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Abstract

Retrieval-Augmented Generation (RAG) sys-
tems often struggle with imperfect retrieval,
as traditional retrievers focus on lexical or
semantic similarity rather than logical rele-
vance. To address this, we propose HopRAG, a
novel RAG framework that augments retrieval
with logical reasoning through graph-structured
knowledge exploration. During indexing, Ho-
pRAG constructs a passage graph, with text
chunks as vertices and logical connections es-
tablished via LLM-generated pseudo-queries as
edges. During retrieval, it employs a retrieve-
reason-prune mechanism: starting with lexi-
cally or semantically similar passages, the sys-
tem explores multi-hop neighbors guided by
pseudo-queries and LLM reasoning to iden-
tify truly relevant ones. Experiments on mul-
tiple multi-hop benchmarks demonstrate that
HopRAG’s retrieve-reason-prune mechanism
can expand the retrieval scope based on logical
connections and improve final answer quality.

1 Introduction

“Everyone and everything is six or fewer
steps away, by way of introduction, from
any other person in the world.”

— Six Degrees of Separation

Retrieval-augmented generation (RAG) has be-
come the standard approach for large language
models (LLMs) to tackle knowledge-intensive
tasks (Guu et al., 2020a; Lewis et al., 2020a; Izac-
ard et al., 2022; Min et al., 2023; Ram et al., 2023;
Liang et al., 2025). Not only can it effectively
address the inherent knowledge limitations and hal-
lucination issues (Zhang et al., 2023), but it can
also enable easy interpretability and provenance
tracking (Akyurek et al., 2022). Especially, the
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efficacy of RAG hinges on its retrieval module for
identifying relevant documents from a vast corpus.

Currently, there are two mainstream types of re-
trievers: sparse retrievers (Jones, 1973; Robertson
and Zaragoza, 2009b) and dense retrievers (Xiao
et al., 2024; Wang et al., 2024b; Sturua et al., 2024;
Wang et al., 2024c), which focus on lexical simi-
larity and semantic similarity respectively, and are
often combined for better retrieval performance
(Sawarkar et al., 2024). Despite advancements,
the ultimate goal of information retrieval extends
beyond lexical and semantic similarity, striving in-
stead for logical relevance. Due to the lack of
logic-aware mechanism, the imperfect retrieval re-
mains prominent (Wang et al., 2024a; Shao et al.,
2024; Dai et al., 2024; Su et al., 2024a,b). For
precision, the retrieval system may return lexically
and semantically similar but indirectly relevant pas-
sages; regarding recall, it may fail to retrieve all
the necessary passages for the user query.

Both cases eventually lead to inaccurate or in-
complete LLM responses (Chen et al., 2024; Xiang
et al., 2024; Zou et al., 2024), especially for multi-
hop or multi-document QA tasks requiring multiple
relevant passages for the final answer. In contrast,
the reasoning capability of generative models is
rapidly advancing, with notable examples such as
OpenAI-o1 (Jaech et al., 2024) and DeepSeek-R1
(Guo et al., 2025). Therefore, a natural research
question arises: "Is it possible to introduce reason-
ing capability into the retrieval module for more
advanced RAG systems?"

From a logical structure perspective, existing
RAG systems can be mainly categorized into three
types: Non-structured RAG simply adopts sparse
or dense retrievers. The retrieval is only based on
keyword matching or semantic vector similarity,
but fails to capture the logical relations between
user queries and passages. Tree-structured RAG
(Sarthi et al., 2024; Chen et al., 2023; Fatehkia
et al., 2024) focuses on the hierarchical logic of
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(a) Precision, recall and F1 score (b) Proportions of passages on relevance

Figure 1: (a) Precision, recall and F1 score of BGE dense retrievers on MuSiQue, 2WikiMultiHopQA and HotpotQA
with different topk parameters, revealing the severe imperfect retrieval phenomenon. The highest recall reaches
saturation at 0.45 in our settings. (b) We categorize retrieved passages into relevant, indirectly relevant and
irrelevant according to the logical relevance to the query. The relevant passages are exactly the supporting facts,
and indirectly relevant passages can hop to the supporting facts via HopRAG while irrelevant passages cannot. A
large proportion of retrieved passages are indirectly relevant.

Figure 2: Demonstration of hopping between passages.
For the user query, BGE dense retriever can only re-
turn one of the three supporting facts within topk bud-
get. However, lexically or semantically similar passages
complement each other. Hopping between passages, by
questions as pathways, improves the retrieval accuracy
and completeness.

passages within a single document, but ignores re-
lations beyond the hierarchical structure or across
documents. Further, it introduces redundant infor-
mation across different levels. Graph-structured
RAG (Soman et al., 2024; Kang et al., 2023; Edge
et al., 2024a; Guo et al., 2024) models logical rela-
tions in the most ideal form by constructing knowl-
edge graphs (KGs) to represent documents, where
entities are vertices and their relations are edges.
However, the reliance on predefined schemas limits
the flexible expressive capability (Li et al., 2024);
constructing and updating knowledge graphs are
challenging and prone to errors or omissions (Edge
et al., 2024a); the triplet format of knowledge ne-
cessitates extra textualization or fine-tuning to im-
prove LLMs’ understanding (He et al., 2024).

