

NORMAL category definition: Normal language is
neither hateful nor abusive or offensive. It
does not contain any bad language.

Does the text snippet belong to the HATE , ABUSIVE ,
or the NORMAL category? Thinking step by step
answer HATE , ABUSIVE , or NORMAL capitalizing
all the letters.

Explain your reasoning FIRST , then output HATE ,
ABUSIVE , or NORMAL. Clearly return the label in
capital letters.

Natural Language Inference prompts:

Listing 1: AfriXNLI Prompt 1
Please identify whether the premise entails or

contradicts the hypothesis in the following
premise and hypothesis. The answer should be
exact entailment , contradiction , or neutral.

Premise: {{ premise }}
Hypothesis: {{ hypothesis }}.

Is it entailment , contradiction , or neutral?

Listing 2: AfriXNLI Prompt 2
{{ premise }}
Question: {{ hypothesis }} True , False , or Neither?
Answer:

Listing 3: AfriXNLI Prompt 3
Given the following premise and hypothesis in {{

language}}, identify if the premise entails ,
contradicts , or is neutral towards the
hypothesis. Please respond with exact '
entailment ', 'contradiction ', or 'neutral '.

Premise: {{ premise }}
Hypothesis: {{ hypothesis }}

Listing 4: AfriXNLI Prompt 4
You are an expert in Natural Language Inference (NLI

) specializing in {{ language }} language.
Analyze the premise and hypothesis given in {{

language}}, and determine the relationship
between them.

Respond with one of the following options: '
entailment ', 'contradiction ', or 'neutral '.

Premise: {{ premise }}
Hypothesis: {{ hypothesis }}

Listing 5: AfriXNLI Prompt 5
Based on the given statement , is the following claim

'true ', 'false ', or 'inconclusive '.

Statement: {{ premise }}
Claim: {{ hypothesis }}

H.2 Question Answering

CrosslingualQA prompts:

Listing 1: AfriQA Prompt 1
Your task is to answer a question given a context.
Make sure you respond with the shortest span

containing the answer in the context.
Question: {{ question_lang }}
Context: {{ context }}
Answer:

Listing 2: AfriQA Prompt 2
Your task is to answer a question given a context.

The question is in {{ language}}, while the
context is in English or French.

Make sure you respond with the shortest span in the
context that contains the answer.

Question: {{ question_lang }}
Context: {{ context }}
Answer:

Listing 3: AfriQA Prompt 3
Given the context , provide the answer to the

following question.
Ensure your response is concise and directly from

the context.
Question: {{ question_lang }}
Context: {{ context }}
Answer:
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Listing 4: AfriQA Prompt 4
You are an AI assistant and your task is to answer

the question based on the provided context.
Your answer should be the shortest span that

contains the answer within the context.
Question: {{ question_lang }}
Context: {{ context }}
Answer:

Listing 5: AfriQA Prompt 5
Using the context , find the answer to the question.
Respond with the briefest span that includes the

answer from the context.
Question: {{ question_lang }}
Context: {{ context }}
Answer:

Reading Comprehension prompts:

Listing 1: Belebele Prompt 1
P: {{ passage }}
Q: {{ question }}
A: {{ option_1 }}
B: {{ option_2 }}
C: {{ option_3 }}
D: {{ option_4 }}
Please choose the correct answer from the options

above:

Listing 2: Belebele Prompt 2
Passage: {{ passage }}
Question: {{ question }}
1: {{ option_1 }}
2: {{ option_2 }}
3: {{ option_3 }}
4: {{ option_4 }}
Please select the correct answer from the given

choices

Listing 3: Belebele Prompt 3
Context: {{ passage }}
Query: {{ question }}
Option A: {{ option_1 }}
Option B: {{ option_2 }}
Option C: {{ option_3 }}
Option D: {{ option_4 }}
Please indicate the correct option from the list

above:

Listing 4: Belebele Prompt 4
{{ passage }}
Based on the above passage , answer the following

question:
{{ question }}
Choices:
A) {{ option_1 }}
B) {{ option_2 }}
C) {{ option_3 }}
D) {{ option_4 }}
Please provide the correct answer from the choices

given

Listing 5: Belebele Prompt 5
Read the passage: {{ passage }}
Then answer the question: {{ question }}
Options:
A. {{ option_1 }}
B. {{ option_2 }}
C. {{ option_3 }}
D. {{ option_4 }}
Please choose the correct option from the above list

