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Abstract

Multimodal Large Language Models
(MLLMs), are recent advancement of
Vision-Language Models (VLMs) that have
driven major advances in video understanding.
However, their vulnerability to adversarial
tampering and manipulations remains under-
explored. To address this gap, we introduce
MVTamperBench, a benchmark that sys-
tematically evaluates MLLM robustness
against five prevalent tampering techniques:
rotation, masking, substitution, repetition,
and dropping; based on real-world visual
tampering scenarios such as surveillance
interference, social media content edits, and
misinformation injection. MVTamperBench
comprises 3.4K original videos, expanded into
over 17K tampered clips covering 19 distinct
video manipulation tasks. This benchmark
challenges models to detect manipulations in
spatial and temporal coherence. We evaluate
45 recent MLLMs from 15+ model families.
We reveal substantial variability in resilience
across tampering types and show that larger
parameter counts do not necessarily guarantee
robustness. MVTamperBench sets a new
benchmark for developing tamper-resilient
MLLM in safety-critical applications, includ-
ing detecting clickbait, preventing harmful
content distribution, and enforcing policies on
media platforms. We release all code, data,
and benchmark to foster open research in
trustworthy video understanding.

1 Introduction

Multimodal Large Language Models (MLLMs)
have catalyzed significant progress in video un-
derstanding, enabling a wide array of applications
across domains such as surveillance, healthcare,
and autonomous systems. However, their grow-
ing integration into high-traffic platforms (e.g., In-
stagram, Facebook, TikTok) has exposed critical
vulnerabilities. Specifically, tampered videos are
increasingly exploited to bypass platform policies,

disseminate harmful content, and promote click-
bait, posing serious challenges for content modera-
tion and policy enforcement (Kingra et al., 2023;
Times of India, 2024).

These threats underscore the urgent need to im-
prove the robustness of MLLMs against real-world
manipulations. Although video tampering can in-
volve audio modifications, synthetic speech over-
lays, or deepfake generation, our benchmark fo-
cuses exclusively on visual-only manipulations.
This choice is driven by the current limitations
of existing models, most of which currently lack
comprehensive audiovisual processing capabilities.

Unlike adversarial robustness in static images,
an area that has been extensively studied, video
tampering introduces unique challenges that arise
from the interplay of spatial and temporal dynam-
ics. Common manipulation techniques such as
frame dropping, masking, repetition, substitution,
and rotation disrupt this coherence, frequently re-
sulting in catastrophic model failures. These meth-
ods mirror real-world adversarial tactics: substi-
tution injects objectionable material (e.g., nudity,
violence) to circumvent detection; dropping elim-
inates key surveillance evidence; repetition loops
footage to obscure illicit activity; masking oc-
cludes critical regions; and rotation induces spatial
distortions commonly seen in edited or re-uploaded
content.

Existing adversarial and traditional approaches,
including black-box (Jiang et al., 2019) and cross-
modal (Wei et al., 2021) attacks, primarily address
isolated scenarios rather than systematically eval-
uating diverse tampering types. Furthermore, ex-
isting multimodal benchmarks (Pattnayak et al.,
2024; Agarwal, 2021)—such as MMBench-Video
(Fang et al., 2024), BLINK (Fu et al., 2025), and
Video-MME (Fu et al., 2024)—focus on multi-
modal comprehension and temporal reasoning but
overlook adversarial robustness. For example,
MMBench-Video evaluates cross-modal alignment
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without adversarial testing; BLINK targets long-
form temporal reasoning without addressing tam-
pering impacts; and Video-MME, while effective
for vision-language alignment, omits tampering-
specific tasks. This leaves a critical gap in systemat-
ically assessing how MLLMs withstand real-world
manipulations.

To bridge this gap, we introduce MVTam-
perBench, a benchmark specifically designed to
evaluate MLLM robustness against five prevalent
tampering techniques. Built from 3.4K original
videos—expanded into over 17K tampered clips
spanning 19 video tasks—MVTamperBench chal-
lenges models to detect manipulations by disrupt-
ing temporal and spatial coherence in a video. By
focusing on tampering resilience, we believe that
MVTamperBench provides a critical tool for im-
proving MLLM robustness, and eventually, it en-
ables the development of tamper-resilient mod-
els applicable to real-world challenges such as
clickbait detection, content moderation, and policy
enforcement, advancing adversarial robustness in
video understanding for high-stakes domains.

Our main contributions are as follows:

• We introduce MVTamperBench, a bench-
mark that systematically evaluates MLLMs
on five major video manipulations, focusing
on spatial and temporal coherence to stimu-
late real-world scenarios.

• We propose a unified evaluation methodology
that frames tampering detection as a multiple-
choice task, enabling straightforward, inter-
pretable and consistent performance compar-
isons.

• Through experiments on 45 MLLMs across
15+ families, we identify critical vulnerabil-
ities across MLLM families. across MLLM
families, without any correlation between
model size and performance.

• Our released code enables researchers to in-
tegrate additional datasets and adapt or add
new tampering, facilitating domain-specific
extensions, and supports reproducibility.

2 Related Work

The development of benchmarks for MLLMs has
significantly advanced the evaluation of image and
video understanding tasks. They have covered

spatial reasoning, temporal comprehension, ob-
ject detection, common sense inference, and so
on. However, the robustness of MLLMs to adver-
sarial manipulations, particularly video tampering,
remains underexplored. This section reviews ex-
isting benchmarks, which can be categorized into
image-based and video-based evaluations, and ana-
lyzes their contributions and shared limitations.

2.1 Image-based Understanding
Benchmarks like BLINK (Fu et al., 2025) and
MuirBench (Wang et al., 2024a) focus on evaluat-
ing static visual reasoning. BLINK tests founda-
tional tasks such as depth estimation, forensic de-
tection, and visual correspondence, which cover a
diverse set of challenges for spatial reasoning. Sim-
ilarly, MuirBench extends this evaluation to multi-
image tasks, including action recognition and ge-
ographic reasoning, by synthesizing information
from diverse sources. While these benchmarks
have advanced static image understanding, their
reliance on single or multiple still images excludes
temporal dynamics and limits their applicability to
scenarios involving sequential manipulations, such
as those found in video content.

2.2 Video-based Understanding
Video-based benchmarks have expanded the scope
of evaluation by incorporating temporal and mul-
timodal reasoning. MVBench (Li et al., 2024e),
MMBench-Video (Fang et al., 2024), and Video-
MME (Fu et al., 2024) focus on tasks such as
event detection, episodic reasoning, and contex-
tual understanding. These benchmarks challenge
models with diverse tasks spanning object interac-
tions, long-duration video analysis, and domain-
specific reasoning. Similarly, LongVU (Shen
et al., 2024) introduces spatio-temporal compres-
sion techniques to enhance efficiency, while Mo-
tionEpic (Fei et al., 2024a) integrates Spatial-
Temporal Scene Graphs (STSG) for fine-grained
cognitive tasks. However, while these benchmarks
assess temporal coherence and reasoning, they do
not systematically address adversarial robustness,
particularly in tampering scenarios.