Motivation As reported by (Wang et al., 2024a),
even with advanced real-world search engines,
roughly 70% retrieved passages do not directly
contain true answers in their settings. We con-
firm the severity of imperfect retrieval in terms of
both precision and recall, as illustrated in Figure
1(a). Inspired by the small-world theory (Kleinberg,
2000) or six degrees of separation (Guare, 2016),
we propose that, although lexically and semanti-
cally similar passages could be indirectly relevant
or even distracting, they can serve as helpful start-
ing points to reach truly relevant ones. As shown
in Figure 1(b), considering a graph composed of
passages with logical relations as edges, a large
proportion of retrieved passages fall within several
hops of the ground truths.

Based on these observations, we propose Ho-
pRAG, an innovative graph-structured RAG sys-
tem. At indexing phase, we construct a graph-
structured knowledge index with passages as ver-
tices and logic relations as directed edges. Specifi-
cally, the passages are connected by pseudo-queries
generated by query simulation and edge merging
operations. For example, as demonstrated in Fig-
ure 2, the pseudo-query "Why does the princess
kiss the frog?" connects the raiser passage and
the solver passage, as the pivot for logical hops.
During retrieval, we employ reasoning-augmented
graph traversal, following a three-step paradigm
of retrieval, reasoning, and pruning. This pro-
cess searches for truly relevant passages within
the multi-hop neighborhood of indirectly relevant
passages, guided by both the index structure and
LLM reasoning.

Contributions Our contributions are as follows:

• We reveal the severe imperfect retrieval phe-
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nomenon for multi-hop QA tasks. The results
quantify that currently over 60% of retrieved
passages are indirectly relevant or irrelevant.
To turn "trash" into "treasure", we further em-
ploy indirectly relevant passages as stepping
stones to reach truly relevant ones.

• We propose HopRAG, a novel RAG system
with logic-aware retrieval mechanism. As lexi-
cally or semantically similar passages comple-
ment each other, HopRAG connects the raiser
and solver passages with pseudo-queries. Be-
yond similarity-based retrieval, it reasons and
prunes along the queries during retrieval. It
also features flexible logical modeling, cross-
document organization, efficient construction
and updating.

• Extensive experiments confirm the effective-
ness of HopRAG. The retrieve-reason-prune
mechanism achieves over 36.25% higher an-
swer metric and 20.97% higher retrieval F1
score compared to conventional information
retrieval approaches. Several ablation studies
provide more valuable insights.

2 Related Work

Retrieval-Augmented Generation Retrieval-
augmented generation significantly improves large
language models by incorporating a retrieval mod-
ule that fetches relevant information from external
knowledge sources (Févry et al., 2020; Guu et al.,
2020b; Izacard and Grave, 2021; Zhao et al., 2024;
Yu et al., 2025). Retrieval models have evolved
from early sparse retrievers, such as TF-IDF (Jones,
1973) and BM25 (Robertson and Zaragoza, 2009b),
which rely on word statistics and inverted indices,
to dense retrievers (Lewis et al., 2020b) that uti-
lize neural representations for semantic matching.
Advanced methods, such as Self-RAG (Asai et al.,
2023) and FLARE (Jiang et al., 2023) which deter-
mine the necessity and timing of retrieval, represent
significant developments. However, the knowledge
index remains logically unstructured, with each
round of search considering only lexical or seman-
tic similarity.

Tree&Graph-structured RAG Tree and graph
are both effective structures for modeling logical
relations. RAPTOR (Sarthi et al., 2023) recursively
embeds, clusters, and summarizes passages, con-
structing a tree with differing levels of summariza-
tion from the bottom up. MemWalker (Chen et al.,

2023) treats the LLM as an interactive agent walk-
ing on the tree of summarization. SiReRAG (Zhang
et al., 2024) explicitly considers both similar and
related information by constructing both similar-
ity tree and relatedness tree. PG-RAG (Liang
et al., 2024) prompts LLMs to organize docu-
ment knowledge into mindmaps, and unifies them
for multiple documents. GNN-RAG (Mavroma-
tis and Karypis, 2024) reasons over dense KG
subgraphs with learned GNNs to retrieve answer
candidates. For query-focused summarization,
GraphRAG (Edge et al., 2024b) builds a hierarchi-
cal graph index with knowledge graph construction
and recursive summarization. Despite advance-
ments, tree-structured RAG only focuses on the
hierarchical logic within a single document; graph-
structured RAG is costly, time-consuming, and re-
turns triplets instead of plain text. In contrast, Ho-
pRAG offers a more lightweight and downstream
task friendly alternative, with flexible logical mod-
eling, cross-document organization, efficient con-
struction and updating.

3 Method

In this section, we introduce our logic-aware RAG
system, named HopRAG. An overview of this sys-
tem is illustrated in Figure 3.

3.1 Problem Formulation

Given a passage corpus P = {p1, p2, ..., pN} and
a query q which requires the information from
multiple passages in P , the task is to design (1)
a graph-structured RAG knowledge base that not
only stores all the passages in corpus P but also
models the similarity and logic between passages;
(2) a corresponding retrieval strategy that can hop
from indirectly relevant passages to truly relevant
passages for better retrieval. Finally, with the query
q and k passages as context C = {pi1 , pi2 , ..., pik},
the LLM generates the response O ∼ P(O|q, C).