Listing 6: NaijaRC Prompt 1
P: {{story}}
Q: {{ question }}
A: {{ options_A }}
B: {{ options_B }}
C: {{ options_C }}
D: {{ options_D }}
Please choose the correct answer from the options

above

Listing 7: NaijaRC Prompt 2
Passage: {{story}}
Question: {{ question }}
1: {{ options_A }}
2: {{ options_B }}
3: {{ options_C }}
4: {{ options_D }}
Please select the correct answer from the given

choices

Listing 8: NaijaRC Prompt 3
Context: {{story}}
Query: {{ question }}
Option A: {{ options_A }}
Option B: {{ options_B }}
Option C: {{ options_C }}
Option D: {{ options_D }}
Please indicate the correct option from the list

above

Listing 9: NaijaRC Prompt 4
{{ story }}
Based on the above passage , answer the following

question
{{ question }}
Choices:
A) {{ options_A }}
B) {{ options_B }}
C) {{ options_C }}
D) {{ options_D }}
Please provide the correct answer from the choices

given

Listing 10: NaijaRC Prompt 5
Read the passage: {{ story }}
Then answer the question: {{ question }}
Options:
A. {{ options_A }}
B. {{ options_B }}
C. {{ options_C }}
D. {{ options_D }}
Please choose the correct option from the above list

H.3 Knowledge
Arc-E prompts:

Listing 1: UHURA Prompt 1
You are a virtual assistant that answers multiple -

choice questions with the correct option only.

Question: {{ question }}

Choices:
A. {{ options_A }}
B. {{ options_B }}
C. {{ options_C }}
D. {{ options_D }}
Answer:

Listing 2: UHURA Prompt 2
Choose the correct option that answers the question

below:
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Question: {{ question }}

Choices:
A. {{ options_A }}
B. {{ options_B }}
C. {{ options_C }}
D. {{ options_D }}
Answer: .

Listing 3: UHURA Prompt 3
Answer the following multiple -choice question by

picking 'A', 'B', 'C', or 'D'

Question: {{ question }}

Options:
A. {{ options_A }}
B. {{ options_B }}
C. {{ options_C }}
D. {{ options_D }}
Answer:

Listing 4: UHURA Prompt 4
Question: {{ question }}

Options:
A. {{ options_A }}
B. {{ options_B }}
C. {{ options_C }}
D. {{ options_D }}
Answer:

Listing 5: UHURA Prompt 5
Which of the following options answers this question

: {{ question }}

Options:
A. {{ options_A }}
B. {{ options_B }}
C. {{ options_C }}
D. {{ options_D }}
Answer:

MMLU prompts:

Listing 1: OpenAIMMLU Prompt 1
Q: {{ Question }}
A: {{A}}
B: {{B}}
C: {{C}}
D: {{D}}
Please choose the correct answer from the options

above

Listing 2: OpenAIMMLU Prompt 2
Question: {{ Question }}
1: {{A}}
2: {{B}}
3: {{C}}
4: {{D}}
Please select the correct answer from the given

choices

Listing 3: OpenAIMMLU Prompt 3
Input Question: {{ Question }}
Option A: {{A}}
Option B: {{B}}
Option C: {{C}}
Option D: {{D}}
Please indicate the correct option from the list

above

Listing 4: OpenAIMMLU Prompt 4
Critically analyze the question and select the most

probable answer from the list:
{{ Question }}
Choices:
A) {{A}}
B) {{B}}
C) {{C}}
D) {{D}}

Listing 5: OpenAIMMLU Prompt 5
Answer the question and pick the correct answer from

the options:
{{ Question }}
Options:
A. {{A}}
B. {{B}}
C. {{C}}
D. {{D}}
Please choose the correct option from the above list

Listing 6: AfriMMLU Prompt 1
You are a highly knowledgeable and intelligent

artificial intelligence model answers multiple -
choice questions about {{ subject }}.

Question: {{ question }}
Choices:
A: {{ options_A }}
B: {{ options_B }}
C: {{ options_C }}
D: {{ options_D }}

Answer:

Listing 7: AfriMMLU Prompt 2
As an expert in {{ subject}}, choose the most

accurate answer to the question below. Your
goal is to select the correct option 'A', 'B',
'C', or 'D' by understanding the nuances of the
topic.

