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Abstract

Large Language Models (LLMs) are power-
ful in-context learners, achieving strong perfor-
mance with just a few high-quality demonstra-
tions. However, fairness concerns arise in many
in-context classification tasks, especially when
predictions involve sensitive attributes. To ad-
dress this, we propose JUDGE—a simple yet
effective framework for selecting fair and rep-
resentative demonstrations that improve group
fairness in In-Context Learning. JUDGE con-
structs the demonstration set iteratively using
a greedy approach, guided by a small, care-
fully selected jury set. Our method remains
robust across varying LLM architectures and
datasets, ensuring consistent fairness improve-
ments. We evaluate JUDGE on four datasets
using four LLMs, comparing it against seven
baselines. Results show that JUDGE consis-
tently improves fairness metrics without com-
promising accuracy.

1 Introduction

A key capability of Large Language Models
(LLMs) is in-context learning (ICL) — the ability
to learn from examples provided within a prompt,
without requiring parameter updates (Brown et al.,
2020; Dong et al., 2022). While research has ad-
vanced our understanding of ICL and techniques to
enhance its effectiveness, a critical open question
remains: how should we select fair and represen-
tative demonstration examples? This question be-
comes particularly critical in high-stakes domains
where predictions directly impact human lives.

Consider a parole board using an LLM to assess
recidivism risk. The model’s predictions are shaped
by the examples it is shown—if those examples re-
flect historical biases or overlook key rehabilitation
factors, the system may produce plausible-looking
predictions that perpetuate or amplify existing dis-
parities. In sensitive domains like criminal justice,
healthcare, and hiring, the selection of demonstra-

tions directly influences both predictive reliability
and equitable decision-making.

Existing demonstration selection strategies, with
a few exceptions, largely focus on optimizing per-
formance metrics such as accuracy (Peng et al.,
2024; Wu et al., 2023). While these methods are
effective for improving ICL performance, they of-
ten fail to account for fairness concerns. Parallel
research has explored bias and fairness in LLM
outputs (Gallegos et al., 2024) and their trustwor-
thiness (Huang et al., 2024), but a key gap remains:
how can we improve group fairness directly at the
demonstration selection stage in in-context learn-
ing? Unlike prior work that dynamically selects
demonstrations per test query (Wang et al., 2024),
we explore an alternative: constructing a single
demonstration set for an entire classification task.

In our work, we investigate several key ques-
tions. Do different LLMs exhibit consistent fair-
ness behavior across datasets? We find signifi-
cant variations in fairness outcomes across differ-
ent LLMs, highlighting the need for adaptive ap-
proaches rather than one-size-fits-all solutions. Do
existing demonstration selection methods gen-
eralize across LLM architectures and datasets?
Our results reveal that it is challenging for some
prior methods to maintain stable fairness improve-
ments across different models due to inherent vari-
ability in LLM responses. Can we design an ef-
fective, fairness-aware demonstration selection
approach? We propose a simple yet highly effec-
tive method, JUDGE (JUry-based Demonstration
Selection via Greedy Evaluation) that leverages
each LLM’s own predictions on a carefully curated
set of jury examples to guide demonstration selec-
tion.

This paper makes several contributions. First,
we provide a comprehensive analysis of existing
approaches for fairness-aware demonstration se-
lection across multiple datasets and architecures.
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Second, we present JUDGE1, a consistent and effi-
cient framework for extracting fair representative
examples from large datasets for ICL. Third, we
validate our approach through extensive empirical
evaluation, showing significant fairness improve-
ments without compromising accuracy across mul-
tiple fairness benchmarks. Finally, our systematic
analysis demonstrates that the greedy construction
approach is crucial for balancing fairness and ac-
curacy, outperforming alternatives such as top-k
selection and pooling-based methods. As LLMs
continue to be deployed in increasingly sensitive
domains, our work provides a practical framework
for ensuring fairer outcomes while maintaining the
efficiency that makes ICL attractive.

2 Preliminaries: Protected Groups,
Attributes and Group Fairness

Protected groups are demographic subpopulations
that should not face disparate treatment in model
decisions. Let G denote the set of protected groups,
each defined by a protected attribute such as race,
gender, or age. For any instance x in dataset D,
its protected group membership is given by g(x).
The population is partitioned into distinct protected
groups G = {g1, g2, . . . , gl}, with each instance
belonging to exactly one. For binary attributes
(e.g., gender), this simplifies to G = {g1, g2}.

Group fairness aims to ensure that a model’s be-
havior remains consistent across protected groups
by enforcing that certain statistical measures are
approximately equal across all protected groups,
rather than focusing on individual-level fairness.
We consider three popular metrics: Demographic
Parity Difference (∆DP), which measures the
absolute difference in positive rates between pro-
tected groups (Padh et al., 2021); Equalized Odds
Difference (∆EO), which measures the absolute
difference in true positive and false positive rates
between groups (Hardt et al., 2016); and Mu-
tual Information (MI) (Kamishima et al., 2012;
Anahideh et al., 2022), which quantifies the mu-
tual information between protected attributes and
selection decisions (Details in Appendix A).

3 Proposed Approach

3.1 Problem Formulation: Fairest Prompt
Search for In-Context Learning

Given a large language model M and an input x,
ICL makes predictions by conditioning on a demon-

1https://github.com/smdh-hub/judge-icl

Figure 1: Example ICL Prompt on the COMPAS dataset

stration set S = {(x1, y1), ..., (xk, yk)}. The
model processes these demonstrations along with
the query input as:

prompt(S, x) = [(x1, y1), ..., (xk, yk), x] (1)

Let X denote the input space, Y the label space,
and L the natural language space. The formatting
function ϕ maps k input-label pairs and the query
to a natural language prompt as seen in Figure 1:

ϕ : (X × Y)k︸ ︷︷ ︸
k demonstration pairs

× X︸︷︷︸
query input

→ L (2)

ϕ(prompt(S, x)) ∈ L (3)

The model then predicts:

ŷ = argmaxy∈Y M(y|ϕ(prompt(S, x))) (4)

where M(y|ϕ(prompt(S, x))) represents the
model’s predicted probability distribution over the
label space Y , which we denote for brevity as:

ŷ = M(S, x) (5)

The fundamental challenge is selecting an ef-
fective and fair demonstration set S from a large
candidate pool. For a pool of size |D| and de-
sired demonstration set size k, there are

(|D|
k

)
pos-

sible combinations. For even modest values like
|D| = 1000 and k = 5, this yields over 8 tril-
lion possible demonstration sets, making exhaus-
tive search intractable. Fairness constraints further
complicate this selection.

Our approach, JUDGE addresses fair demon-
stration selection through a multi-step process as
shown in Figure 2. Let:

Train set Dtrain: The pool of available exam-
ples, where each example x ∈ Dtrain has asso-
ciated features, a label y ∈ [0, 1], and protected
group membership g(x).
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Jury set J : A small curated subset of examples
extracted from Dtrain that serves to evaluate the
fairness and effectiveness of candidate demonstra-
tion sets.

Candidate set Dcandidate: The complement of
the jury set with respect to the train set, defined
as Dcandidate = Dtrain \ J , from which potential
demonstrations can be selected.

Reduced candidate set Dreduced ⊆ Dcandidate:
A pruned subset of the candidate set, selected to
maintain semantic diversity while reducing compu-
tational complexity. Demonstrations are selected
from this subset.

Protected groups G = {g1, g2, . . . , gl}: The set
of groups defined by protected attributes, where
each example belongs to exactly one group. We
consider a binary setting where G = {g1, g2}.

Selected set S ⊆ Dreduced: The chosen subset
of k examples that will serve as demonstrations,
where k is typically small (e.g., 5-10) due to context
length constraints.

Our objective is to find a demonstration set S∗
that optimizes both predictive accuracy (a) and
fairness (f ):

S∗ = argmaxS⊆Dreduced,|S|=k score(S,J ) (6)

score(S,J ) = ω · f(S,J ) + (1− ω) · a(S,J ) (7)

The accuracy, a term measures the model’s pre-
dictive performance on the jury set:

a(S,J ) = 1

|J |
∑

(x,y)∈J
I[M(S, x) = y] (8)

For the fairness, f(S,J ) term, we use the
widely used demographic parity difference (de-
tailed in Appendix A) to assess the demonstration
set’s fairness using the jury set:

f(S,J ) = −|P (M(S, x) = 1 | g(x) = g1)−
P (M(S, x) = 1 | g(x) = g2)| (9)

Note that we negate the demographic parity dif-
ference since lower differences indicate better fair-
ness, allowing both accuracy and fairness terms to
be maximized in the same direction in Equation 6.