3.2 Graph-Structured Index

We construct a graph-structured index G = (V, E)
where the vertex set V consists of vertices storing
all the passages and the directed edge set E =
{⟨vi, ei,j , vj⟩|vi, vj ∈ V} ⊂ V × V is established
based on the logical relations between passages for
multi-hop reasoning. To establish G, we utilize
Query Simulation to identify the logical relations
and leverage textual similarity for efficient Edge
Merging.
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Figure 3: The workflow of HopRAG. Left: At indexing time, we first utilize Query Simulation to generate pseudo-
queries for each passage and then apply Edge Merging to connect passages with directed logical edges. Right:
At retrieval time, we employ a Retrieve-Reason-Prune pipeline. We first retrieve through purely similarity-based
retrieval, then run reasoning-augmented graph traversal to explore the neighborhood, and finally prune the search by
a novel metric Helpfulness considering both textual similarity and logical importance.

Query Simulation To identify the logical rela-
tions between passages, we generate a series of
pseudo-queries for each passage, and use them
to explore the passage’s relations with the others
and bridge the inherent gap between user-queries
and passages (Wang et al., 2024c). Specifically,
we adopt LLM to generate two groups of pseudo-
queries for each passage pi: (1) m out-coming
questions Q+

i =
⋃

1≤j≤m{q+i,j} that originate from
this passage but cannot be answered by itself; (2) n
in-coming questions Q−

i =
⋃

1≤j≤n{q−i,j} whose
answers are within the passage. As demonstrated in
Figure 2, for the toy passage "Rose is the princess
in the story The Frog Prince", one in-coming ques-
tion might be "What is the name of the princess?"
and one out-coming question might be "How is
the frog connected to Rose?". The prompts are in
Appendix A.5.

We extract keywords from Q+
i and Q−

i using
named entity recognition NER(·) for sparse repre-
sentation, and embed these questions into seman-
tic vectors using an embedding model EMB(·) for
dense representation. This results in sparse rep-
resentations K+

i =
⋃

1≤j≤m{k+i,j} and K−
i =⋃

1≤j≤n{k−i,j}, and dense representations V +
i =⋃

1≤j≤m{v+
i,j} and V −

i =
⋃

1≤j≤n{v−
i,j}. We

further define out-coming triplets as r+i,j :=

(q+i,j , k
+
i,j ,v

+
i,j) and in-coming triplets r−i,j :=

(q−i,j , k
−
i,j ,v

−
i,j). Each passage pi is stored inside

a vertex vi, featured with its out-coming triplets
R+

i =
⋃

1≤j≤m{r+i,j} and in-coming triplets R−
i =⋃

1≤j≤n{r−i,j}.
Edge Merging Given the out-coming and in-
coming triplets, we match paired triplets via hy-
brid retrieval and establish directed edges between
the corresponding passages. For each out-coming
triplet r+s,i of source vertex vs, the most matching
in-coming triplet r−t∗,j∗ is determined as follows:

SIM(r+s,i, r
−
t,j) =

|k+s,i∩k
−
t,j |

|k+s,i∪k
−
t,j |

+
v+
s,i·v

−
t,j

||v+
s,i||·||v

−
t,j ||

2
r−t∗,j∗ = argmax

r−t,j

SIM(r+s,i, r
−
t,j)

(1)

We then build the directed edge ⟨vs, es,t∗ , vt∗⟩
with aggregated features, where es,t∗ :=
(q−t∗,j∗ , k

−
t∗,j∗ ∪ k+s,i,v

−
t∗,j∗).

3.3 Reasoning-Augmented Graph Traversal
For more accurate and complete responses, Ho-
pRAG’s retrieval strategy leverages the reasoning
ability of LLM to explore the neighborhood of
probably indirectly relevant passages and hop to
relevant ones based on the logical relations in the
graph structure. As shown in Algorithm 1, by rea-
soning over the questions on out edges ei,j of a
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current vertex vi and then choosing to hop to the
most promising vertex vj , we realize reasoning-
augmented graph traversal for better retrieval per-
formance.

Retrieval Phase To start the local search over the
graph for query q, we first use NER(·) and EMB(·)
to get the keywords kq and vector vq of q, which
will be used for hybrid retrieval to match topk sim-
ilar edges ⟨vi, ei,j , vj⟩, following Equation 1. With
each vertex vj from these edges we initialize a
context queue Cqueue for breadth-first local search
(Voudouris et al., 2010).

Reasoning Phase To fully exploit the logical re-
lations over the graph and hop from indirectly rele-
vant vertices to relevant ones, we introduce breadth-
first local search which utilizes the LLM to choose
the most appropriate neighbor for each vj in Cqueue

to append to the tail of the queue. Specifically, for
each vj in Cqueue in each round of hop, we lever-
age LLM to reason over all the questions from
its out edges to choose one ej,k with the question
which the LLM regards as the most helpful for an-
swering q and append vertex vk to Cqueue. After
hopping from each vertex in the current Cqueue we
can expand the context with at most topk new ver-
tices. From these new vertices we continue the next
round of hop. Since different vertices may hop to
the same vertex, we believe the vertices with more
visits are more important for answering q, and use
a counter Ccount to track the number of visits for
each vertex and measure its importance. By con-
ducting nhop rounds of hop, we realize reasoning-
augmented graph traversal and expand the context
length to at most (nhop + 1)× topk.