Other benchmarks, such as Wolf (Li et al.,
2024a) and Sharingan (Chen et al., 2024a), tar-
get specialized video understanding tasks. Wolf
focuses on captioning using a mixture-of-experts
strategy, while Sharingan extracts action sequences
from desktop recordings using frame-differential
approaches. Although these benchmarks achieve
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Figure 1: Illustration of the five video frame tampering techniques. Each row shows a specific tamper type applied
to a video snippet, describing the respective impact on temporal/spatial coherence.

high accuracy in their domains, they are limited
to specific tasks and lack general mechanisms to
evaluate the resilience to tampering.

In summary, despite their contributions to ad-
vancing MLLM evaluation, existing benchmarks
largely focus on performance under ideal condi-
tions and neglect robustness to tampering or ad-
versarial effects. Techniques such as frame sub-
stitution, masking, repetition, dropping, and rota-
tion disrupt temporal coherence and pose unique
challenges for multimodal models. The absence
of systematic evaluations of these tampering tech-
niques highlights a critical gap in ensuring model
reliability for real-world applications like forensic
analysis, media verification, and misinformation
detection.

3 MVTamperBench

We introduce MVTamperBench, a comprehen-
sive benchmark designed to systematically evalu-
ate the robustness of MLLMs against video tam-
pering techniques. Through our MVTamperBench
which introduces diverse manipulations, we aim
to broaden the evaluation landscape, enabling a
deeper understanding of model strengths and vul-
nerabilities under adversarial scenarios. Table 3

compares MVTamperBench with existing bench-
marks, highlighting its focus areas, strengths, and
unique contributions.

In the following subsections, we detail its con-
struction, design choices, and key features. More
details can be found in our code1, data2 and bench-
mark 3 repositories.

3.1 Benchmark Construction

To evaluate MLLM robustness under adversarial
conditions, we apply distinct tampering methods
as shown in Figure 1 —Dropping, Masking, Sub-
stitution, Repetition, and Rotation—to the 3,487
original MVBench (Li et al., 2024e) videos (ex-
cluding NTU dataset due to licensing), resulting in
a total of 17,435 tampered clips. These manipula-
tions target both spatial and temporal coherence,
thereby simulating common real-world tampering
scenarios such as deliberate frame editing or slic-
ing from unrelated content.

1https://amitbcp.github.io/MVTamperBench/
2https://hf.co/datasets/Srikant86/MVTamperBench
3https://github.com/open-compass/VLMEvalKit
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3.2 Tampering Techniques
Dropping: Removes a 1-second segment for creat-
ing temporal discontinuity.
Masking: Overlays a black rectangle on a 1-
second segment. It aims to simulate visual data
loss.
Rotation: Rotates a 1-second segment by 180 de-
grees for introducing spatial distortion.
Substitution: Replaces a 1-second segment with
a pre-selected clip from another video, in order to
disrupt temporal and contextual flow.
Repetition: Repeats a 1-second segment, introduc-
ing temporal redundancy.
The aforementioned effects are applied uniformly
across all videos to ensure consistent and compara-
ble evaluation.

3.3 Design & Implementation
Tampering Duration (1 Second). We fix tam-
pering to a 1-second segment to align with re-
ports of minimal but impactful real-world tamper-
ing, e.g., short edits on social networks or subtle
modifications on surveillance feeds (Alicia, 2024).
Our preliminary experiments revealed that using
less than 1 second could be overlooked by certain
model sampling mechanisms, whereas longer tam-
pering (>3s) often resembled normal scene transi-
tions, reducing adversarial impact.

Tampering Location (Middle). All manipula-
tions occur at the video’s midpoint to disrupt cen-
tral content. Our pilot tests showed that tampering
near the start or end risked mimicking scene cuts
or information loss, which makes detection less
indicative of genuine adversarial robustness.

Substitution Source. For Substitution, the 1-
second clip is randomly chosen from a consistent
pool of different videos within MVBench. This
ensures uniform difficulty across all samples, thus
preventing confounds from domain shifts or overly
simplistic substitutes.

Modular & Scalable Framework. Each tech-
nique is encapsulated in a reusable class for facili-
tating custom parameterization (e.g., tampering du-
ration, location, intensity). Our open-source code
will integrate seamlessly with VLMEvalKit (Duan
et al., 2024), thereby promoting reproducible ex-
periments and easy extension to other datasets or
tasks.

To inform our final design decisions, we con-
ducted a series of exploratory experiments examin-

ing the effects of tampering position and duration.
Results from these alternative design configura-
tions are detailed in Appendix A.2.1.

3.4 Dataset Scope and Statistics
All 3,487 MVBench videos undergo each of the
five tampering types, producing 17,435 tampered
clips. The five manipulations are uniformly applied
to ensure comparability across different MLLM
architectures and training regimes. Figure 2 illus-
trates the distribution of their durations. We can
observed that diverse scenarios from short (3-5s)
to extended (>20s) sequences are included.

Figure 2: Distribution of video durations. Our dataset
spans a broad range of durations, which can reflect
varied real-world conditions.

3.5 Summary
By enforcing consistent parameters (1s duration,
midpoint placement) and systematically applying
five tampering methods, MVTamperBench offers
a controlled yet flexible platform for evaluating
tampering resilience. Our design can be easily
extended with additional manipulations (e.g., noise
injection, partial masking, positions), deepfakes
or integrated into domain-specific contexts like
surveillance feeds analysis or clickbait detection.
We provide additional details on MVTamperBench,
including video sources and associated tasks, in
Appendix A.1.

4 Experiments

This section outlines the experimental setup, re-
sults, and analysis of 45 models evaluated on our
proposed benchmark. Our results highlight their
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Figure 3: F1 scores across models and tampering types. High-performing models are robust across all types.

strengths, weaknesses, and actionable insights. We
provide further overview of the evaluated MLLMs
in Appendix A.3.

4.1 Experimental Setups
Evaluation Protocol Each model is tasked with
identifying whether a video has been tampered
with or not. For every video, the model is presented
with the following structured prompt:

Does this video exhibit any signs of
tampering, such as corruption, black-
outs, rotated frames, repeated frames, or
swapped frames?
Options: A. Yes B. No

The dataset comprises both tampered and non-
tampered videos. For each tampered video, the
corresponding non-tampered video is included to
ensure a balanced distribution. Models must select
one of the two options (Yes or No), and their pre-
dictions are compared against ground truth labels
to determine correctness. This task is repeated for
all tampering types.