To summarise, JUDGE consists of three main
steps. First, we construct a balanced and diverse
jury set J which evaluates candidate examples
based on both fairness metrics and predictive per-
formance. This jury set is drawn from the training

set and subsequently removed to form the candidate
pool. Next, we prune the candidate pool to max-
imize semantic diversity and limit computational
overhead. Finally, we employ a greedy selection
algorithm that iteratively builds the demonstration
set S by adding, at each step, a demonstration from
Dreduced that maximizes the fairness-accuracy ob-
jective (Equation 7) over the jury set J .

3.2 Jury Set Composition
The jury set J is carefully constructed to ensure
balanced representation across all protected groups
and labels. We define all possible group-label
pairs as C = {(g, y) : g ∈ G, y ∈ Y}. For
example, in a binary setting where g represents
gender (Male, Female) and y represents income
level (>50k as 1, ≤ 50k as 0), we have C =
{(Female, 0), (Female, 1), (Male, 0), (Male, 1)}

Each subset Jg,y consists of m = |J |/|C| exam-
ples, selected to maximize semantic diversity.

For each example x, we compute an embedding
e(x) using SentenceBERT (Reimers, 2019). We
measure the semantic similarity between examples
using cosine similarity:

sim(xi, xj) =
e(xi) · e(xj)

∥e(xi)∥∥e(xj)∥
(10)

To construct a diverse subset Jg,y, we iteratively
select the next example xnext that minimizes its
maximum similarity to the previously selected ex-
amples.

xnext = arg min
xi /∈Jg,y

max
xj∈Jg,y

sim(xi, xj) (11)

Therefore, the subset Jg,y is calculated as:

Jg,y = {x1, ..., xm} where
xi = arg min

x∈Dg,y\{x1,...,xi−1}
max
j<i

sim(x, xj) (12)

where Dg,y represents the subset of examples in
Dtrain with protected group g and label y. The
final jury set is the union of these diverse subsets:

J =
⋃

(g,y)∈C
Jg,y (13)

3.3 Diversity-Based Candidate Pruning
To efficiently reduce the size of the candidate
pool while preserving coverage across the seman-
tic space, we employ a selection strategy based on
semantic similarity.

We construct the reduced set Dreduced itera-
tively by selecting examples that are maximally dis-
tinct from those already chosen, following Sec 3.2.
Given a target size n, the selection is defined as:
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Figure 2: JUDGE consists of three main steps: (1) constructing a balanced and diverse jury set J (2) pruning
the candidate pool to reduce computational overhead, and (3) iteratively selecting demonstrations using a greedy
algorithm that optimizes a weighted combination of fairness and accuracy scores over the jury set.

Dreduced = {x1, ..., xn} where
xi = arg min

x∈Dcandidate\{x1,...,xi−1}
max
j<i

sim(x, xj)

(14)

This selection process ensures that the final sub-
set Dreduced preserves the semantic diversity of the
original pool while being computationally tractable
for subsequent operations.

3.4 Fairness-Guided Greedy Selection
The algorithm constructs the demonstration set S
iteratively using a greedy selection process, opti-
mizing both fairness and accuracy over the jury set
J . At each iteration t , the example that maximizes
the marginal improvement in the overall score is
added to S.

The process starts with an empty set, S0 = ∅ .
At t = 1, each example in Dreduced is evaluated
independently as the first demonstration, and the
one yielding the highest fairness-accuracy score
on the jury set is selected as x1, and S1 = S0 ∪
{x1}. At t = 2, we evaluate each of the remaining
candidates in Dreduced \ S1 in combination with x1,
forming two-example demonstration sets, selecting
x2 that maximizes the score and S2 = S1 ∪ {x2}.
This process continues until t = k.

Formally, starting with an empty set S0 = ∅, at
each iteration t until |St| = k, we select:

xt = argmaxx∈Dreduced\St−1
score(St−1 ∪ {x},J ) (15)

where St = St−1 ∪ {xt} and score is computed
as defined in Section 3.1.

While this greedy approach does not guarantee
finding the globally optimal demonstration set, it
offers several advantages. First, it reduces search
complexity from

(|Dreduced|
k

)
to O(k|Dreduced|),

drastically reducing the search space. Second, it en-
sures interpretability, as each demonstration is cho-
sen based on a clear improvement metric. Finally,
by evaluating candidates based on their marginal
contribution, it captures interaction effects, leading
to a more effective and fair selection.

Our approach is detailed in Algorithm 1. The
pseudocode for the helper function DiverseSelect,
which is based on the description from Section 3.2,
can be found in Algorithm 2 in the Appendix.

3.5 On the Greedy Selection Strategy
We employ a greedy algorithm for selecting the
demonstration set, primarily due to its computa-
tional efficiency and strong empirical performance.
While we do not guarantee that our objective
function is submodular, the greedy approach is
known to have provable approximation guarantees
when applied to submodular objective functions
(Nemhauser et al., 1978). Inspired by these theo-
retical underpinnings, and supported by empirical
evidence showing that greedy algorithms often per-
form very well in practice across numerous subset
optimization problems (Sener and Savarese, 2018;
Wei et al., 2015), we adopted this strategy.

We considered alternative strategies such as
beam search, but found them less suitable for our
application. Beam search, while potentially yield-
ing better sets, would increase the computational
load by a factor of the beam width (Leblond et al.,
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Algorithm 1 JUDGE
Require: Training set Dtrain, protected groups G, labels Y ,

desired size k, jury size per group m, candidate pool size
n, trade-off ω

Ensure: Fair demonstration set S
1: // Step 1: Construct balanced jury set
2: C ← {(g, y) : g ∈ G, y ∈ Y}
3: J ← ∅
4: for (g, y) ∈ C do
5: Dg,y ← {x ∈ Dtrain : g(x) = g ∧ label(x) = y}
6: Jg,y ← DiverseSelect(Dg,y,m)
7: J ← J ∪ Jg,y

8: end for
9: // Step 2: Prune candidate pool

10: Dreduced ← DiverseSelect(Dtrain \ J , n)
11: // Step 3: Greedy selection
12: S0 ← ∅
13: for t← 1 to k do
14: xt ← None, smax ← −∞
15: for x ∈ Dreduced \ St−1 do
16: Stemp ← St−1 ∪ {x}
17: f ← f(Stemp,J ), a← a(Stemp,J )
18: s← ω · f + (1− ω) · a
19: if s > smax then
20: xt ← x, smax ← s
21: end if
22: end for
23: St ← St−1 ∪ {xt}
24: end for
25: return Sk

2021). This would involve evaluating multiple
candidate sets concurrently with the jury set us-
ing LLM feedback, rendering the approach pro-
hibitively expensive for users.

4 Complexity Analysis

The complexity is dominated by LLM inference.
In JUDGE, each demonstration in Dreduced is eval-
uated with every jury member to compute demo-
graphic parity and accuracy. Since this is repeated
k times to build a k-sized set, the overall complex-
ity is O(k · |Dreduced| · |J |). Unlike our method,
exhaustive search evaluates all possible subsets
of size k from N demonstrations, i.e., a complex-
ity of O(NK) which is infeasible for large N and
k. A detailed complexity comparison with other
baselines can be found in Appendix C.

5 Results

5.1 Datasets
We use four widely studied fairness datasets across
different domains and protected attributes (details
in Appendix B.2). Adult Income (Dua and Graff,
2019) to predict whether income exceeds $50K
(protected attribute: gender). COMPAS (Angwin
et al., 2016) to predict recidivism risk (protected
attribute: race). Law School (LSAC) (Wightman,

1998) to predict whether a student passes the bar
(protected attribute: race). ACS Income (Ding
et al., 2021) to predict whether income exceeds
$50K (protected attribute: gender).

5.2 Language Models

To assess the generalizability of JUDGE, we eval-
uate our approach using four open-source lan-
guage models of varying parameters from differ-
ent sources: Meta’s LLaMA-3 8B (Dubey et al.,
2024), Mistral AI’s Mistral 7B (Jiang et al., 2023),
Google’s Gemma-2 9B (Riviere et al., 2024), and
Alibaba’s Qwen-2.5 32B (Hui et al., 2024).

5.3 Baselines

We compare our approach against seven baseline
methods for demonstration selection. Random se-
lects k demonstrations randomly from the training
set. Balanced employs stratified random sampling
to maintain equal representation across protected
groups and label. Counterfactual (Li et al., 2023)
selects from privileged groups and generates coun-
terfactual examples by flipping sensitive attributes
while preserving other features. Instruct (Atwood
et al., 2024) guides the model toward fairness via
explicit prompt instructions. FCG (Hu et al., 2024)
uses clustering and evolutionary strategies to curate
diverse, representative demonstrations while con-
sidering fairness metrics. FairICL (Bhaila et al.,
2024) leverages latent concept variables to evaluate
demonstration fairness and guide selection, learn-
ing fair concepts from training data to promote
fairness while maintaining utility. FADS (Wang
et al., 2024) implements a two-stage filtering ap-
proach (data and model bias mitigation) followed
by similarity-based selection with balanced repre-
sentation across groups and labels. Unlike adaptive
methods which select demonstrations per test in-
stance, JUDGE selects a single fixed set for all test
examples. We evaluate our method against both
fixed and adaptive approaches.