Pruning Phase To avoid including too many in-
termediate vertices during the traversal, we intro-
duce a novel metric Helpfulness H(·) that inte-
grates similarity and logic to re-rank and then prune
the traversal counter Ccount. We calculate Hi fol-
lowing Equation 2 for each vi in Ccount and keep
the topk vertices with the highest Hi, where hybrid
textual similarity SIM(vi, q) calculates the aver-
age lexical and semantic similarity between the
passage in vi and query q following Equation 1;
and IMP(vi, Ccount) is defined as the normalized
number of visits of vi in Ccount during traversal fol-
lowing Equation 3. We prune Ccount by retaining
topk vertices with the highest H value, resulting in
the final context C.

Hi =
SIM(vi, q) + IMP(vi, Ccount)

2
(2)

IMP(vi, Ccount) =
Ccount[vi]∑

vj∈Ccount
Ccount[vj ]

(3)

Algorithm 1: Reasoning-Augmented
Graph Traversal

Input: q, topk, nhop, G
Output: C

1 vq ← EMB(q);
2 kq ← NER(q);
3 Cqueue ← Retrieve(vq, kq, G);
4 Ccount ←Counter(Cqueue);
5 for i← 1, 2, ..., nhop do
6 for j← 1, 2, ..., | Cqueue | do
7 vj ← Cqueue.dequeue();
8 vk ← Reason({⟨vj , ej,k, vk⟩});
9 if vk not in Ccount then

10 Cqueue.enqueue(vk);
11 Ccount[vk]← 1 ;
12 else
13 Ccount[vk] + + ;
14 end
15 end
16 end
17 C ←Prune(Ccount, vq, kq, topk);
18 return C

4 Experiments

4.1 Experimental Setups
Datasets We collect several multi-hop QA
datasets to evaluate the performance of HopRAG.
We use HotpotQA dataset (Yang et al., 2018),
2WikiMultiHopQA dataset (Ho et al., 2020) and
MuSiQue dataset (Trivedi et al., 2022). Follow-
ing the same procedure as (Zhang et al., 2024), we
obtain 1000 questions from each validation set of
these three datasets. See Appendix A.2 for details.

Baselines We compare HopRAG with a variety
of baselines: (1) unstructured RAG - sparse re-
triever BM25 (Robertson and Zaragoza, 2009a)
(2) unstructured RAG - dense retriever BGE (Xiao
et al., 2024; Karpukhin et al., 2020) (3) unstruc-
tured RAG - dense retriever BGE with query
decomposition (Min et al., 2019) (4) unstruc-
tured RAG - dense retriever BGE with reranking
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MuSiQue 2Wiki HotpotQA Average
Method EM F1 EM F1 EM F1 EM F1

BM25 5.80 11.00 27.00 31.55 33.40 44.30 22.07 28.95
BGE 11.80 18.60 27.90 30.80 38.40 50.56 26.03 33.32
Query

Decomposition 21.50 31.40 43.90 47.06 43.60 58.94 31.10 40.01

Reranking 24.50 34.53 46.70 50.89 47.70 62.95 34.67 43.60
HippoRAG 32.60 43.78 66.40 74.01 59.90 74.29 52.97 64.03
RAPTOR 35.30 47.47 54.90 61.20 58.10 72.48 49.43 60.38
SiReRAG 38.90 52.08 60.40 68.20 62.50 77.36 53.93 65.88

HopRAG 39.10 53.00 61.60 68.93 61.30 78.34 54.00 66.76

Table 1: We test our HopRAG against a series of baselines on multiple datasets using GPT-4o and GPT-3.5-turbo
as the inference model with top 20 passages. We report the QA performance metrics EM and F1 score with
GPT-3.5-turbo here and GPT-4o in Table 2, where the best score is in bold and the second best is underlined.

MuSiQue 2Wiki HotpotQA Average
Method EM F1 EM F1 EM F1 EM F1

BM25 13.80 21.50 40.30 44.83 41.20 53.23 31.77 39.85
BGE 20.80 30.10 40.10 44.96 47.60 60.36 36.17 45.14
Query

Decomposition 29.00 38.50 55.70 60.57 52.80 68.67 47.46 55.91

Reranking 32.00 40.29 53.70 58.44 55.40 70.03 48.61 56.25
GraphRAG 12.10 20.22 22.50 27.49 31.70 42.74 22.10 30.15
RAPTOR 36.40 49.09 53.80 61.45 58.00 73.08 49.40 61.21
SiReRAG 40.50 53.08 59.60 67.94 61.70 76.48 53.93 65.83

HopRAG 42.20 54.90 61.10 68.26 62.00 76.06 55.10 66.40

Table 2: We report the QA performance metrics EM and F1 score with GPT-4o and top 20 passages here, where the
best score is in bold and the second best is underlined.

(Nogueira and Cho, 2020) (5) tree-structured RAG
- RAPTOR (Sarthi et al., 2024) (6) tree-structured
RAG - SiReRAG (Zhang et al., 2024) (7) graph-
structured RAG - GraphRAG (Edge et al., 2024a)
with the local search function (8) graph-structured
RAG - HippoRAG (Gutiérrez et al., 2025). For
structured RAG baselines, we follow the same set-
ting as previous work (Zhang et al., 2024).

Metrics To measure the answer quality of dif-
ferent methods, we adopt exact match (EM) and
F1 score which focus on the accuracy between a
generated answer and the corresponding ground
truth. We also use retrieval metrics to compare
graph-based methods. Since tree-based methods
like SiReRAG (Zhang et al., 2024) and RAPTOR
(Sarthi et al., 2024) create new candidates (e.g.,
summary nodes) in the retrieval pool, it would be
unfair to use retrieval metrics to compare them with
others. We report both the answer and retrieval met-
rics in the ablations and discussion on HopRAG.
See Appendix A.3 for more metric details.