We also compared structured, general, and chain-
of-thought prompts (Appendix A.2.2), finding that
general and CoT variants led to higher false posi-
tives due to limited temporal reasoning in current
MLLMs.

Metrics The primary evaluation metric is the
F1 Score, chosen for its ability to balance pre-
cision and recall, particularly in scenarios where
misclassifications (false positives and false neg-
atives) can significantly impact robustness eval-
uation. We believe that this metric is the most
suitable for our setup, where models must not only
detect manipulations but also avoid false positives
on non-tampered videos. To capture performance
across all tampering types, we compute individual
F1 scores for each tampering type. In addition, we
also measure F1 (overall) score as the macro av-
erage of these individual F1 scores. We thus high-
light per-tamper-type strengths and weaknesses as
well as overall model performance.

18808



Figure 4: Distribution of F1 (overall) scores across
models.

Figure 5: Scatter plot showing no correlation between
model size and overall F1 (Pearson r=0.05).

4.2 Results and Analysis

We evaluate the performance of 45 MLLMs using
F1 (overall) scores and individual F1 scores across
five tampering types. The distribution of F1 (over-
all) scores (Figure 4) reveals significant variability
in the robustness of the model, with several models
struggling to detect tampering (F1 < 0.2), while a
few high-performing models achieve F1 > 0.8.

We did not observe a correlation between model
size and tampering detection performance (Pearson
correlation = 0.05, Figure 5). This highlights that
architectural differences and training techniques,
rather than parameter count, contribute more sig-
nificantly to robustness against tampering.

In addition, Figure 3 showcases model-specific
adaptability across different tampering types. Mod-
els with F1 (overall) > 0.8 are consistently robust
across all tampering types, while those with F1 <
0.2 perform slightly better on Masking, which re-
lies more on spatial reasoning. Models in between
generally struggle with temporal disruptions like
Dropping and Substitution, reflecting challenges in
temporal coherence.

4.2.1 Analysis based on Performance
Figure 6 categorizes MLLMs into low-, moderate-
, and high- performing groups based on their F1-
score distribution. We define the boundaries using
the 0.25 quantile (F1 = 0.071) and 0.75 quantile
(F1 = 0.846). We round-off the quantile thresholds
to the nearest integers to identify low-performing
models (F1 (overall) < 0.01) and high-performing
models (F1 (overall) > 0.8).

Figure 7 illustrates the average F1 scores for
each category. We observe stark differences be-
tween groups: High-performing models maintain
consistent performance across all tampering types,
whereas low-performing models show significant
weaknesses, particularly for tampering effects that
disrupt temporal coherence (Dropping, Substitu-
tion). Moderate-performing models excel slightly
in Masking (Figure 8).

Figure 6: Distribution of Number of Models in low,
moderate, and high-performing categories based on F1
(overall).

Figure 7: Average F1 (overall) scores across low, mod-
erate, and high-performing model categories.

We analyze the variance in model performance
between tampering types in Figure 9. High-
performing models exhibit negligible variance, in-
dicating consistent robustness across all tampering
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Figure 8: F1 scores for tampering types across model
categories. Low & Moderate-performing models per-
form slightly better on Masking, while high-performing
models show consistent robustness.

Figure 9: Variance in F1 scores across tampering types
for each model category.

effects. This stability suggests that these models
are well-equipped to handle both spatial & tempo-
ral disruptions introduced by tampering.

Low-performing models display minimal vari-
ance across most tampering types, with the excep-
tion of Masking, which shows a slightly higher
variance. This highlights a specific weakness in
processing visual obfuscations, likely due to their
reliance on static features rather than robust tempo-
ral reasoning. The minimal variance across other
tampering types suggests that these models fail
uniformly, regardless of the type of manipulation.

Moderate-performing models demonstrate the
highest variance overall, particularly for tam-
pering types such as Dropping, Repetition, and
Substitution. This behavior indicates an incon-
sistency in their ability to adapt to tampering ef-
fects. While these models achieve a balanced per-
formance across easier tampering types, temporal
disruptions like Dropping, Repetition, and Substi-

tution pose significant challenges, leading to oc-
casional spikes in variance. This suggests that
moderate-performing models, while more capable
than low-performing counterparts, still struggle to
maintain robustness across a diverse set of tamper-
ing scenarios. We provide a detailed analysis of
individual model performance in Appendix A.4.1,
and present qualitative trends based on model ar-
chitecture and training paradigms across all models
studied in Appendix A.4.2, offering insights into
the factors influencing performance.

4.2.2 Analysis based on Model Size
We categorize models based on their parameter
sizes into small (<7B), medium (7B–26B), and
large (>26B) groups (Figure 11). While Figure 12
shows that larger models generally achieve higher
F1 (overall) scores, Figure 5 confirms no signifi-
cant correlation between model size and tampering
detection performance (Pearson correlation = 0.05).
A closer examination of individual model trends
across size categories reveals several noteworthy
patterns discussed in Appendix A.4.3.

Trends Across Families. Across size categories,
we observe distinct trends in model performance.
The VILA model family consistently improves
with size, with the exception of VILA1.5-8B, high-
lighting the scalability of its architecture for tam-
pering detection. Similarly, Qwen2-VL demon-
strates significant gains with increased parameters,
though it trails behind other families in absolute
performance.

The Llama3.2-Vision family, despite its scaling
efforts, reveals the diminishing returns of increas-
ing model size without architectural or training ad-
vancements. Meanwhile, Molmo models illustrate
the importance of efficient design, as Molmo-1B
outperforms its larger variants like Molmo-72B.
Finally, the dominance of InternVL-2.5 across all
sizes highlights the benefits of balanced architec-
ture & task-specific training strategies.

4.2.3 Analysis across Video Task Types
MVTamperBench comprises 19 video task cate-
gories, each evaluated across five tampering tech-
niques. Figure 10 highlights the F1 (overall) scores
for each task, averaged across all tampering types
and models. While certain tasks exhibit high de-
tection F1 score, others remain significantly more
challenging. Appendix A.4.4 provides additional
insights into the performance trends of each tam-
pering type across different tasks.
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Figure 10: F1 (overall) scores for task categories in MVTamperBench. Tasks like Episodic Reasoning achieve
higher scores, while Counterfactual Inference is more challenging.

Figure 11: Distribution of models grouped by size;
Categories: Small (<7B), Medium (7B–26B), and Large
(>26B).

Figure 12: F1 (overall) scores for models by size cate-
gory. Larger models generally tend to perform better.