5.4 Experimental Setup

For each dataset-model combination, we conduct
experiments with two demonstration set sizes: k =
5 and k = 10, using 20% of the data for testing
where standard splits are not provided. We evaluate
performance using four metrics: Accuracy (Acc.),
Demographic Parity Difference (∆DP), Equalized
Odds Difference (∆EO), and Mutual Information
(MI), as defined in Section 2. All results reported
in Tables 1-8 show the mean of 3 reproduction runs.
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For space constraints, results for k = 10 (Tables
5-8), as well as important additional experiment
details can be found in the Appendix.

Table 1: Results for Adult with 5 demonstrations, across
4 LLMs. Each cell shows MeanS.D.

Method Acc.↑ ∆DP↓ ∆EO↓ MI↓

L
L

A
M

A
-3

-8
B

Random 0.7720.008 0.1850.004 0.1910.006 0.0230.002
Balanced 0.7060.015 0.2160.011 0.1460.014 0.0220.001
Cfact. 0.7310.017 0.1850.019 0.1580.023 0.0180.003
Instruct 0.7530.013 0.2990.011 0.3080.012 0.0520.006
FairICL 0.7640.009 0.1700.004 0.0970.008 0.0160.002
FCG 0.7950.011 0.0970.009 0.1570.006 0.0110.001
FADS 0.7430.015 0.1570.012 0.1140.014 0.0190.003
JUDGE 0.7980.012 0.0780.011 0.0490.012 0.0040.001

M
IS

T
R

A
L

-7
B

Random 0.7090.013 0.2010.010 0.1240.009 0.0190.003
Balanced 0.5940.014 0.2300.011 0.1850.012 0.0250.004
Cfact. 0.7220.011 0.1430.008 0.1930.013 0.0110.003
Instruct 0.7290.021 0.1620.019 0.1710.023 0.0150.004
FairICL 0.7610.006 0.1510.011 0.1590.007 0.0120.002
FCG 0.7520.015 0.1320.014 0.0930.019 0.0060.001
FADS 0.7690.009 0.1800.008 0.1290.005 0.0210.002
JUDGE 0.7670.012 0.1010.009 0.0240.005 0.0060.001

G
E

M
M

A
-2

-9
B

Random 0.7540.006 0.3940.008 0.4230.013 0.0910.005
Balanced 0.7010.014 0.4820.023 0.4130.026 0.1130.021
Cfact. 0.7520.015 0.3110.015 0.3720.011 0.0870.016
Instruct 0.7420.011 0.4280.009 0.4790.013 0.1080.008
FairICL 0.7530.014 0.3180.019 0.3920.026 0.0890.013
FCG 0.7550.017 0.2330.025 0.1920.018 0.0130.003
FADS 0.7590.013 0.3530.011 0.3870.016 0.0720.006
JUDGE 0.7690.012 0.1770.018 0.1010.009 0.0180.003

Q
W

E
N

-2
.5

-3
2B

Random 0.7450.012 0.2150.010 0.1320.010 0.0230.004
Balanced 0.7080.014 0.2450.013 0.1650.012 0.0270.003
Cfact. 0.7480.014 0.2250.014 0.1430.011 0.0250.003
Instruct 0.7330.007 0.2390.013 0.1610.009 0.0260.005
FairICL 0.7430.009 0.1920.012 0.1470.015 0.0270.009
FCG 0.7620.013 0.1110.014 0.0980.013 0.0070.002
FADS 0.7120.009 0.2200.007 0.1410.006 0.0230.003
JUDGE 0.7710.008 0.0960.005 0.0620.004 0.0050.001

5.4.1 Intrinsic Fairness Differences Among
LLMs and Datasets

We note an interesting pattern across our results:
different LLMs report significantly different fair-
ness metrics. This is evident when examining
the Random baseline. For instance, with k = 5
on Adult (Table 1), Gemma-2 produces a ∆DP
score of 0.394, compared to LLaMA-3’s 0.185,
more than twice the disparity in demographic par-
ity. These variations persist across datasets, with
Gemma-2 often exhibiting greater unfairness, e.g.,
∆DP = 0.310 on COMPAS, compared to Mistral’s
0.097 (Table 2), over three times the value.

Perhaps less surprisingly, datasets themselves
vary in fairness, with the same model reporting very
different fairness metrics across different datasets.
More interestingly, certain baselines behave dra-
matically differently across models. For example,
Instruct achieves strong fairness on Law School
with Mistral for both k = 5 and 10 , yet completely
sacrifices fairness on Qwen-2.5B and Gemma-2,
despite maintaining high accuracy (Table 4, 9).

Table 2: Results for COMPAS with 5 demonstrations,
across 4 LLMs. Each cell shows MeanS.D.

Method Acc.↑ ∆DP↓ ∆EO↓ MI↓

L
L

A
M

A
-3

-8
B

Random 0.6170.011 0.2090.009 0.1990.008 0.0210.003
Balanced 0.6200.012 0.2350.011 0.2180.013 0.0270.002
Cfact. 0.5820.009 0.1870.006 0.1930.007 0.0170.001
Instruct 0.5660.010 0.1350.009 0.1640.010 0.0150.001
FairICL 0.6210.009 0.1920.007 0.1880.006 0.0200.002
FCG 0.6140.007 0.1820.005 0.1970.005 0.0190.001
FADS 0.5750.008 0.1670.006 0.1600.005 0.0140.002
JUDGE 0.6560.010 0.1050.008 0.0820.007 0.0060.001

M
IS

T
R

A
L

-7
B

Random 0.5130.012 0.0970.008 0.1200.009 0.0160.002
Balanced 0.5120.007 0.0790.005 0.0830.004 0.0130.003
Cfact. 0.4870.010 0.0590.009 0.0620.009 0.0150.004
Instruct 0.4970.012 0.0820.010 0.1050.008 0.0140.002
FairICL 0.5150.006 0.0820.005 0.0980.005 0.0170.004
FCG 0.4890.009 0.0740.004 0.1080.006 0.0130.003
FADS 0.5310.010 0.0910.005 0.1170.007 0.0150.009
JUDGE 0.5410.007 0.0550.004 0.0750.004 0.0020.000

G
E

M
M

A
-2

-9
B

Random 0.6150.008 0.3100.005 0.3140.006 0.0490.003
Balanced 0.6010.009 0.3590.006 0.3480.005 0.0670.004
Cfact. 0.6040.007 0.2610.004 0.2720.005 0.0440.005
Instruct 0.6090.011 0.2910.009 0.3090.012 0.0470.006
FairICL 0.6220.010 0.2650.011 0.2820.012 0.0400.005
FCG 0.6480.007 0.0990.003 0.0910.005 0.0080.003
FADS 0.6210.014 0.3070.011 0.3030.09 0.0530.009
JUDGE 0.6650.006 0.0620.002 0.0390.003 0.0020.000

Q
W

E
N

-2
.5

-3
2B

Random 0.6370.007 0.2420.005 0.2210.006 0.0290.003
Balanced 0.6520.008 0.2480.007 0.2400.011 0.0310.005
Cfact. 0.6110.008 0.2440.006 0.2280.006 0.0310.004
Instruct 0.6330.006 0.2340.003 0.2140.004 0.0260.002
FairICL 0.6390.008 0.2110.005 0.2180.005 0.0250.003
FCG 0.6230.006 0.1490.004 0.1440.003 0.0180.003
FADS 0.6450.008 0.2240.006 0.2070.004 0.0250.003
JUDGE 0.6490.004 0.1380.005 0.1340.003 0.0100.001

One trend remains consistent: methods behave simi-
larly across demonstration sizes, with performance
staying stable across k = 5 and k = 10 for a given
model, dataset, and method.

5.5 Performance Comparison
JUDGE consistently provides strong improvements
across 32 settings (4 LLMs * 4 Datasets * 2 Demon-
stration set sizes), achieving the best performance
in most cases and near-best results in the instances
where it is not the top performer. We attribute this
to its greedy approach, which iteratively selects
demonstrations by maximizing their marginal con-
tribution based on LLM feedback using a semanti-
cally diverse jury set. Given the high variability in
data types and LLM architectures, we believe this
step-by-step feedback is key to generalizability.

Notably, baselines that incorporate LLM feed-
back, like FCG, tend to perform better than those
relying solely on heuristics, which often lack con-
sistency—excelling in some cases but failing in oth-
ers. For instance, Counterfactual selection signifi-
cantly improves fairness over Random on Gemma-
2 for Adult, but worsens on Qwen-2.5 for the same
dataset (Table 1). Similarly, Instruct improves fair-
ness over Random on LLaMA-3 for COMPAS (Ta-
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Table 3: Results for ACS with 5 demonstrations, across
4 LLMs. Each cell shows MeanS.D.