Settings We use BGE embedding model for se-
mantic vectors at 768 dimensions. To avoid the loss
of semantic information caused by chunking at a
fixed size, we adopt the same chunking methods uti-
lized in the original datasets respectively. GPT-4o-
mini serves as both the model generating in-coming
and out-coming questions when constructing the
graph index, and the reasoning model for graph
traversal. We use two reader models GPT-4o and
GPT-3.5-turbo to generate the response given the
context with 20 retrieval candidates and nhop = 4.
See Appendix A.4 for more setting details.

4.2 Main Results

The main results are presented in Table 1 and 2.
We observe that almost in all the settings HopRAG
gives the best performance, with exceptions on
HotpotQA when compared against SiReRAG and
2WikiMultiHopQA against HippoRAG. Overall,
HopRAG achieves approximately 76.78% higher
than dense retriever (BGE), 48.62% higher than
query decomposition, 36.25% higher than rerank-
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MuSiQue 2Wiki HotpotQA Average
Answer Retrieval Answer Retrieval Answer Retrieval Answer Retrieval

topk EM F1 F1 EM F1 F1 EM F1 F1 EM F1 F1

2 32.50 46.31 37.83 47.80 53.91 36.77 52.00 67.78 50.23 44.10 56.00 41.61
4 36.50 49.53 35.02 54.50 59.35 33.22 55.60 71.10 46.45 48.87 59.99 38.23
8 38.50 50.81 26.36 56.10 61.81 23.90 58.20 75.05 34.14 50.93 62.56 28.13
12 37.50 51.47 20.38 57.70 64.33 18.54 59.50 75.54 26.34 51.57 63.78 21.75
16 37.50 51.44 16.47 60.00 67.52 15.02 59.50 76.45 21.75 52.33 65.14 17.75
20 39.10 53.00 13.89 61.60 68.93 12.51 61.30 78.34 18.48 54.00 66.76 14.96

Table 3: We test the robustness w.r.t hyperparameter topk on HopRAG using GPT-3.5-turbo on multiple datasets.
We vary topk from 2 to 20 and report both the answer and retrieval metrics, where the best score is in bold and the
second best is underlined.

MuSiQue 2Wiki HotpotQA Average
nhop Retrieval F1 LLM Cost Retrieval F1 LLM Cost Retrieval F1 LLM Cost Retrieval F1 LLM Cost

1 8.78 20.00 8.68 19.86 6.78 19.91 8.08 19.92
2 11.86 30.32 11.42 31.52 15.13 29.39 12.80 30.41
3 12.67 37.28 11.97 37.15 16.76 33.35 13.80 35.93
4 13.89 40.32 12.51 40.12 18.48 35.14 14.96 38.53

Table 4: We test the effect of hyperparameter nhop on HopRAG using GPT-3.5-turbo on multiple datasets with
top 20 passages. We vary nhop from 1 to 4 and report both the answer and retrieval metrics in Table 8, and report
the retrieval metrics here. For retrieval metrics, we calculate the retrieval F1 score and also the average number of
calling LLM during traversal to measure the cost (the lower, the better). The best score is in bold and the second
best is underlined.

ing (BGE), 9.94% higher than RAPTOR, 3.08%
higher than HippoRAG, 1.11% higher than SiR-
eRAG. This illustrates the strengths of HopRAG in
capturing both textual similarity and logical rela-
tions for handling multi-hop QA.

Specifically, BM25, BGE and BGE with query
decomposition yield unsatisfactory results since
they rely solely on similarity, and BGE with rerank-
ing cannot capture logical relevance among can-
didates. Since GraphRAG considers relevance
among entities instead of similarity for graph
search, and RAPTOR focuses on the hierarchical
logical relations among passages but cannot cap-
ture other kinds of relevance, both of them are more
suitable for query-focused summarization but not
the most competitive method for multi-hop QA
tasks, as also reported in (Zhang et al., 2024).

In terms of HippoRAG, it prioritizes relevance
signals such as vertices with the most edges and
does not explicitly model similarity while our de-
sign HopRAG directly integrates similarity with
logical relations when constructing edges. Al-
though HopRAG only outperforms SiReRAG by a
small margin in the scenario with top 20 candidate
passages, our general graph structure does not in-
troduce additional summary and proposition aggre-

gate nodes and can facilitate efficient graph traver-
sal for faster retrieval compared with SiReRAG.
In the discussion, we will show that HopRAG can
achieve competitive results with a smaller context
length. Besides quantitative scores, we also demon-
strate a case study in Appendix A.6 comparing
HopRAG and GraphRAG.

4.3 Ablations and Discussion

To confirm the robustness of HopRAG and provide
more insights, we vary topk, nhop and conduct
ablation studies on traversal model.