Easier Tasks. Tasks such as Episodic Reason-
ing, Scene Transition, Ego-centric Navigation,
and State Change consistently achieve higher F1
scores, as shown in Figure 10. These tasks often
involve shorter temporal dependencies and sim-
pler spatial reasoning, allowing models to rely on
pre-trained vision-language features rather than
advanced temporal reasoning.

For example, in Episodic Reasoning, tamper-
ing effects like Dropping and Repetition minimally
affect task performance, as models primarily focus
on memorizing what it has seen. Similarly, Scene
Transitions tasks depend more on detecting static
or localized changes, making them less susceptible
to temporal disruptions such as Dropping or Repe-
tition. The results indicate that models trained on
extensive image-based datasets excel in tasks with
lower temporal complexity.

Challenging Tasks. Tasks such as Action Pre-
diction, Counterfactual Inference, and Fine-
Grained Action pose significant challenges for
tampering detection. These tasks inherently re-
quire complex temporal reasoning and context
preservation, making them highly sensitive to dis-
ruptions introduced by tampering techniques.

In Counterfactual Inference, tampering effects
like Substitution & Dropping cause significant con-
fusion, as they disrupt the continuity of the video
narrative required for hypothetical reasoning. Sim-
ilarly, Fine-Grained Action detection is heavily

18811



impacted by Rotation, distorting spatial relation-
ships crucial for identifying subtle movements.

Interestingly, Action Prediction tasks also high-
light the limitations of current MLLMs in under-
standing and reasoning about temporal progres-
sion. Models often fail to account for disruptions
in video sequences, leading to degraded perfor-
mance across tampering types.

We further discuss our Key Findings & Future
Directions in Appendix A.6 & A.7 respectively.

5 Concluding Remarks

Novel Benchmark. We introduced MVTamper-
Bench, a comprehensive benchmark for evaluat-
ing the robustness of Multimodal Large Language
Models (MLLMs) against five key video tamper-
ing techniques—Dropping, Masking, Repetition,
Rotation, and Substitution. Through systematic
experiments on 19 video tasks involving 45 mod-
els across 15+ families, we observed pronounced
variability in resilience. Notably, even MLLMs
exceeding 70B parameters suffer severe perfor-
mance drops, whereas select small models (< 7B)
demonstrate unexpectedly strong tampering detec-
tion, illustrating that size alone does not ensure
robustness.

Impact on Research Community. Beyond re-
vealing these vulnerabilities, we believe that MV-
TamperBench offers actionable insights for re-
fining model architectures and training pipelines,
highlighting gaps that must be addressed before
these systems can be reliably deployed in safety-
critical settings. Our open-source framework will
support reproducible evaluations and community-
driven extensions, enabling researchers to integrate
additional datasets or adapt tampering methods for
domains like clickbait detection, content modera-
tion, and surveillance feeds analysis.

Future Work. Looking ahead, we plan to ex-
pand MVTamperBench with new tampering types
(e.g., noise injection, frame shuffling) and domain-
specific scenarios (e.g., healthcare, surveillance).
By illuminating the nuanced impacts of video
manipulations and guiding innovation in robust
MLLM architectures, MVTamperBench lays a
strong foundation for next-generation multimodal
models capable of withstanding adversarial manip-
ulations.

6 Limitation

MVTamperBench provides a robust framework
for evaluating MLLM resilience against video tam-
pering, but there are limitations that present oppor-
tunities for future work.

First, while the benchmark evaluates five tamper-
ing techniques, expanding to additional manipula-
tions/modalities to better capture subtle, and emerg-
ing techniques. Second,the dataset currently relies
on limited datasets. Expanding the benchmark to
incorporate videos from diverse sources, such as
user-generated content, surveillance footage, or
policy enforcement, would broaden its applica-
bility and relevance to task-specific and domain-
specific challenges. Third, while the current eval-
uation focuses on binary detection, future bench-
marks could assess a model’s ability to classify
the specific tampering type, providing deeper in-
sights into its robustness. Finally, scalability to
closed-source and extremely large-scale models
(> 100B parameters) remains a challenge due to
computational and cost constraints.

Addressing these limitations will enable MV-
TamperBench to further advance tampering detec-
tion and resilience in a broader range of applica-
tions.
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A Appendix

A.1 MVTamperBench Details

Dataset Name Primary Scene Type and
Unique Characteristics

STAR(Wu et al.,
2024a)

Indoor actions and object
interactions

PAXION(Wang
et al., 2023)

Real-world scenes with
nuanced actions

Moments in Time
(MiT) V1(Monfort
et al., 2019)

Indoor/outdoor scenes
across varied contexts

FunQA(Xie et al.,
2025)

Humor-focused, creative,
real-world events

CLEVRER(Mao
et al., 2022)

Simulated scenes for ob-
ject movement and reason-
ing

Perception
Test(Patraucean
et al., 2024)

First/third-person views
for object tracking

Charades-STA(for
AI, 2024)

Indoor human actions and
interactions

MoVQA(Zhang
et al., 2023)

Diverse scenes for scene
transition comprehension

VLN-CE(Krantz,
2024)

Indoor navigation from
agent perspective

TVQA(Lei et al.,
2018)

TV show scenes for
episodic reasoning

Table 1: Summary of Datasets in MVTamperBench

Table 1 summarizes the datasets included in MV-
TamperBench, each contributing unique character-
istics for robust tampering detection evaluation.
We eliminate videos from the NTU dataset in MV-
TamperBench to avoid conflicting terms in the li-
cense. The dataset is then systematically expanded
through the application of tampering effects to gen-
erate a comprehensive benchmark.

Table 3 summarizes MVTamperBench’s unique
contributions compared to existing benchmarks
(Hu et al., 2024; Song et al., 2024a; Li et al.,
2024e; Fu et al., 2024; Xia et al., 2024; Fei et al.,
2024b) and use-cases which are spread across
videos,images and documents (Agarwal et al.,
2024a,b,c,d,b, 2025a; Patel et al., 2024; Agarwal
and Pachauri, 2023). It also compares MVTamper-
Bench with existing benchmarks, highlighting its
focus areas, strengths, and unique contributions.
We the growing interest area in MLLMS, new
benchmarks that require special attention include
Svbench (Yang et al., 2025), Video-MMLU (Song

et al., 2025), SEA-VL (Cahyawijaya et al., 2025),
MotionBench (Hong et al., 2025) and synthetic
data generation techinques (Dua et al., 2024, 2025;
Pabolu et al., 2024a,b).

A.2 Ablation Studies
We conduct ablation studies on key design deci-
sions and prompt-engineering strategies to iden-
tify optimal configurations for constructing our
benchmark. These experiments evaluate the ef-
fects of tampering duration, tampering position,
and prompt formulation on model performance.