Method Acc.↑ ∆DP↓ ∆EO↓ MI↓

L
L

A
M

A
-3

-8
B

Random 0.6930.009 0.1220.008 0.1060.009 0.0080.001
Balanced 0.6890.016 0.0890.009 0.0700.008 0.0040.000
Cfact. 0.6530.005 0.0920.004 0.0920.004 0.0040.000
Instruct 0.6840.010 0.1150.006 0.1010.006 0.0080.001
FairICL 0.6880.011 0.0980.008 0.0100.004 0.0080.002
FCG 0.7590.010 0.0660.005 0.0710.004 0.0020.006
FADS 0.6970.008 0.1160.006 0.1010.004 0.0080.001
JUDGE 0.7640.007 0.0450.002 0.0490.003 0.0010.000

M
IS

T
R

A
L

-7
B

Random 0.6030.007 0.0910.005 0.0520.006 0.0050.001
Balanced 0.5580.013 0.0700.009 0.0320.009 0.0030.000
Cfact. 0.6070.009 0.0850.005 0.0630.004 0.0060.001
Instruct 0.5920.017 0.0940.12 0.1080.011 0.0070.001
FairICL 0.6100.005 0.0890.004 0.0510.003 0.0050.001
FCG 0.6480.008 0.0510.007 0.0690.004 0.0070.001
FADS 0.5990.012 0.0880.006 0.0510.004 0.0050.000
JUDGE 0.6510.011 0.0310.005 0.0360.006 0.0010.000

G
E

M
M

A
-2

-9
B

Random 0.6960.009 0.2250.007 0.2230.010 0.0280.004
Balanced 0.7070.012 0.2330.009 0.1790.009 0.0280.002
Cfact. 0.6900.010 0.2270.008 0.2270.009 0.0270.003
Instruct 0.6960.016 0.2630.010 0.2780.010 0.0390.005
FairICL 0.6910.014 0.2110.007 0.2180.012 0.0270.004
FCG 0.7050.012 0.1410.007 0.1360.009 0.0180.002
FADS 0.7090.016 0.2050.006 0.2740.010 0.0310.003
JUDGE 0.7040.010 0.1310.006 0.1240.006 0.0130.001

Q
W

E
N

-2
.5

-3
2B

Random 0.7270.014 0.1010.008 0.0590.010 0.0050.001
Balanced 0.7280.012 0.0760.008 0.0170.008 0.0030.000
Cfact. 0.7310.005 0.0870.003 0.0320.003 0.0040.001
Instruct 0.7350.014 0.1910.009 0.1250.010 0.0180.002
FairICL 0.7240.011 0.0910.006 0.0760.007 0.0050.001
FCG 0.7270.006 0.0590.003 0.0510.003 0.0020.000
FADS 0.7290.003 0.0970.002 0.0460.004 0.0050.001
JUDGE 0.7390.010 0.0250.005 0.0360.005 0.0010.000

ble 2) but significantly harms it on Adult using
the same LLM. FADS, designed to mitigate both
model and data bias, performs well in many cases
with some exceptions on certain datasets. Fair-
ICL, which ranks demonstrations by learning la-
tent concept variables using a local LLaMA model,
can face challenges due to architectural differences
between models. Overall, JUDGE remains very
consistent across all settings, improving fairness
across metrics while maintaining accuracy. Its
LLM-driven, stepwise construction ensures robust,
data- and model-agnostic performance, making it a
reliable and consistent approach.

In summary, several key distinctions in its design
contribute to JUDGE’s performance:

• JUDGE constructs a single, optimized demon-
stration set by explicitly exploring interac-
tion effects between examples during selec-
tion, evaluating each candidate in combination
with previously chosen ones. This approach
captures how examples collectively influence
fairness and accuracy for the overall task. In
contrast, some methods select demonstration
sets specific to each test example (e.g., based
on criteria like similarity to the test instance),

Table 4: Results for Law School with 5 demonstrations,
across 4 LLMs. Each cell shows MeanS.D.

Method Acc.↑ ∆DP↓ ∆EO↓ MI↓

L
L

A
M

A
-3

-8
B

Random 0.8950.012 0.2990.009 0.4930.015 0.0540.004
Balanced 0.6630.016 0.4060.008 0.3770.006 0.0470.005
Cfact. 0.8710.015 0.2720.010 0.4350.018 0.0440.003
Instruct 0.8620.019 0.1970.011 0.3070.019 0.0320.003
FairICL 0.7640.015 0.3120.008 0.3460.006 0.0450.002
FCG 0.9090.016 0.0820.016 0.1780.020 0.0190.003
FADS 0.8980.004 0.2420.003 0.3530.006 0.0390.001
JUDGE 0.9110.026 0.0570.027 0.1040.035 0.0050.001

M
IS

T
R

A
L

-7
B

Random 0.9050.009 0.1870.011 0.3380.007 0.0290.003
Balanced 0.8710.012 0.2190.004 0.3620.007 0.0310.001
Cfact. 0.9040.012 0.2000.011 0.4180.008 0.0290.003
Instruct 0.9130.010 0.0230.004 0.0770.005 0.0040.000
FairICL 0.9020.010 0.1730.006 0.3110.009 0.0260.003
FCG 0.9430.014 0.0380.006 0.0910.04 0.0180.002
FADS 0.9340.006 0.1030.004 0.2270.003 0.0190.002
JUDGE 0.9460.013 0.0270.003 0.0590.004 0.0080.001

G
E

M
M

A
-2

-9
B

Random 0.8530.011 0.3720.007 0.5690.010 0.0580.004
Balanced 0.7560.007 0.4190.011 0.4360.008 0.0560.003
Cfact. 0.7470.007 0.3660.004 0.3580.006 0.0420.003
Instruct 0.8780.004 0.3440.005 0.5530.003 0.0560.001
FairICL 0.8440.010 0.3410.009 0.3570.012 0.0410.002
FCG 0.8450.013 0.2580.009 0.2670.011 0.0290.003
FADS 0.8770.009 0.2870.006 0.5020.007 0.0470.003
JUDGE 0.8550.013 0.2270.009 0.2140.008 0.0250.003

Q
W

E
N

-2
.5

-3
2B

Random 0.8650.007 0.3270.005 0.4140.004 0.0520.002
Balanced 0.8310.011 0.3920.005 0.4930.006 0.0610.002
Cfact. 0.8400.009 0.3660.006 0.4180.008 0.0550.005
Instruct 0.8830.008 0.3700.005 0.5340.006 0.0720.004
FairICL 0.8600.018 0.3160.010 0.4490.014 0.0570.002
FCG 0.8620.016 0.2480.013 0.2930.012 0.0350.003
FADS 0.8890.021 0.2380.012 0.4190.016 0.0440.009
JUDGE 0.8820.016 0.2140.013 0.2730.015 0.0270.001

which may not fully capture these broader
interaction effects or the nuanced collective
influence critical for robust performance. As
we will show in Section 5.6, simply choosing
the best examples (“Top-k”) or balanced top
examples (“Top-k-Balanced”) is less effective
than JUDGE’s incremental greedy selection,
which adds demonstrations one at a time based
on joint impact. This shows that demonstra-
tions can be individually strong but sensitive
to others that they are paired with.

• Fairness metrics like ∆DP and ∆EO are
group-based measures calculated across popu-
lations, not for individual examples. JUDGE
optimizes directly for these group fairness
metrics during selection using the jury set.

• JUDGE incorporates LLM feedback at all
steps of the selection process, allowing it
to adapt to each LLM’s specific characteris-
tics. This explains its consistent performance
across diverse LLMs.

5.6 Ablation: Greedy vs. Top-k Selection
To validate our greedy selection approach, we com-
pare it against two alternatives: (1) Top-k, the top
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(a) Adult dataset

(b) COMPAS dataset

Figure 3: Comparison of Greedy vs. Top-k alternatives

k candidates that individually perform the best on
the jury set, (2) Top-k-Balanced, which is a strati-
fied selection that picks the top samples from each
combination of protected group and label, (g, y).
Results show that greedy selection consistently out-
performs both methods, highlighting the impor-
tance of marginal contribution of each example
in building a fair and effective demonstration set.
The effect of Top-k and Top-k-Balanced varies by
dataset. As shown in Figure 3, on Adult (LLaMA-
3-8B), Top-k exhibits a dramatic drop in fairness
performance, while Top-k-Balanced fares better.
On COMPAS, we see competitive fairness perfor-
mance across variants, but upon closer inspection
we observe that Top-k and Top-k-Balanced selec-
tion suffers large drops in accuracy. These findings
underscore the inherent variability in ICL and re-
inforce the strength of the greedy approach, which
incrementally selects candidates while considering
their interactions with the existing set.