Effects of topk To show our efficiency in faster
hop from indirectly relevant passages to truly rel-
evant ones, we test the robustness by evaluating
both the QA and retrieval performance on GPT-3.5-
turbo with smaller topk, as is shown in Table 3.
From the results, we find that even with top 12 can-
didates, the QA performance of HopRAG is still
comparable to that of HippoRAG or RAPTOR with
20 candidates, which highlights the effectiveness of
our graph traversal design in efficiently retrieving
more information within a limited context length.
Meanwhile, we also observe that as topk increases,
the retrieval F1 score gradually decreases due to
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MuSiQue 2Wiki HotpotQA Average
Answer Retrieval Answer Retrieval Answer Retrieval Answer Retrieval

Method (Traversal Model) EM F1 F1 EM F1 F1 EM F1 F1 EM F1 F1

BM25 5.80 11.00 5.79 27.00 31.55 9.25 33.40 44.30 8.75 22.07 28.95 7.93
BGE 11.80 18.60 8.76 27.90 30.80 7.60 38.40 50.56 11.10 26.03 33.32 9.16

HopRAG (non-LLM) 19.00 27.68 8.27 42.20 46.72 8.09 46.90 61.17 11.73 36.04 45.19 9.36
HopRAG (Qwen2.5-1.5B-Instruct) 38.00 46.73 11.91 58.40 64.78 11.82 58.20 74.74 18.22 51.53 62.08 13.98

HopRAG (GPT-4o-mini) 39.10 53.00 13.89 61.60 68.93 12.51 61.30 78.34 18.48 54.00 66.76 14.96

Table 5: We conduct an ablation study on the reasoning model during traversal with GPT-3.5-turbo as the inference
model and top 20 passages. We compare 5 scenarios including sparse retriever (BM25), dense retriever (BGE),
HopRAG (non-LLM), HopRAG (Qwen2.5-1.5B-Instruct) and HopRAG (GPT-4o-mini) and report both the answer
and the retrieval metrics, where the best score is in bold and the second best is underlined.

the inclusion of excessive redundant information.
Conversely, the answer quality generally improves,
attributed to GPT-3.5-turbo’s strong capability in
processing and reasoning over extended contexts,
with only one exception in the MuSiQue dataset.

Effects of nhop To assess the effects of the hy-
perparameter nhop on reasoning-augmented graph
traversal, we vary nhop from 1 to 4 and evaluate
the corresponding retrieval performance and cost,
which is measured by the total number of LLM
calls during graph traversal. The results shown in
Table 4 indicate that as nhop increases, retrieval
performance tends to improve, as more vertices
are visited during traversal for reasoning and prun-
ing. However, the expense and latency from calling
LLM also increase with nhop, creating a trade-off
between performance and cost. We notice that
as nhop increases, the number of new vertices in
Cqueue requiring LLM reasoning decays rapidly.
Since different vertices may hop to the same impor-
tant vertex, the actual queue length in each round
of hop is less than topk. Specifically, the aver-
age queue length is 2.60 in the fourth round and
1.23 in the fifth round, suggesting that for the three
datasets, the local area in the graph structure can be
largely explored within four rounds of hop, elimi-
nating the need for an additional hop. We set nhop

as 4 in Table 1 and 2. We also evaluate the answer
performances as nhop varies and show the overall
results in Appendix A.8.

Ablation on Traversal Model In order to gener-
alize HopRAG to scenarios with less computational
overhead during retrieval, we supplement results
from (1) HopRAG with traversal model Qwen2.5-
1.5B-Instruct (2) HopRAG with non-LLM graph
traversal that replaces the reasoning phase in Algo-
rithm 1 with similarity matching. Table 5 shows
that even without using the reasoning ability of

LLM in the graph traversal, HopRAG can achieve
45.84% higher than BM25 and 25.43% higher than
dense retriever (BGE), which proves the effective-
ness of HopRAG in capturing textual similarity
and logical relations for logic-aware retrieval. The
introduction of reasoning ability from LLM (GPT-
4o-mini) can achieve about 45.78% higher average
score than the non-LLM version, and Qwen2.5-
1.5B-Instruct as traversal model produces compara-
ble results with less cost and higher efficiency. We
analyze the retrieval efficiency in Appendix A.7.

5 Conclusion

In this paper, we introduced HopRAG, a novel
RAG system with a logic-aware retrieval mecha-
nism. HopRAG connects related passages through
pseudo-queries, which allows identifying truly rel-
evant passages within multi-hop neighborhoods of
indirectly relevant ones, significantly enhancing
both the precision and recall of retrieval.

Extensive experiments on multi-hop QA bench-
marks, i.e. MuSiQue, 2WikiMultiHopQA, and Hot-
potQA, demonstrate that HopRAG outperforms
conventional RAG systems and state-of-the-art
baselines. Specifically, HopRAG achieved over
36.25% higher answer accuracy and 20.97% im-
proved retrieval F1 score compared to conventional
information retrieval approaches. It highlights the
effectiveness of integrating logical reasoning into
the retrieval module. Moreover, ablation studies
provide insights into the sensitivity of hyperparam-
eters and models, revealing trade-offs between re-
trieval performance and computational costs.

HopRAG paves the way toward reasoning-driven
knowledge retrieval. Future work involves scaling
HopRAG to broader domains beyond QA tasks; op-
timizing indexing and traversal strategies for more
complex scenarios with lower computation costs.
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A.1 Symbols
The symbols and their corresponding meanings are
listed in Table 6.

A.2 Datasets
Table 7 shows the basic statistics of our datasets
with their corresponding passage pool. Compared
with knowledge graph, our graph-structured index
is less dense and more efficient to construct. Since
we put each passage text in the vertex, we can
use fewer vertices to cover all the passages, which
lowers the space complexity of the database. The
average number of directed edges for each vertex
is only 5.87, which lowers the time complexity for
graph traversal.

A.3 Metrics
In our experiment, we mainly report the answer
exact match (EM) and F1 score to compare all the
methods.