Question: {{ question }}
Choices:
A: {{ options_A }}
B: {{ options_B }}
C: {{ options_C }}
D: {{ options_D }}

Answer:

Listing 8: AfriMMLU Prompt 3
You are a subject matter expert in {{ subject }}.

Utilizing your expertise in {{ subject}}, answer
the following multiple -choice question by

picking 'A', 'B', 'C', or 'D'.

Question: {{ question }}
Choices:
A: {{ options_A }}
B: {{ options_B }}
C: {{ options_C }}
D: {{ options_D }}

Answer:

Listing 9: AfriMMLU Prompt 4
Analyze each question critically and determine the

most correct option based on your understanding
of the subject matter

Question: {{ question }}
Choices:
A: {{ options_A }}
B: {{ options_B }}
C: {{ options_C }}
D: {{ options_D }}

Answer:
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Listing 10: AfriMMLU Prompt 5
Given your proficiency in {{ subject}}, please answer

the subsequent multiple -choice question
Question: {{ question }}
Choices:
A: {{ options_A }}
B: {{ options_B }}
C: {{ options_C }}
D: {{ options_D }}

Answer:

H.4 Reasoning

Math prompts: from IROKOBENCH (Adelani
et al., 2024b)

Listing 1: AfriMGSM Prompt 1
{{ question }}
Step -by -step Answer:

Listing 2: AfriMGSM Prompt 2
Give direct numerical answers for the question

provided.

Question: {{ question }}
Step -by -step Answer:

Listing 3: AfriMGSM Prompt 3
Solve the following math question

Question: {{ question }}
Step -by-step Answer:

Listing 4: AfriMGSM Prompt 4
Answer the given question with the appropriate

numerical value , ensuring that the response is
clear and without any supplementary information
.

Question: {{ question }}
Step -by-step Answer:

Listing 5: AfriMGSM Prompt 5
For mathematical questions provided in {{ language }}

language. Supply the accurate numeric step by
step answer to the provided question.

Question: {{ question }}
Step -by-step Answer:

H.5 Text Generation

Machine Translation prompts

Listing 1: Machine Translation Prompt 1
{{ source_lang }} sentence: {{ source_text }}
{{ arget_lang }} sentence:

Listing 2: Machine Translation Prompt 2
You are a translation expert. Translate the

following {{ source_lang }} sentences to {{
target_lang }}

{{ source_lang }} sentence: {{ source_text }}
{{ target_lang }} sentence:

Listing 3: Machine Translation Prompt 3
As a {{ source_lang }} and {{ target_lang }} linguist ,

translate the following {{ source_lang }}
sentences to {{ target_lang }}.

{{ source_lang }} sentence: {{ source_text }}
{{ target_lang }} sentence:

Summarization prompts

Listing 1: XL-SUM Prompt 1
Provide a summary of the document written in {{

language }}. Ensure that you provide the summary
in {{ language }} and nothing else.

Document in {{ language }}: {{text}}

Summary:

Listing 2: XL-SUM Prompt 2
Summarize the document below in triple backticks and

return only the summary and nothing else.

{{text}}

Listing 3: XL-SUM Prompt 3
You are an advanced Summarizer , a specialized

assistant designed to summarize documents in {{
language }}. Your main goal is to ensure
summaries are concise and informative.

Ensure you return the summary only and nothing else.

Document: {{text}}

Summary:

Diacritics Restoration prompts

Listing 1: AFRIADR Prompt 1
Please restore the missing diacritics in the

following sentence: {{text }}.
Return output sentence only

Listing 2: AFRIADR Prompt 2
Given a sentence without diacritics , add the

appropriate diacritics to make it grammatically
and semantically correct.

Sentence: {{text }}.
Return output sentence only

Listing 3: AFRIADR Prompt 3
This text is in {{ language }}. Restore all

diacritical marks to their proper places in the
following sentence: {{text }}. Return output

sentence only

Listing 4: AFRIADR Prompt 4
You are a linguist specializing in diacritical marks

for {{ language }}. Add the appropriate
diacritics to this {{ language }} sentence: {{
text }}. Return output sentence only

Listing 5: AFRIADR Prompt 5
You are a linguist specializing in diacritical marks

for {{ language }}. Diacritics are essential for
proper pronunciation and meaning in {{ language

}}. You are tasked with converting {{ language }}
sentences without diacritics into their

correctly accented forms. Here 's the input: {{
text }}. Return output sentence only
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I Detailed Results Per Language

This appendix presents detailed per-language performance results for each dataset. We group them by the
task category shown in Figure 2. Each figure shows model performance using the best prompt for each
model–dataset pairs.