5.7 Impact of Jury Set Size

To assess the impact of jury size, we vary the
number of examples per group-label combination
m from 1 to 100, keeping all other parameters
constant with k = 5 demonstrations. Figure 4
(LLaMA-3 on Adult) shows results for accuracy
and ∆DP (full results in Appendix B.4, Figure 10).
Results on Adult indicate that performance stabi-
lizes as m increases, with diminishing returns be-
yond m > 25 despite higher computational costs.

Figure 4: Accuracy and ∆DP against the size of the jury
set for Adult. Higher sizes show diminishing returns.

Figure 5: Comparison of diversity vs. other sampling
techniques for the jury set on the ACS dataset.

Accuracy plateaus quickly, with m = 5 or 10 being
sufficient, while fairness improves up to m = 50 .

5.8 Jury Set Diversity

To examine the impact of semantic diversity in
jury set construction, we compare three methods:
(1) Random Sampling, (2) Random-Balanced (ran-
dom sampling after enforcing equal representation
across protected group-label combinations), and
(3) Semantic Diversity-based selection. We fix
m = 25 for this comparison. With jury sets con-
strained to be small for computational efficiency,
Figure 5 shows that diversity-based selection out-
performs both alternatives on the ACS dataset. A
similar experiment on Adult is provided in Ap-
pendix B.5.

5.9 Sentence Embedding Models

We selected SentenceBERT for creating sentence
embeddings. Like all pre-trained models, these em-
beddings may contain inherent biases. However, it
is crucial to note that SentenceBERT is employed
only for preprocessing, to select a diverse set of ex-
amples. The core fairness evaluation is conducted
directly by the Large Language Model (LLM), not
by the embedding model itself.

The choice of SentenceBERT was motivated by
its proven general-purpose capabilities, which are
well-suited for the diverse datasets used in our ex-
periments. This ensures that our pipeline is broadly
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applicable and maintains consistency across dif-
ferent domains. We recognize that for domain-
specific applications, our method could be adapted
to leverage specialized embeddings. For instance,
LegalBERT (Chalkidis et al., 2020) could be em-
ployed for legal applications. To investigate the
impact of the embedding model choice, we con-
ducted a comparative analysis using LegalBERT
on the COMPAS dataset. The results, obtained
using LLAMA-3-8B with the number of demon-
strations set to five, are presented in Table 5.

Table 5: Performance Comparison with SentenceBERT
(SBERT) and LegalBERT (LBert) on COMPAS.

System Acc. ↑ ∆DP ↓ ∆EO ↓ MI ↓
JUDGE (SBERT) 0.656 0.105 0.082 0.006
JUDGE (LBERT) 0.637 0.099 0.080 0.006

As shown in Table 5, the performance when
using LegalBERT embeddings remains largely
comparable to that of SentenceBERT. The system
with LegalBERT exhibits a slight trade-off, with a
marginally lower accuracy but improved fairness
with ∆DP and ∆EO. This suggests that our method
is robust to the choice of the underlying sentence
embedding model, although domain-specific em-
beddings like LegalBERT may offer benefits or
nuanced trade-offs in specialized contexts.

6 Related Work

Demonstration Selection in ICL The problem
of selecting demonstrations for ICL has received
significant attention. (Liu et al., 2022) showed
that finding demonstrations which are semantically
similar to the test data often shows promising re-
sults. Wu et al. (2023) addressed this challenge by
establishing a select-then-rank framework where
they first limit the search space of demonstrations
and rank the remaining examples through heuris-
tics. Peng et al. (2024) highlighted that both data
and model factors contribute to variability in per-
formance. Meanwhile, Ma et al. (2023) showed
that predictive performance can be improved by
selecting examples that minimize predictive bias.
To address efficiency concerns, Yang et al. (2023)
proposed a two-stage Determinantal Point Process
(DPP) method to select a fixed, representative sub-
set of demonstrations, improving efficiency while
maintaining performance.

Fair Demonstration Selection in ICL The fair-
ness of language models has received significant
attention (Doan et al., 2024; Chu et al., 2024). Liu

et al. (2024) showed that LLMs exhibit significant
bias in tabular classification. In ICL, fair demon-
stration selection is crucial. Hu et al. (2024) inves-
tigated how varying the composition of demonstra-
tions affects fairness outcomes in ICL. The authors
proposed a fairness-aware selection method that
employs clustering and evolutionary strategies to
curate a diverse and representative sample set from
the training data. Meanwhile, Wang et al. (2024)
introduced FADS, which addresses the challenge
of fair demonstration selection by mitigating both
model bias and bias in the data. Other approaches
have explored leveraging counterfactual analysis.
Bhaila et al. (2024) introduced a method that uses
latent concept variables learned through counterfac-
tual examples to evaluate the fairness of demonstra-
tions. The idea of utilizing counterfactual examples
is also presented by Li et al. (2023), which picks
examples from the privileged group and flips the
sensitive attribute to create new examples. Finally,
Atwood et al. (2024) showed how prompting the
model by explicitly asking it to be fair can also be
effective. JUDGE adds to this growing body of lit-
erature focused on selecting fair and representative
samples for ICL.

7 Conclusion

We propose JUDGE, a greedy framework for fair
demonstration selection in ICL, guided by a jury
set. Across four datasets and four LLM architec-
tures, our method consistently improves fairness
while maintaining accuracy, outperforming existing
approaches. We further highlight the high variabil-
ity of different methods across different datasets
and language models, and establish the importance
of considering demonstrations as a cohesive set
rather than as individual examples to ensure fair-
ness. As LLMs expand into critical applications,
JUDGE offers a practical and robust solution for
ensuring fairness in ICL.

Limitations

This work investigates the problem of fairness
aware demonstration selection for in-context learn-
ing. In order to do so, this work explores vari-
ous open-source LLM architectures from Google,
Meta, Mistral, and Alibaba. While these architec-
tures have varied sizes ranging from 7B to 32B
parameters, a key limitation in our work is that,
due to hardware limitations we do not investigate
the effect on truly massive models like LLAMA-
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3-405B. Furthermore, financial constraints prevent
us from using closed-source paid platforms like
GPT-4o, given the large number of LLM queries
required across our datasets, baselines, LLMs and
demonstration sizes. Nonetheless, we believe we
chose a diverse and representative set of highly
performant open-source LLMs to make our study
comprehensive. Furthermore, our study limits it-
self to exploring binary in-context classification
as well as binary sensitive group settings. In the
future, we plan to consider broader classification
settings. Finally, in line with prior work, we aimed
to conduct a comprehensive study across widely
popular fairness datasets, which are typically tabu-
lar in nature and are thus serialized into a natural
language prompt for the LLM. In the future, we
hope to study other types of data in the context of
fairness in large language models.
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A Fairness Metrics Formulation

Here we provide detailed mathematical formula-
tions of the fairness metrics used in our analysis.
For all metrics, we take absolute values to ensure
positive measures of disparity, where zero indicates
perfect fairness and larger values indicate greater
disparity.

A.1 Demographic Parity Difference (∆DP)
The Demographic Parity Difference (∆DP) mea-
sures the absolute difference in positive label rates
between groups:

∆DP = |P (y = 1 | g(x) = g1)−
P (y = 1 | g(x) = g2)| (16)

where y = 1 denotes a positive label. A ∆DP of
0 indicates perfect demographic parity.
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A.2 Equalized Odds Difference (∆EO)

The Equalized Odds Difference (∆EO) measures
disparities in both true positive rates (TPR) and
false positive rates (FPR) between groups:

∆EO = max (|TPRg1 − TPRg2 | , |FPRg1 − FPRg2 |)
(17)

where

TPRg = P (y = 1 | g(x) = g, y∗ = 1) (18)

FPRg = P (y = 1 | g(x) = g, y∗ = 0) (19)

Here, y∗ represents the true label, and y = 1
represents the predicted positive label. A ∆EO of
0 indicates perfect equalized odds.

A.3 Mutual Information Fairness

The mutual information between protected group
membership G and the positive label assignment
is:

I(G;Y ) =
∑

g,y

P (g, y) log
P (g, y)

P (g)P (y)
(20)

where y denotes whether an instance receives a
positive label. Lower mutual information indicates
greater independence between the positive label
assignment and protected group membership. This
metric is naturally non-negative, with 0 indicating
perfect independence.

B Additional Experiment Details

B.1 DiverseSelect

The pseudocode for maximizing semantic diversity
in selection is shown in Algorithm 2.

Algorithm 2 DiverseSelect: Diversity-Based Ex-
ample Selection

Require: Initial pool D, target size k
Ensure: Diverse subset Ddiverse

1: Compute Sij = sim(xi, xj) for all xi, xj ∈ D
2: Ddiverse ← xr where xr is randomly sampled

from D
3: for t← 1 to k − 1 do
4: for xi ∈ D \ Ddiverse do
5: si ← maxxj∈Ddiverse

Sij
6: end for
7: xt ← argminxi∈D\Ddiverse

si
8: Ddiverse ← Ddiverse ∪ xt
9: end for

10: return Ddiverse

B.2 Dataset Details

Adult Income The UCI Adult dataset (Dua and
Graff, 2019) contains demographic and employ-
ment information for 48,842 individuals. The
task is to predict whether annual income exceeds
$50,000, with gender as the protected attribute. The
prompt template for this dataset is shown in Figure
8.