Exact Match (EM) The Exact Match (EM) met-
ric measures the percentage of predictions that
match any one of the ground truth answers exactly.
It is defined as:

EM =
|{p | p = g}|
|P |

where p denotes a predicted answer, g denotes the
corresponding ground truth answer, and P is the
set of all the predictions.

F1 Score The F1 score is the harmonic mean of
precision and recall, which measures the average
overlap between the prediction and ground truth
answer. Precision P and recall R are defined as:

P =
|A ∩ Â|
|Â|

, R =
|A ∩ Â|
|A|

where |A ∩ Â| refers to the number of matching to-
kens between the prediction Â and the ground truth

A, and |Â|, |A| denote the number of tokens in the
predicted and ground truth answers, respectively.

The F1 score is then computed as:

F1 =
2 · P · R
P + R

In our ablation study, we also report the retrieval
F1 score to test the sensitivity of HopRAG, which
is calculated as follows.

The Precision (P) and Recall (R) for retrieval are
computed as:

P =
|Ret ∩ Rel|
|Ret| , R =

|Ret ∩ Rel|
|Rel|

where Ret represents the set of passages retrieved
during retrieval, and Rel denotes the set of relevant
passages that support the ground truth answer.

The Retrieval F1 score is then calculated as the
harmonic mean of precision and recall:

F1retrieval =
2 · P ·R
P +R

A.4 Settings
To avoid semantic loss by chunking the documents
at a fixed size, we chunk each document in a
way corresponding to the supporting facts of each
dataset. Specifically, we chunk each document
in HotpotQA and 2WikiMultiHopQA by sentence
since the smallest unit of these two datasets’ sup-
porting facts is a sentence. To get embedding rep-
resentation for each chunk, we use bge-base model.
To extract keywords, we use the part-of-speech tag-
ging function of Python package PaddleNLP to
extract and filter entities. In our method, we use
the Neo4j graph database to store vertices and build
edges. When building edges we employ prompt
engineering technique to instruct the LLM to gen-
erate an appropriate number of questions for each
vertex to cover its information, with a minimum
requirement of at least 2 in-coming questions and
4 out-coming questions. To prevent the graph struc-
ture from becoming overly complex and dense,
we retain only O(n · log(n)) edges, where n is
the number of vertices. We use GPT-4o-mini for
reasoning-augmented graph traversal, GPT-4o and
GPT-3.5-turbo for inference with 2048 max tokens
and 0.1 temperature in our main experiments.

For sparse and dense retrievers, we use the Neo4j
database to conduct retrieval on the vertices. With
this setting, we align the retrieval engine for un-
structured baselines with HopRAG to fairly demon-
strate the effectiveness of our graph structure index.
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symbol meaning symbol meaning

P passage corpus Q+
i set of out-coming questions for pi

p passage q+i,j the j-th out-coming question for pi
q query Q−

i set of in-coming questions for pi
C retrieval context q−i,j the j-th in-coming question for pi
P(·|·) LLM distribution K+

i set of keywords for Q+
i

O response for q k+i,j keywords for q+i,j
G graph K−

i set of keywords for Q−
i

V set of vertices k−i,j keywords for q−i,j
v vertex V +

i set of embeddings for Q+
i

E set of directed edges v+
i,j embedding for q+i,j

ei,j directed edge from vi to vj V −
i set of embeddings for Q−

i

kq keywords for q v−
i,j embedding for q−i,j

vq embedding for q R+
i set of out-coming triplets

Ccount counter of vertices during traversal r+i,j out-coming triplet for q+i,j
Cqueue queue of vertices during traversal R−

i set of in-coming triplets
H helpfulness metric r−i,j in-coming triplet for q−i,j
topk context budget nhop number of hop

Table 6: Table of symbols and meanings.

dataset number docs supporting facts vertices edges avg text length avg edge number

MuSiQue 1000 19990 2800 13086 81348 489.52 6.22
2Wiki 1000 10000 2388 23360 167068 116.07 7.15

HotpotQA 1000 9942 2458 40534 171946 132.44 4.24
Average 1000 13311 2549 25660 140121 246.01 5.87

Table 7: Dataset Statistics. We report the basic statistics of the graph structure on different datasets and demonstrate
that our efficient graph structure is traversal-friendly.

For query decomposition, we use GPT-4o-mini to
break down the query into multiple sub-queries,
each of which should be a single-hop query. With
m sub-queries we conduct dense retrieval with
BGE for each sub-query to get topk/m candidates
independently and combine them all for final con-
text. For reranking baseline, we use bge-reranker-
base to rank 2∗topk candidates from dense retriever
BGE and keep the topk ones as the final context.
The structured baseline methods rely on specific
open-source projects according to their papers.

A.5 Prompts
The prompt used for generating in-coming ques-
tions is shown in Figure 4. The prompt used for
generating out-coming questions is shown in Fig-
ure 5. The prompt for reasoning-augmented graph
traversal is shown in Figure 8.

A.6 Case Study
We demonstrate the graph structure in Figure 7(a),
one example edge with two vertices in Figure 6(a).

Using the query "Donnie Smith who plays as a
left back for New England Revolution belongs to
what league featuring 22 teams?" as an example we
conduct a qualitative analysis. For this multi-hop
question (correct answer: Major League Soccer),
the HotpotQA corpus contains three relevant sen-
tences: (1) "Donald W. Donnie Smith (born Decem-
ber 7, 1990 in Detroit, Michigan) is an American
soccer player who plays as a left back for New
England Revolution in Major League Soccer."; (2)
"Major League Soccer (MLS) is a men’s profes-
sional soccer league, sanctioned by U.S. Soccer,
that represents the sport’s highest level in both the
United States and Canada." and (3) "The league
comprises 22 teams in the U.S. and 3 in Canada."