A.2.1 Ablation: Tampering Position and
Duration

To understand the influence of tampering character-
istics on model performance, we conducted two ab-
lation studies: (1) varying the duration of tampered
segments, and (2) altering their position within the
video timeline.

Tampering Position Ablation. We varied the
tampering position to occur after 25%, 50%, or
75% of the video timeline (Table 2). Detection
performance remained largely stable across these
conditions, indicating that most models are rela-
tively insensitive to the specific location of tamper-
ing within the video. This suggests a consistent
ability to maintain temporal coherence understand-
ing regardless of when the manipulation occurs.
We exclude tampering at the very beginning or end
of videos, as these segments often coincide with
natural scene transitions, delayed starts, or abrupt
endings, which could introduce confounding noise
into the benchmark.

Category Model 25% 50% 75%
Low Qwen2VL-7B 0.009 0.009 0.009

LLaVaVideo-7B 0.006 0.006 0.006
LLaVaOV-72B 0.0441 0.044 0.044

Moderate Aria 0.7213 0.721 0.721
Qwen2VL-72B 0.352 0.352 0.352
Phi3.5Vision 0.707 0.707 0.707

High VILA1.5-40B 0.879 0.879 0.879
InternVL2.5-8B 0.721 0.7210 0.721

Table 2: Impact of tampering position on F1 scores
across models with varying robustness levels. Results
are reported for tampering introduced at 25%, 50%, and
75% positions within the video timeline.

Tampering Duration Ablation. We evaluated
three tampering durations: 1s, 2s, and 3s. Re-
sults in Table 4 indicate a consistent improvement
in detection performance with increased tamper-
ing duration across all models. Lower-performing
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Benchmark Scope (Im-
age/Video) Focus Strengths Unique Contributions

BLINK Image Visual reasoning
Tests spatial relationships in im-
ages.

Introduces a framework for spa-
tial reasoning with auxiliary
sketches.

MUIRBENCH Image
Multi-image under-
standing

Evaluates complex real-world
scenarios.

Includes multi-image relations
like narrative and complemen-
tary.

MVBench Video
Temporal reasoning,
event recognition

Assesses video understanding
over time.

Focuses on video dynamics
with temporal task coverage.

MMBench-
Video

Video
Long-form video un-
derstanding

Handles multi-step event recog-
nition in long videos.

Evaluates LVLMs on free-form
QA using temporal reasoning.

Video-MME Video
Multi-modal video
understanding

Evaluates tasks like action
recognition and captioning.

Combines multiple modalities
for enhanced contextual under-
standing.

LongVU Video
Spatiotemporal com-
pression

Efficiently processes long
videos with adaptive compres-
sion.

Novel spatiotemporal compres-
sion mechanism using cross-
modal query.

MotionEpic Video Object tracking
Tracks object interactions
across video frames.

Implements fine-grained
spatial-temporal scene graph
reasoning.

Wolf Video Video captioning
Improves video captioning with
expert strategies.

Introduces CapScore for LLM-
based caption evaluation.

Sharingan Video
Action sequence ex-
traction

Focuses on action recognition
in desktop recordings.

Proposes differential and direct
frame-based methods for user
action extraction.

Video-of-
Thought

Video
Step-by-step video
reasoning

Excels in human-like video rea-
soning with chain-of-thought
processes.

Integrates spatial-temporal
scene graphs (STSG) for
fine-grained reasoning.

CARES Video
Scene comprehen-
sion and emotional
analysis

Analyzes multi-modal emo-
tional and contextual nuances.

Integrates context-aware emo-
tional reasoning for enhanced
video understanding.

Visual-
Sketchpad

Image
Visual interaction
and sketching tasks

Supports creative and interac-
tive visual reasoning.

Bridges sketch-based reason-
ing with image analysis for en-
hanced user interaction.

MovieChat Video
Conversational video
understanding

Enhances video understanding
with conversational context.

Introduces dialogue-based com-
prehension for temporal and
narrative reasoning.

MVTamperBench
(Proposed) Video

Tampered video de-
tection

Robustly identifies tampered re-
gions in video datasets.

Unique focus on domain-
specific tampering scenarios
with real-world applicability.

Table 3: Enhanced comparison between Video and Image Analysis Benchmarks, with unique contributions
highlighted.

Category Model 1s 2s 3s
Low Qwen2-VL-7B 0.009 0.201 0.257

LLaVa-Video-7B 0.006 0.158 0.216
LLaVa-
Onevision-72B 0.044 0.257 0.249

Moderate Aria 0.721 0.779 0.782
Qwen2-VL-72B 0.352 0.485 0.499
Phi3.5-Vision 0.707 0.763 0.769

High VILA1.5-40B 0.879 0.898 0.901
InternVL2.5-8B 0.721 0.801 0.805

Table 4: Impact of tampering duration on F1 scores
across models of varying robustness. Results are re-
ported for tampering durations of 1s, 2s, and 3s.

models (e.g., Qwen2-VL-7B, LLaVa-Video-7B)
benefited more significantly, suggesting a depen-
dency on longer anomalous intervals for effective

detection. In contrast, top-performing models (e.g.,
VILA-1.5-40B, InternVL-2.5-8B) exhibited per-
formance saturation, implying diminishing returns
beyond a certain duration threshold.

A.2.2 Ablation: Prompt Engineering
To determine the most effective prompt formula-
tion for evaluating MLLM robustness in video tam-
pering detection, we conducted a series of prompt-
engineering experiments. Each variant prompts
the model to assess whether the video has been
tampered with, as aligned with the objective of our
benchmark.

• Structured Prompt (used in benchmark):
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Explicitly lists tampering types.
Prompt: Does this video exhibit any signs
of tampering, such as corruption, blackouts,
rotated frames, repeated frames, or swapped
frames?

• Generic Prompt: Uses general phrasing that
mimics natural user queries.
Prompt: Does this video exhibit any signs of
tampering, manipulation, or inconsistency?

• Chain-of-Thought (CoT) Prompt: Instructs
the model to reason step by step before decid-
ing.
Prompt:

Scan the video step by step:
1. Check each segment for visual

glitches, repeated or missing
content, or rotations.

2. Check if any frame seems incon-
sistent with the rest of the video.

3. Decide if any part looks manip-
ulated or tampered.

Does the video show any signs of
tampering, manipulation, or incon-
sistency?