COMPAS This dataset (Angwin et al., 2016)
includes criminal history and demographic data
for defendants. The classification task is predicting
recidivism risk. We use a binarized race (Caucasian
vs African-American) as the protected attribute.
The prompt template for this dataset is shown in
Figure 6.

Law School The LSAC dataset (Wightman,
1998) contains admissions data and academic per-
formance for law school students. The model pre-
dicts whether a student passes the bar, with a bi-
narized race (Caucasian vs Not-Caucasian) as the
protected attribute. The prompt template for this
dataset is shown in Figure 7.

ACS Income The ACS PUMS dataset (Ding
et al., 2021) contains demographic and employ-
ment information from the American Commu-
nity Survey. The task predicts if income exceeds
$50,000, using gender as the protected attribute.
The ACS Income dataset in its original form con-
tains over 1.66 million datapoints, which is far
larger than all other datasets that we consider, com-
bined. For LLM in-context classification, this be-
comes prohibitively expensive from a computation
perspective. As a result, we randomly downsample
ACS Income down to 48,842 samples, which is the
same size as the closely related Adult Dataset. Both
datasets track American income data, but ACS pro-
vides much newer information from 2018 instead
of 1994 for Adult. The prompt template for this
dataset is shown in Figure 9.

B.3 Additional Results

This section presents results for all LLMs and all
datasets with 10 demonstrations provided for In-
Context Learning. These can be seen in Tables 5-8
for each of the four datasets.

B.4 Full Results for the Effect of Jury Set Size

Here we provide the results for all metrics for our
experiment in Section 5.7, which tests the effect of
different jury set sizes on the Adult dataset using
LLAMA-3-8B. This is shown in Figure 10. This
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Figure 6: COMPAS Prompt Template

Figure 7: Law School Prompt Template

figure additionally shows the ∆EO and MI metrics
which show the same pattern as the ∆DP metric.

B.5 Additional Jury Set Diversity Experiment
We conduct the same jury set diversity experiment
from Section 5.8 on the Adult dataset, comparing
random selection, balanced-random selection, and
our diversity-based approach. As with ACS, the
jury set size is fixed at m = 25 for this experiment,
across all methods.

Figure 11 illustrates that diversity-based selec-
tion also outperforms other sampling strategies on
the Adult dataset, reinforcing the importance of
semantic diversity in jury construction.

B.6 Sensitivity Analysis
To understand the impact of trade-off parameters in
different methods, we conduct a sensitivity analysis
by varying the fairness-accuracy balancing coeffi-
cients in JUDGE, FCG, and FairICL on the Adult
dataset over LLAMA-3-8B. We select FCG and
FairICL as baselines because their respective au-

Figure 8: Adult Prompt Template

Figure 9: ACS Prompt Template

thors explicitly identify α and D̃ as key parameters
that influence fairness, making them well-suited
for comparison with JUDGE.

B.7 JUDGE: Sensitivity to ω

JUDGE introduces ω as a parameter that controls
the trade-off between accuracy and fairness. The se-
lection of demonstrations is influenced by ω, where
lower values prioritize fairness while higher val-
ues emphasize accuracy. We evaluate JUDGE at
ω ∈ {0.4, 0.5, 0.6, 0.7, 0.8}. We choose this set
because we find in our experiments that ω values
that prioritize fairness slightly more than accuracy
work well, improving fairness while also retaining
predictive performance.

B.8 FCG: Sensitivity to α

FCG uses α in the EvolScore function to bal-
ance accuracy and fairness. The original pa-
per sets α = 0.5, and we analyze values in
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Figure 10: Comparing metrics against the size of the jury set for Adult. Higher sizes show diminishing returns.

Figure 11: Comparison of diversity vs. other sampling
techniques for the jury set on the Adult dataset.

{0.3, 0.4, 0.5, 0.6, 0.7} to assess how the fairness-
accuracy trade-off shifts.

B.9 FairICL: Sensitivity to D̃

FairICL introduces D̃, which represents the frac-
tion of augmented data used for fairness-aware
training. The original study evaluates Fair-
ICL at D̃ ∈ {0%, 25%, 50%, 100%}, highlight-
ing its influence on fairness. To provide a
more fine-grained analysis, we add an additional
evaluation at D̃ = 75%, resulting in the set
{0%, 25%, 50%, 75%, 100%}.

B.10 Results: Accuracy vs. Fairness
Trade-Off

Figure 12 presents a scatter plot where each
method’s trade-off variations are shown along two
axes: Accuracy (Y-axis) and ∆ DP (X-axis). Each
point represents a model trained with a different
trade-off parameter. Points closer to the top-left are
preferred (high accuracy, low ∆DP)

We observe clear trade-offs for JUDGE and
FCG, where higher accuracy comes at the cost of
fairness and vice versa, guided by the weighting
provided by ω and α. On FairICL, we find the
relationship to be less strong, with most points
clustered around a similar area.

Figure 12: Scatter plot of Accuracy vs. Demographic
Parity (∆DP) for different trade-off parameter settings
in JUDGE, FCG, and FairICL.

B.11 Data Splits and Hyperparameters
For all datasets except Adult, we employ a consis-
tent data splitting strategy:

• 20% for test set (Dtest)

• 70% for training set (Dtrain)

• 10% for validation set (Dvalidation)

For the Adult dataset, which provides a prede-
fined train-test split, we maintain the original test
set and split the training set into Dtrain (90%) and
Dvalidation (10%).

It is important to note that this validation set is
distinct from the jury set (J ) used in our method.
While the jury set is constructed from the train-
ing data to guide demonstration selection and is
typically very small, the validation set is used ex-
clusively for hyperparameter tuning.

To tune hyperparameters, we conduct a system-
atic grid search over two key hyperparameters:

1. The fairness-accuracy trade-off parameter ω
in the range [0.3, 0.9] with steps of 0.05

2. The number of examples per group-label com-
bination m in the jury set, testing values:
{15, 20, 25, 35, 50}
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Table 6: Results for Adult with 10 demonstrations. Each
cell shows MeanS.D.

Method Acc. ↑ ∆DP ↓ ∆EO ↓ MI ↓

L
L

A
M

A
-3

-8
B

Random 0.7790.004 0.1330.003 0.1180.004 0.0170.001
Balanced 0.7510.013 0.2210.019 0.1370.022 0.0250.002
Cfact. 0.7760.018 0.1440.014 0.1420.015 0.0150.003
Instruct 0.7810.022 0.2520.017 0.2890.019 0.0460.004
FairICL 0.7770.015 0.1460.012 0.1640.135 0.0140.003
FCG 0.7880.017 0.1890.014 0.1630.017 0.0230.003
FADS 0.7720.013 0.1610.011 0.0980.005 0.0200.003
JUDGE 0.7940.011 0.0820.009 0.0920.008 0.0080.001

M
IS

T
R

A
L

-7
B

Random 0.7550.014 0.2090.012 0.2620.009 0.0230.004
Balanced 0.5850.009 0.2200.011 0.1700.008 0.0230.003
Cfact. 0.7310.014 0.1410.016 0.0900.016 0.0100.003
Instruct 0.7420.014 0.1820.013 0.2120.018 0.0120.005
FairICL 0.7630.011 0.1430.008 0.1550.006 0.0130.002
FCG 0.7580.022 0.1220.013 0.0830.016 0.0120.003
FADS 0.7750.012 0.1920.009 0.2440.013 0.0220.003
JUDGE 0.7710.010 0.0100.012 0.0580.010 0.0100.001

G
E

M
M

A
-2

-9
B

Random 0.7740.009 0.3650.005 0.4840.012 0.0900.006
Balanced 0.7210.015 0.3890.022 0.4550.029 0.1160.015
Cfact. 0.7620.020 0.2760.017 0.3830.019 0.0720.013
Instruct 0.7640.013 0.4080.013 0.5230.011 0.1070.009
FairICL 0.7630.013 0.3010.021 0.3230.024 0.0720.011
FCG 0.7780.011 0.1760.013 0.1790.014 0.0530.003
FADS 0.7660.010 0.3780.009 0.4140.016 0.0870.007
JUDGE 0.7920.010 0.1730.015 0.1970.019 0.0470.005

Q
W

E
N

-2
.5

-3
2B

Random 0.7410.016 0.2100.015 0.1290.004 0.0210.003
Balanced 0.7280.017 0.2230.019 0.1520.013 0.0260.004
Cfact. 0.7430.011 0.2190.010 0.1350.009 0.0250.002
Instruct 0.7150.009 0.2360.010 0.1570.011 0.0250.002
FairICL 0.7560.012 0.2040.010 0.1510.010 0.0250.003
FCG 0.7780.011 0.1280.010 0.0990.007 0.0110.003
FADS 0.7060.010 0.2060.007 0.1320.005 0.0220.004
JUDGE 0.7750.009 0.101.008 0.078.004 0.0070.001

In Section 5.7, we demonstrated that jury sizes
beyond m = 50 yield diminishing returns, while
very small values (m ∈ {1, 2, 3, 5, 10}) show sub-
stantial performance gaps in fairness and accuracy.
Based on these observations, we focus our parame-
ter search on the more practical intermediate range.
For jury set size selection, we do as follows: Start-
ing from smaller values, we incrementally evaluate
larger jury sizes until we observe diminishing re-
turns in performance on the validation set. Specifi-
cally, if the relative improvement in both accuracy
and fairness metrics between two consecutive jury
sizes falls below 1%, we stop increasing the size.
This process led to the selection of m = 25 for
Adult and COMPAS datasets, and m = 50 for Law
School and ACS datasets. The larger jury sizes for
Law School and ACS datasets were chosen because
these datasets exhibited continued performance im-
provements with larger jury sizes.