With dense retriever (BGE), we can easily re-
trieve the first sentence but the last two facts can’t
be retrieved in the context even with a topk of 30.
However, in our graph-structured index, these three
vertices are logically connected, as is shown in Fig-
ure 6(b). During the traversal, LLM starts from the
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Figure 4: Prompt for generating in-coming questions.

semantically similar but indirectly relevant vertices
and can reach all the supporting facts within only a
maximum of 3 hops.

Using this query and its passages for demonstra-
tion, we provide the visualizations of HopRAG’s
graph index against GraphRAG to help readers
grasp the differences and innovations. As shown in
Figure 7 , the main differences between HopRAG
and GraphRAG are listed as follows.

• Vertices. GraphRAG uses LLM to summarize
the information from text chunks and then cre-
ates additional vertices (e.g., event, organiza-
tion and person) in the graph, while HopRAG
directly stores the original chunks in the ver-
tices and thus avoids LLM hallucination dur-
ing summarization, information loss during
entity extraction and overly dense graph struc-
ture from redundant vertices.

• Edges. GraphRAG connects vertices with
pre-defined relationships like "part of" or
"related", while HopRAG flexibly stores in-
coming questions on the edges along with
their keywords and embeddings, which can

not only guide reasoning-augmented graph
traversal but also facilitate edge retrieval.

• Index. GraphRAG creates and stores em-
beddings for the summarizations from LLM,
while HopRAG creates sparse and dense in-
dexes for both the vertices and the edges,
which leads to more precise and efficient in-
formation retrieval.

In summary, the graph structure of HopRAG not
only excavates logical relationships without creat-
ing additional vertices, but also paves the way for
reasoning-driven knowledge retrieval.

A.7 Retrieval Efficiency

We supplement more comprehensive analysis of
retrieval efficiency, along with optimization strate-
gies for further speedup. The main latency in Ho-
pRAG’s retrieval comes from the LLM inference
time during retrieval-augmented graph traversal.
Since HopRAG with locally deployed Qwen2.5-
1.5B-Instruct as the traversal model also showcases
competitive performances, we focus on the retrieval
efficiency in this scenario. Following the hyper-
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Figure 5: Prompt for generating out-coming questions.

parameters nhop = 4 and topk = 20 from our
main experiments, each question requires calling
LLM 38.53 times, where each LLM call involves
selecting one edge from an average of 5.87 edges,
with an input of around 500 tokens and an output
of 20 tokens. According to (Qwen Development
Team, 2025), the output token speed for Qwen2.5-
1.5B-Instruct is about 40.86 token/s using BF16
and Transformer. Therefore, the additional latency
for each question from LLM inference will be
38.53∗20/40.86 = 18.86 seconds. However, there
are many optimization strategies to improve the re-
trieval efficiency. Using vLLM and GPTQ-Int4
techniques, the additional latency for each question
can be reduced to 38.53 ∗ 20/174.04 = 4.43 sec-
onds. Moreover, parallelism techniques like mul-
tithreading can further reduce the total execution
time for all the queries.

A.8 Discussion Results on nhop

In the discussion we notice that as the hyper-
parameter nhop varies from 1 to 4, the answer and
retrieval performance both increase, along with
the retrieval cost of calling LLM during traversal.

Since the average queue length in the fifth hop is
only as small as 1.23, we believe 4 is the ideal nhop.
The overall results are shown in Table 8.
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(a) Demonstration of one edge between two vertices. (b) Demonstration of reasoning-
augmented graph traversal.

Figure 6: Demonstration of the traversal in the graph structure

(a) Demonstration of HopRAG’s graph. (b) Demonstration of GraphRAG’s graph.

Figure 7: Visualizations of HopRAG and GraphRAG

MuSiQue 2Wiki HotpotQA Average
Answer Retrieval Answer Retrieval Answer Retrieval Answer Retrieval

nhop EM F1 F1 Cost EM F1 F1 Cost EM F1 F1 Cost EM F1 F1 Cost

1 21.50 30.77 8.78 20.00 48.60 52.44 8.68 19.86 47.90 62.92 6.78 19.91 39.33 48.71 8.08 19.92
2 32.00 43.75 11.86 30.32 54.90 60.37 11.42 31.52 55.90 71.26 15.13 29.39 47.60 58.46 12.80 30.41
3 32.50 44.50 12.67 37.28 52.90 59.16 11.97 37.15 57.40 73.86 16.76 33.35 47.60 59.17 13.80 35.93
4 39.10 53.00 13.89 40.32 61.60 68.93 12.51 40.12 61.30 78.34 18.48 35.14 54.00 66.76 14.96 38.53

Table 8: We test the effect of hyperparameter nhop on HopRAG using GPT-3.5-turbo with top 20 passages. We vary
nhop from 1 to 4 and report both the answer and retrieval metrics. For answer metrics, we report the answer EM
and F1 score; For retrieval metrics, we report the F1 score and average number of calling LLM during traversal to
measure the cost (the lower, the better). The best score is in bold and the second best is underlined.
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Figure 8: Prompt for reasoning-augmented graph traversal.
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