I.1 Natural Language Understanding (NLU)
I.1.1 POS
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Figure 6: Per-language performance results for the MasakhaPOS dataset.

I.1.2 NER
MasakhaNER

am bbj bm ee ha ig lg luo mos ny0

10

20

30

40

50

60

70

80

Av
er

ag
e 

Sc
or

e

AfroLLaMa 8B
LLaMa 2 7B

LLaMa 3 8B
LLaMa 3.1 8B

LLaMaX 3 8B
Gemma 1.1 7B

Aya-101 13B
Gemma 2 9B

LLaMa 3.1 70B
Gemma 2 27B

Gemini 1.5 pro
GPT-4o (Aug)

pcm rw sn sw tn tw wo xh yo zu
Languages

0

10

20

30

40

50

60

70

80

Av
er

ag
e 

Sc
or

e

Figure 7: Per-language performance results for the MasakhaNER dataset.
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I.1.3 Sentiment Analysis
AfriSenti
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Figure 8: Per-language performance results for the AfriSenti dataset.

NollySenti
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Figure 9: Per-language performance results for the NollySenti dataset.
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I.1.4 Intent Detection
Injongo Intent
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Figure 10: Per-language performance results for the InjongoIntent dataset.

I.1.5 Topic Classification
MasakhaNEWS
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Figure 11: Per-language performance results for the MasakhaNEWS dataset.
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SIB
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Figure 12: Per-language performance results for the SIB dataset.
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I.1.6 Hate Speech:
AfriHate
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Figure 13: Per-language performance results for the AfriHate dataset.

I.2 Natural Language Inference
AfriXNLI
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Figure 14: Per-language performance results for the AFRIXNLI dataset.
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I.3 Question Answering
I.3.1 Cross-lingual Question Answering
AfriQA
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Figure 15: Per-language performance results for the AFRIQA dataset.

I.3.2 Reading Comprehension
Belebele
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Figure 16: Per-language performance results for the BELEBELE dataset.

19087



NaijaRC

hau ibo yor
Languages

0

20

40

60

80

Av
er

ag
e 

Sc
or

e

AfroLLaMa 8B
LLaMa 2 7B

LLaMa 3 8B
LLaMa 3.1 8B

LLaMaX 3 8B
Gemma 1.1 7B

Aya-101 13B
Gemma 2 9B

LLaMa 3.1 70B
Gemma 2 27B

Gemini 1.5 pro
GPT-4o (Aug)

Figure 17: Per-language performance results for the NAIJARC dataset.

I.4 Knowledge
I.4.1 Arc-E
UHURA
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Figure 18: Per-language performance results for the UHURA dataset.

I.4.2 MMLU
OpenAIMMLU
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Figure 19: Per-language performance results for the OPENAI-MMLU dataset.
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AfriMMLU
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Figure 20: Per-language performance results for the AFRIMMLU dataset.

I.5 Reasoning
AfriMGSM
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Figure 21: Per-language performance results for the AFRIMGSM dataset.
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I.6 Text Generation
I.6.1 Machine Translation
SALT (en/fr-xx)
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Figure 22: Per-language performance results for the SALT dataset (en/fr-xx).

SALT (xx-en/fr)
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Figure 23: Per-language performance results for the SALT dataset (xx-en/fr).

MAFAND (en-xx/fr)
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Figure 24: Per-language performance results for the MAFAND dataset.
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MAFAND (xx-en/fr)
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Figure 25: Per-language performance results for the MAFAND dataset.

NTREX (en/fr-xx)
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Figure 26: Per-language performance results for the NTREX-128 dataset (en/fr-xx).
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NTREX (xx-en/fr)
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Figure 27: Per-language performance results for the NTREX-128 dataset (xx-en/fr).
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Flores (African Languages only and French) (en/fr-xx)
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Figure 28: Per-language performance results for the FLORES dataset (en/fr-xx).
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Figure 29: Per-language performance results for the FLORES dataset (xx-en/fr).
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I.6.2 Summarization
XL-SUM
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Figure 30: Per-language performance results for the XL-SUM dataset.

I.6.3 Diacritics Restoration
AFRIADR
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Figure 31: Per-language performance results for the AFRIADR dataset.
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