For the fairness-accuracy trade-off parameter ω,
we select the value that achieves the lowest ∆DP

Table 7: Results for COMPAS with 10 demonstrations.
Each cell shows MeanS.D.

Method Acc. ↑ ∆DP ↓ ∆EO ↓ MI ↓

L
L

A
M

A
-3

-8
B

Random 0.6030.013 0.2240.010 0.2210.009 0.0250.002
Balanced 0.6050.007 0.2570.006 0.2810.006 0.0340.002
Cfact. 0.5770.007 0.2020.005 0.1940.005 0.0190.001
Instruct 0.5560.009 0.1300.007 0.1560.007 0.0160.001
FairICL 0.6090.008 0.2090.007 0.2130.008 0.0250.002
FCG 0.6210.006 0.2270.004 0.2370.004 0.0240.002
FADS 0.5840.006 0.1330.008 0.1280.004 0.0090.001
JUDGE 0.6180.011 0.1020.009 0.1140.009 0.0060.001

M
IS

T
R

A
L

-7
B

Random 0.5270.011 0.1300.005 0.1570.006 0.0190.001
Balanced 0.5170.006 0.0890.005 0.1150.005 0.0170.002
Cfact. 0.4950.009 0.1270.007 0.1490.007 0.0200.004
Instruct 0.5030.011 0.1250.008 0.1410.009 0.0170.002
FairICL 0.5140.006 0.1100.003 0.1270.004 0.0180.006
FCG 0.5470.011 0.1530.007 0.1290.008 0.0150.003
FADS 0.5360.014 0.1290.008 0.1370.017 0.0180.003
JUDGE 0.5380.008 0.0560.004 0.0550.004 0.0070.001

G
E

M
M

A
-2

-9
B

Random 0.6100.006 0.3110.005 0.2980.006 0.0480.002
Balanced 0.6240.007 0.3240.005 0.3030.005 0.0540.005
Cfact. 0.5970.009 0.2550.008 0.2480.008 0.0390.003
Instruct 0.6080.012 0.2920.013 0.3010.011 0.0460.005
FairICL 0.6310.009 0.2720.009 0.2810.007 0.0440.005
FCG 0.6450.006 0.1190.004 0.1280.006 0.0090.002
FADS 0.6280.009 0.2890.007 0.2770.014 0.0410.003
JUDGE 0.6480.006 0.0590.003 0.0350.000 0.0020.000

Q
W

E
N

-2
.5

-3
2B

Random 0.6410.006 0.2310.004 0.2100.004 0.0240.002
Balanced 0.6580.009 0.2290.011 0.2380.010 0.0290.005
Cfact. 0.6530.009 0.1970.005 0.1870.007 0.0200.003
Instruct 0.6440.010 0.2130.007 0.1880.007 0.0230.005
FairICL 0.6420.009 0.2020.006 0.2110.007 0.0230.002
FCG 0.6310.008 0.1670.004 0.1910.005 0.0210.003
FADS 0.6590.012 0.1990.011 0.1700.014 0.0200.003
JUDGE 0.6520.006 0.1110.004 0.1290.003 0.0110.002

onDvalidation while maintaining accuracy within 3%
of the best performing configuration.

For the reduced candidate set size |Dreduced|,
we empirically evaluated different percentages of
Dcandidates from 1% to 5% in steps of 1%. When
increasing the size from 1% to 3%, we observed
average improvements of 2-3% in both accuracy
and fairness metrics across all datasets. However,
further increases beyond 3% showed minimal gains
(< 0.5% improvement) on ACS, Adult and Law
School, while significantly increasing computa-
tional overhead. Therefore, we set |Dreduced| to 3%
of |Dcandidates| for all experiments on ACS, Adult
and Law School, while we set |Dreduced| to 7% of
|Dcandidates| for COMPAS, which is a significantly
smaller dataset and therefore saw further gains with
a larger ratio of the dataset.

All hyperparameter tuning is performed using
only the validation set, with the test set remain-
ing completely held out until final evaluation. To
summarize, in our extensive experiments, we find
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Table 8: Results for ACS with 10 demonstrations. Each
cell shows MeanS.D.

Method Acc. ↑ ∆DP ↓ ∆EO ↓ MI ↓

L
L

A
M

A
-3

-8
B

Random 0.6990.011 0.1080.007 0.0910.008 0.0060.001
Balanced 0.6950.010 0.0950.007 0.0880.006 0.0040.000
Cfact. 0.6820.011 0.0900.004 0.0910.003 0.0040.001
Instruct 0.6930.013 0.1030.008 0.0990.009 0.0080.001
FairICL 0.6920.009 0.0890.004 0.0980.005 0.0050.002
FCG 0.7550.007 0.0590.003 0.0560.008 0.0020.006
FADS 0.7230.010 0.1210.006 0.1140.008 0.0070.001
JUDGE 0.7660.009 0.0240.004 0.0590.006 0.0010.000

M
IS

T
R

A
L

-7
B

Random 0.6480.08 0.0850.004 0.0420.008 0.0040.001
Balanced 0.5710.011 0.0610.010 0.0340.004 0.0030.000
Cfact. 0.6120.07 0.0770.003 0.0580.004 0.0040.001
Instruct 0.6070.011 0.0920.009 0.0990.007 0.0060.001
FairICL 0.6220.008 0.0810.005 0.0570.004 0.0050.001
FCG 0.6500.006 0.0480.004 0.0670.003 0.0020.000
FADS 0.6360.014 0.0800.006 0.0260.004 0.0040.000
JUDGE 0.6550.009 0.0290.004 0.0370.002 0.0010.000

G
E

M
M

A
-2

-9
B

Random 0.7120.012 0.2180.008 0.2620.009 0.0290.003
Balanced 0.7130.012 0.2010.008 0.2230.006 0.0270.002
Cfact. 0.7190.008 0.2060.007 0.2380.008 0.0250.002
Instruct 0.7070.015 0.2310.009 0.2810.011 0.0380.004
FairICL 0.7180.021 0.2080.008 0.2240.007 0.0230.004
FCG 0.7150.009 0.1250.006 0.1290.008 0.0160.002
FADS 0.7250.009 0.2170.011 0.2640.009 0.0320.004
JUDGE 0.7220.011 0.1130.004 0.1180.005 0.0130.001

Q
W

E
N

-2
.5

-3
2B

Random 0.7360.013 0.1110.009 0.0460.009 0.0060.001
Balanced 0.7300.008 0.0960.008 0.0190.003 0.0030.000
Cfact. 0.7370.009 0.0910.004 0.0480.002 0.0050.001
Instruct 0.7410.011 0.1810.006 0.1050.007 0.0160.002
FairICL 0.7330.012 0.0890.006 0.0940.009 0.0040.001
FCG 0.7310.007 0.0370.005 0.0440.005 0.0020.000
FADS 0.7510.004 0.1220.004 0.0450.003 0.0060.000
JUDGE 0.7400.011 0.0280.004 0.0390.006 0.0010.000

that setting |Dreduced| to 3% of |Dcandidates| provides
consistently good results across ACS, Adult and
Law School, and 7% for COMPAS. Further, while
m = 50 examples per group-label combination
works reliably across all settings, m = 25 is of-
ten sufficient and more computationally efficient.
Values of ω above 0.5, particularly around 0.7-0.8,
tend to provide better fairness-accuracy trade-offs.
These settings can serve as starting points for prac-
titioners but we recommend tuning for the specific
use case.

B.12 Models and Software Used

Experiments were conducted using PyTorch (2.4.1),
and all models we use are publicly available on
HuggingFace. For SentenceBERT, we use the Sen-
tenceTransformers package, and we specifically
use the "all-mpnet-base-v2" variant, which has the
best reported performance. For the LLMs, we use
the base variants of all models with 8-bit quanti-
zation. We downloaded them from HuggingFace

Table 9: Results for Law School with 10 demonstrations.
Each cell shows MeanS.D.