Category Model Prompt Type F1 Score

Low

Qwen2VL-7B
Structured 0.009
Generic 0.001
CoT 0.001

LLaVaVideo-7B
Structured 0.006
Generic 0.002
CoT 0.001

LLaVaOV-72B
Structured 0.044
Generic 0.001
CoT 0.001

Moderate

Aria
Structured 0.721
Generic 0.151
CoT 0.148

Qwen2VL-72B
Structured 0.352
Generic 0.009
CoT 0.010

Phi3.5Vision
Structured 0.707
Generic 0.201
CoT 0.208

High

VILA1.5-40B
Structured 0.879
Generic 0.458
CoT 0.466

InternVL2.5-8B
Structured 0.721
Generic 0.386
CoT 0.389

Table 5: F1 scores of models evaluated with three
prompt types: Structured, Generic, and Chain-of-
Thought (CoT). Structured prompts consistently yield
the highest performance across all robustness cate-
gories.

Findings: Structured prompts consistently out-
performed both generic and CoT prompts across
all model tiers (Table 5). Low- and moderate-
performing models exhibited significant perfor-
mance drops with more open-ended prompts, likely
due to limited temporal reasoning capabilities and
lack of explicit training. Generic prompts particu-
larly led to frequent false positives, as models mis-
interpreted benign variability as tampering. These
findings support the use of structured prompts to
ensure consistent and interpretable evaluation.

A.3 Overview of Multimodal Large Language
Models (MLLMs)

Model Families and Versions Figure 13 pro-
vides a comprehensive taxonomy of Multimodal
Large Language Models (MLLMs), summarizing
their diversity across families, versions, and first-
generation releases. The diagram branches mul-
tiple versions of a model family (e.g., InternVL,
LLaVA, VILA, Phi3, Ovis) and separates earlier
first-generation models (e.g., Video-LLaVA (Lin
et al., 2024a; Zhu et al., 2024), Vintern (Doan
et al., 2024), LLama3.2-Vision (Dubey et al., 2024;
Meta, 2024)) to reflect their evolutionary devel-
opment, domain-specific popularity and capabil-
ities in conversational systems (Pattnayak et al.,
2025a,b; Pattnayak et al.; Patel et al., 2025), fine-
tuning (Thomas et al., 2025), and handling uses
across documents (Yin et al., 2024; Agarwal et al.,
2025b; Panda et al., 2025), images and videos .

This taxonomy highlights the wide range of
MLLMs currently available, organized as follows:

• InternVL Family: Spanning models from
Intern-VL1.1 (Chen et al., 2024c; Gao et al.,
2024; Chen et al., 2024b) to the advanced
Intern-VL2.5-MPO (Chen et al., 2024d), this
family emphasizes efficiency and adaptability
for diverse tampering and multimodal tasks.
Successive iterations demonstrate marked im-
provements, particularly in handling temporal
disruptions such as Dropping and Substitu-
tion. The InternVL2-5-8B models showcases
its ability to handle fine-grained spatiotempo-
ral reasoning, highlighting its dominance in
high-resource benchmarks.

• LLaVA Family: Starting with LLaVa-NEXT
(Li et al., 2024d), which struggled across
most benchmarks, this family has evolved
with models like LLaVa-OneVision (Li et al.,
2024b) and LLaVa-Video (Zhang et al., 2024),
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Figure 13: Taxonomy of Multimodal Large Language Models (MLLMs), organized by family, version, and
first-generation releases.

demonstrating significant improvements in
task-specific video understanding through op-
timized pretraining and alignment techniques.
Despite the advancements, LLaVa-OneVision
& LLaVa-Video continues to face challenges
in handling complex temporal disruptions, un-
like Chat-UniVi, which has emerged as a ro-
bust alternative.

• VILA Family: The VILA series, including
VILA-1.5 (Lin et al., 2024b), LongVILA (Xue
et al., 2024), and VILA-U (Wu et al., 2024b),
demonstrates exceptional overall performance
due to robust training pipelines and innova-
tive architectures. Notably, VILA-40B excels
across benchmarks, which demonstrates ad-
vanced fine-grained and long-form video un-
derstanding capabilities, particularly in ad-
dressing tampering types like Masking and
Rotation. Its architectural design allows it
to efficiently process long-context visual in-
puts, setting a new standard for performance
in large-scale benchmarks.

• Phi3 Family: Known for its scalable architec-
ture and focus on real-world applicability, the
Phi3-Vision (Abdin et al., 2024) models strug-
gle across tampering scenarios. The Phi3.5-
Vision model, in particular, highlights the ben-
efits of improved tokenization and training
strategies. It outperforms it’s earlier versions
by leveraging better alignment between visual
and textual modalities.

• Ovis Family: Optimized for fine-grained

visual-text alignment, Ovis (Lu et al., 2024)
models leverage specialized datasets for tasks
requiring high-resolution image interpreta-
tion and contextual reasoning. While the
smaller version struggled with temporal coher-
ence, subsequent larger model versions show
promising improvements in spatial reasoning
tasks like Masking and Rotate. Such enhance-
ment results from better alignment between
text and vision modalities.

• First-Generation Releases: Models such as
Chat-UniVi (Jin et al., 2024), Molmo (Deitke
et al., 2024), NVLM (Dai et al., 2024), and
Pixtral (Agrawal et al., 2024) represent earlier
efforts in video-language modeling. While
some, like Molmo and Aria (Li et al., 2024c),
continue to show competitive performance
due to innovative training strategies, others,
such as NVLM, are limited by suboptimal op-
timization for temporal reasoning, which hin-
ders their ability to adapt to tampering scenar-
ios.

• Qwen-VL Family: The Qwen2-VL (Wang
et al., 2024b) and Qwen-VL (Yang et al., 2024)
models are recent entrants that combine ad-
vanced architectures with scalable parameteri-
zation. They achieve strong results in ground-
ing and visual reasoning tasks but struggle
in detecting tampering across task and sce-
narios. Scaling the model size does help the
performance but is still below the average per-
formance of models in the study.
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(a) MLLMs in the Low Performing Category (b) MLLMs in the High Performing Category

(c) MLLMs in the Moderate Performing Category

Figure 14: F1 (overall) performance of individual models across low, moderate, and high-performing categories.
Models like InternVL-2.5 lead high-performing groups, while Llava-OneVision models underperform consistently.

A.4 Extended Results & Analysis

A.4.1 Analysis based on Performance
Categories

Figure 14 examines individual model performance
across all categories, providing insights into trends
among model families, versions, and architectures.

For low-performing models (Figure 14a), Llava-
OneVision exhibits consistently weak perfor-

mance across tampering types, even at larger pa-
rameter sizes (e.g., Llava-OneVision-72B). This
suggests potential architectural and training data
limitations, particularly for temporal coherence
tasks. Interestingly, Qwen2-VL-7B underperforms
significantly compared to its larger counterpart,
Qwen2-VL-72B, which achieves a notable im-
provement. This indicates that increasing model
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size, combined with its training paradigm, posi-
tively impacts robustness for this family.