Method Acc. ↑ ∆DP ↓ ∆EO ↓ MI ↓

L
L

A
M

A
-3

-8
B

Random 0.9130.021 0.1930.013 0.3530.015 0.0360.005
Balanced 0.6880.020 0.3880.014 0.3570.016 0.0440.005
Cfact. 0.9120.021 0.2200.017 0.4750.021 0.0390.004
Instruct 0.9050.022 0.1770.017 0.3210.020 0.0170.002
FairICL 0.9030.013 0.3310.009 0.3280.007 0.0300.004
FCG 0.9320.011 0.0760.006 0.2390.011 0.0190.003
FADS 0.8890.005 0.2410.003 0.4530.003 0.0350.002
JUDGE 0.9220.0122 0.0690.005 0.1660.006 0.0120.001

M
IS

T
R

A
L

-7
B

Random 0.9240.015 0.1740.009 0.2870.011 0.0250.002
Balanced 0.8990.009 0.2240.008 0.4380.006 0.0340.003
Cfact. 0.9190.018 0.1940.008 0.4020.013 0.0270.003
Instruct 0.9330.012 0.0310.006 0.0390.003 0.0010.000
FairICL 0.9270.017 0.1790.004 0.2680.009 0.0240.002
FCG 0.9410.022 0.0480.004 0.0810.005 0.0120.006
FADS 0.9340.007 0.1080.006 0.2040.006 0.0210.003
JUDGE 0.9490.019 0.0260.004 0.0610.009 0.0040.000

G
E

M
M

A
-2

-9
B

Random 0.8760.006 0.3310.005 0.4390.003 0.0560.003
Balanced 0.7450.012 0.4160.009 0.3760.006 0.0530.004
Cfact. 0.7910.009 0.3710.005 0.3400.006 0.0470.004
Instruct 0.8810.005 0.3620.004 0.5340.007 0.0530.001
FairICL 0.8620.013 0.3140.008 0.3380.007 0.0430.002
FCG 0.8580.013 0.2290.008 0.2540.009 0.0310.002
FADS 0.8810.006 0.2900.006 0.5790.011 0.0540.004
JUDGE 0.8620.010 0.2120.004 0.1990.005 0.0210.001

Q
W

E
N

-2
.5

-3
2B

Random 0.8820.005 0.2950.007 0.5130.007 0.0480.003
Balanced 0.8420.008 0.3160.005 0.5540.012 0.0570.005
Cfact. 0.8450.006 0.3940.005 0.5410.004 0.0640.002
Instruct 0.8970.014 0.3510.007 0.6280.008 0.0790.003
FairICL 0.8780.015 0.2810.009 0.5240.005 0.0530.003
FCG 0.8790.017 0.2520.013 0.3180.016 0.0360.006
FADS 0.8960.022 0.2300.011 0.5200.015 0.0450.009
JUDGE 0.8830.021 0.2030.012 0.2880.017 0.0280.001

via the Transformers library, and we note that some
of them are gated models that require access to-
kens. For inference on these models, we turn off
sampling in all experiments, to get the desired de-
terministic behavior for In-Context Learning.

B.13 Computing Infrastructure

The experiments in this paper were conducted
across three different computing environments.
System A consisted of an Intel(R) Xeon(R) CPU
E5-2680 v4 @ 2.40GHz processor with 512GB
RAM and 8 NVIDIA V100 GPUs. System B uti-
lized an AMD Ryzen Threadripper PRO 5955WX
(16 cores) with 256GB RAM and dual NVIDIA
RTX 3090 GPUs. System C provided limited
access to a high-performance computing cluster
equipped with dual 64-core AMD EPYC 7763 pro-
cessors, 256GB DDR4 memory, and 4 NVIDIA
A100 GPUs. While we did not formally track
GPU hours, we estimate that the total computa-
tional effort across all experiments, including base-
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line implementations, LLM training and inference,
methodology development, and ablation studies
exceeded well over a thousand GPU hours. This
estimate encompasses the entire research and devel-
opment cycle, including exploratory experiments,
hyperparameter optimization, model training itera-
tions, and evaluation runs.

C Complexity Comparison Across
Methods

Here, we provide a detailed comparison of the com-
putational complexity of various demonstration se-
lection methods in terms of LLM calls.

While all methods involve inference over the
test set which uses LLM calls, meaning they in-
herently contain an O(|Dtest|) term, this is dom-
inated by larger computational factors in all but
the Naïve baselines, and is therefore omitted from
the complexity expressions for clarity for the other
baselines.

C.1 Naïve Baselines (Counterfactual, Instruct,
Random, etc.)

These methods do not optimize demonstrations
based on LLM feedback, meaning the only LLM
calls occur during test-time inference:

O(|Dtest|)

C.2 FADS (Fairness-Aware Demonstration
Selection)

The primary computational cost (in terms of LLM
calls) in FADS arises from the model bias miti-
gation step, where LLM queries are made for all
samples within a subset of clusters retained after
filtering for data-bias.

FADS first partitions the training data Dtrain into
K clusters using K-means. After clustering, only
Nd clusters are retained for fairness-aware demon-
stration selection. Since each cluster contains ap-
proximately |Dtrain|/K samples, the total number
of LLM queries in this step is:

O(Nd · |Dtrain|/K)

where:

• Nd is the number of clusters retained after
filtering.

• |Dtrain| is the total size of the training dataset.

• K is the number of clusters initially created.

After this filtering step, demonstrations are se-
lected dynamically for each test instance based
on semantic similarity, but this retrieval step is
lightweight and does not require LLM calls. Thus,
the final complexity of FADS in terms of LLM
calls is:

O(Nd · |Dtrain|/K)

C.3 FCG (Fairness via Clustering-Genetic
Algorithm)

FCG iteratively refines demonstration selection us-
ing a genetic algorithm, making multiple LLM
calls per validation sample over I iterations:

O(I · |Ddev| · S)

where S is the number of subgroups as defined in
the paper, and Ddev is the validation dataset used
to assess demonstration fairness.

C.4 FairICL (Fair In-Context Learning via
Latent Concept Variables)

FairICL requires additional LLM calls for latent
concept learning, followed by likelihood-based
demonstration selection:

O

(
T · |Dtrain|

B

)
+O(|Dtrain|)

where T is the number of training epochs, B is
batch size, and Dtrain is the training dataset used to
learn the latent concept variable.

C.5 Comparison Summary
Table 10 summarizes the computational complex-
ity of various demonstration selection methods in
terms of LLM calls, which dominate the overall
compute cost.

Simpler baselines, such as Balanced, Ran-
dom, Counterfactual, and Instruct require only
O(|Dtest|) LLM calls, making them the most com-
putationally efficient but very often lead to sub-
optimal in fairness and accuracy as they do not
optimize the demonstration specifically based on
the LLM’s feedback.

FADS significantly reduces LLM calls by lever-
aging clustering and filtering. Its complexity,
O(Nd · |Dtrain|/K), is linear in the training set size
but avoids expensive iterative selection.

FairICL introduces an additional concept-
learning step that requires learning a latent fair-
ness representation. This step adds overhead,
making its complexity O(T · |Dtrain|

B ) +O(|Dtrain|),
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Method LLM Calls Complexity
Naïve Methods (Random, Counterfactual, Instruct, etc.) O(|Dtest|)
FADS (Fairness-Aware Demonstration Selection) O(Nd · |Dtrain|/K)

FairICL (Latent Concept Learning) O(T · |Dtrain|
B

) +O(|Dtrain|)
FCG (Clustering-Genetic Algorithm) O(I · |Ddev| · S)
Exhaustive Search (Global Optimal Set) O(NK)

JUDGE (Ours) O(k · |Dreduced| · |J |)
Table 10: Comparison of LLM Calls Complexity Across Different Methods

where T and B are training epochs and batch size,
respectively. This method offers improved fairness
guarantees at the cost of increased compute.

FCG employs a genetic algorithm that itera-
tively refines demonstration selection using valida-
tion data. This results in O(I · |Ddev| · S) complex-
ity, where I is the number of iterations and S is
the number of demographic subgroups considered.
The actual computational cost of FCG depends on
the choice of these parameters. When |Ddev| is
large or I is high, FCG can be computationally
expensive, whereas for smaller values, it may be
comparable to or even more efficient than methods
that process larger training subsets.

Exhaustive search, which evaluates all possible
subsets of K-shot demonstrations, is prohibitively
expensive with complexity O(NK), making it in-
feasible for large N and K, as described in Section
4.

JUDGE constructs a single optimized demon-
stration set. Its complexity, O(k · |Dreduced| · |J |),
scales with the reduced candidate set size |Dreduced|,
the number of fairness evaluations |J |, as de-
scribed in Section 4.
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