In the moderate-performing category (Figure
14c), several trends emerge. Llama3.2-11B and
Llama3.2-90B exhibit very similar performance
despite the significant increase in size. These mod-
els, trained on the same recipe and dataset, high-
light that merely increasing parameter count does
not drastically enhance tampering detection capa-
bilities. Another interesting observation is the im-
provement shown by Phi3.5-Vision and Vintern-
Beta over their predecessors (Phi3-Vision and Vin-
tern). This suggests that targeted architectural
modifications or additional task-specific training
significantly contribute to robustness.

For high-performing models (Figure 14b),
InternVL-2.5 dominates across tampering effects,
with smaller versions (e.g., 4B) achieving compara-
ble performance to their larger counterparts. This
demonstrates that efficient architectural design and
training strategies can offset limitations in model
size. VILA1.5-40B, a model specifically designed
for long-form video understanding, showcases ex-
ceptional robustness, emphasizing the importance
of task-specific optimization. Notably, Molmo-
72B and NVLM-72B exhibit below-average per-
formance relative to other large models or their
smaller counter parts, indicating inefficiencies in
parameter utilization or potential overfitting to pre-
training data and tasks.

Another noteworthy observation across cate-
gories is the consistency within certain model fam-
ilies. For example, the Llava-Video and Chat-
UniVi models outperform their Llava-OneVision
counterparts, demonstrating the importance of
video-specific training for tampering detection.
Conversely, while Molmo-1B excels among small
models, its larger variant (Molmo-72B) does not
scale proportionally in performance, reinforcing
the need for efficient scaling and training strate-
gies.

A.4.2 Analysis based on Model Architectures
To better understand model performance under
video tampering, we conducted a comparative anal-
ysis of MLLMs’ architectural design, alignment
strategies, and training paradigms. Table 6 summa-
rizes key configurations across models stratified by
their performance category (low, moderate, high).

Our findings suggest that robust MLLMs typi-
cally adopt deeper integration strategies between
vision and language modalities. High-performing

models like VILA, InternVL, and Aria uti-
lize multi-stage training pipelines, explicit visual-
text alignment layers (e.g., projectors or mid-
dleware), and instruction tuning on curated or
human-annotated datasets. In contrast, moderate-
performing models often rely on lightweight fu-
sion (e.g., MLPs or prompt tuning) or lack post-
alignment tuning stages. Low-performing models
tend to use frozen CLIP encoders and shallow de-
coders with minimal multimodal alignment.

These insights support the hypothesis that ro-
bustness to spatiotemporal manipulations corre-
lates with stronger cross-modal alignment and iter-
ative supervision across training stages.

A.4.3 Analysis based on Model Size
A closer examination of individual model trends
across size categories (Figure 15) reveals several
noteworthy patterns.

Small Models (<7B). Among small models (Fig-
ure 15a), Molmo-1B demonstrates exceptional
robustness, outperforming several medium-sized
models and achieving consistency across all tam-
pering types. Another notable small model, Phi3.5-
Vision, shows drastic improvement over its prede-
cessor, Phi3-Vision, highlighting the impact of
architectural updates and extended task-specific
training.

For the VILA model family, VILA1.5-3B per-
forms better than many other small models, show-
casing the benefits of targeted optimization for
long-form video understanding. However, its
performance lags behind Molmo-1B and Phi3.5-
Vision, indicating room for improvement in han-
dling complex tampering scenarios.

Interestingly, InternVL-2.5-4B matches or ex-
ceeds the performance of several medium-sized
models, emphasizing the importance of efficient
design over raw parameter counts. Models like
Llava-OneVision-7B, however, remain among the
weakest performers, suggesting that training ap-
proaches and architectural focus on static data limit
their ability to handle tampering.

Medium Models (7B–26B). For medium-sized
models (Figure 15c), we observe considerable vari-
ability. Variants such as Molmo-D and Molmo-O
exhibit similar performance, suggesting limited
scalability within the family. Conversely, models
like InternVL-2.5-8B maintain exceptional robust-
ness, outperforming even larger models in the same
category.
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Perf. Model Vision Language Alignment Strategy Training Strategy

High Aria SigLIP-400M Aria-MoE MoE decoder + lightweight
ViT

4-stage: language, multimodal,
long-context, post-training

High LLaMA In-House LLaMA-3.2 — Iterative SFT, rejection sampling,
DPO on curated data

High VILA InternViT-6B Yi-34B Deep embedding projection
+ joint tuning

3-stage: projector init, visual pre-
train, instruction tuning

High InternVL InternViT-6B v2.5 Qwen2.5 QLLaMA middleware har-
monization

Contrastive → generative → su-
pervised tuning

Moderate Vintern InternViT-300M Qwen2.5 MLP projector w/ visual in-
struction tuning

2-stage: full-param + LoRA, cross-
entropy loss

Moderate Qwen2-VL Custom ViT Qwen2 Dynamic resolution + M-
RoPE

3-stage: image–text pretrain + in-
struction tuning

Moderate Pixtral ViT-400M Nemo-12B Decoder fusion, ROPE-2D,
sequence packing

Interleaved image–text pretraining

Moderate NVLM InternViT-6B Qwen2 Decoder/cross-attn/hybrid
variants

Pre-align (frozen LLM), then mul-
timodal SFT

Moderate Molmo CLIP ViT-L/14 Qwen2-72B Multi-crop connector + de-
coder LLM

Length-conditioned captions →
multitask tuning

Moderate Chat-UniVi CLIP-ViT-L/14-336 Vicuna-v1.5-7B Unified visual tokens +
multi-scale semantics

2-stage: frozen pretrain + joint in-
struction tuning

Low PHI CLIP ViT-L/14 Phi-3 Transformer decoder (block-
sparse)

2-phase: filtered web + synthetic

Table 6: Architecture, alignment, and training strategies for MLLMs stratified by robustness category.

Pixtral, a medium-sized model that claims
higher performance on other benchmarks, delivers
average results here, highlighting that tampering-
specific robustness requires distinct optimization
strategies. Similarly, Chat-UniVi demonstrates
an advantage over other Llava-family models, rein-
forcing the role of video-specific training in achiev-
ing higher tampering detection performance.

In the VILA model family, VILA1.5-8B un-
derperforms compared to both smaller and larger
VILA models, making it an interesting anomaly.
This drop in performance could stem from subopti-
mal parameter tuning or an architectural bottleneck
that affects scalability. Meanwhile, VILA1.5-13B
and VILA1.5-40B continue to improve with in-
creasing size, emphasizing the scalability of this
family for long-form video tampering tasks.

Large Models (>26B). Among large models
(Figure 15b), we observe mixed performance
trends. While InternVL-2.5 continues to domi-
nate, its smaller variants (e.g., 4B, 8B) achieve
comparable results, raising questions about the
marginal benefits of scaling up within this fam-
ily. VILA1.5-40B, specifically designed for long-
form video understanding, ranks among the best-
performing large models, showcasing the value of
video-specific training & optimization.

The Qwen2-VL family highlights the impor-
tance of scaling when paired with architectural
optimization. Qwen2-VL-72B significantly out-
performs its 7B counterpart, demonstrating the ad-
vantages of increased parameter counts and more
extensive pretraining. However, its performance

still lags behind other large models like InternVL-
2.5-40B and VILA1.5-40B, suggesting potential
inefficiencies in architecture or video-specific opti-
mization.

The Llama3.2-Vision family offers a nuanced
perspective on scaling. While Llama3.2-11B and
Llama3.2-90B exhibit very similar performance,
underscoring that increasing parameter count alone
does not yield proportional performance gains.
This trend reflects the importance of complement-
ing scaling with architectural innovations and di-
verse, tamper-focused training data.

While InternVL-2.5 continues to dominate, its
smaller variants (e.g., 4B, 8B) achieve compara-
ble results, raising questions about the marginal
benefits of scaling up within this family. Similarly,
Molmo-72B, despite its size, fails to match the
performance of its smaller counterparts, indicating
inefficiencies in parameter utilization or overfitting
to pretraining data.

In contrast, Qwen2-VL-72B delivers subpar re-
sults relative to its size but still outperforms its
smaller sibling, Qwen2-VL-7B. This highlights
that while scaling can improve performance, archi-
tectural and training advancements are critical for
leveraging the full potential of larger models.

A.4.4 Analysis across Video Task Types

Insights across Tampering Types. Figure 16 re-
veals nuanced differences in performance across
tampering types and video tasks. Masking consis-
tently emerges as the least disruptive effect, par-
ticularly in tasks like Moving Direction and Ob-
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(a) Performance Distribution of Small(<7B) MLLMs (b) Performance Distribution of Large (>26B) MLLMs

(c) Performance Distribution of Medium(>=7B & <=26B) MLLMs

Figure 15: F1 (overall) performance of individual models across small, medium, and large model size categories.
Models like InternVL-2.5 lead high-performing groups, while Llava-OneVision models underperform across
categories.

ject Existence, where models rely more on con-
textual cues than on fine-grained spatial details.
Conversely, Dropping and Repetition create the
most significant challenges, particularly in tasks in-
volving long-term temporal dependencies, such as
Action Sequence and Counterfactual Inference.

Notably, the performance trends also vary across

model categories. High-performing models demon-
strate consistent robustness across all tasks and
tampering types, while low-performing models ex-
hibit the highest susceptibility to temporal and spa-
tial disruptions. Moderate-performing models, on
the other hand, display a mix of strengths and weak-
nesses, excelling in tasks with static or localized
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Figure 16: F1 (overall) scores across tampering types for task categories. Masking is less disruptive, while Dropping
and Substitution degrade performance in complex tasks like Counterfactual Inference.

changes but struggling with tasks requiring tempo-
ral coherence.

Trends across Task Categories. Examining the
task-wise trends, several key observations emerge:

• Tasks involving long-term temporal reason-
ing (e.g., Counterfactual Inference, Action
Sequence) are more sensitive to tampering,
particularly Dropping, Repetition, and Substi-
tution, which disrupt narrative continuity.

• Tasks with localized changes (e.g., State
Change, Episodic Reasoning) are less af-
fected by tampering, as models rely on static
visual cues.

• Tasks requiring fine-grained spatial under-
standing (e.g., Fine-Grained Action) show
significant degradation under Rotation, indi-
cating a limitation in models’ ability to pro-
cess spatial distortions.

• Performance disparities across tampering
types highlight architectural strengths and
weaknesses. For instance, InternVL-2.5
excels in tasks like Action Prediction and
Counterfactual Inference, owing to its ad-
vanced temporal reasoning capabilities.

A.5 Benchmarking Efforts

Our benchmarking efforts encompass 45 models
across diverse categories and tampering scenar-
ios, including Drop, Mask, Repeat, Rotate, and
Substitute (Table 7). The results reveal significant
variability in performance, influenced by model
size, architecture, and training data.

Models such as VILA1.5-40B and InternVL2.5-
8B emerged as top performers, achieving consis-
tent resilience across all tampering types, with over-
all scores of 0.879 and 0.875, respectively. This
highlights the importance of architectural innova-
tions and advanced training techniques for tamper-
ing robustness. In contrast, early-generation mod-
els like LLaVA-OneVision underperformed across
all categories, with overall scores as low as 0.001,
reflecting limitations in temporal coherence and
token alignment.

Specialized models for video tasks, such as
Chat-UniVi and Video-LLaVA, demonstrated sub-
stantial improvements over base LLaVA mod-
els. Chat-UniVi-7B-v1.5 achieved an overall
score of 0.658, significantly outperforming LLaVA-
OneVision, showcasing its ability to handle com-
plex temporal manipulations. Meanwhile, Video-
LLaVA-7B-HF maintained robust performance
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across categories, further validating the effective-
ness of unified tokenization and video-specific opti-
mizations. However, LLaVA-Video, despite efforts
to improve alignment and pretraining, continues
to struggle with certain tampering types, reflecting
the challenges of adapting image-centric architec-
tures to video modalities.

Interestingly, medium-sized models like Phi3.5-
Vision demonstrated notable performance improve-
ments compared to earlier iterations such as Phi3-
Vision, indicating that scaling alone does not ac-
count for robustness gains. Specialized models
like Ovis1.6-Gemma2-9B showcased strengths in
spatial tampering scenarios (e.g., Mask and Ro-
tate) but struggled with temporal disruptions like
Repeat and Substitute. This trend underscores the
importance of task-specific optimizations.

Future Benchmarking Plans. While our analy-
sis has covered an extensive set of models, several
promising entries are yet to be evaluated. Models
such as NVILA (Liu et al., 2024), LongVILA (Xue
et al., 2024), and AuroraCap (Chai et al., 2024) are
currently being integrated into our benchmarking
framework, with active collaborations underway to
ensure seamless evaluations. Early insights suggest
that these models could offer competitive perfor-
mance in handling long-form video tampering and
multimodal reasoning.

Additionally, we plan to expand the scope of
evaluations for models like InternVL-1, MovieChat
(Song et al., 2024a,b), Vintern, and future itera-
tions of Chat-UniVi and Video-LLaVA. While Chat-
UniVi has shown impressive robustness across tem-
poral and spatial tampering scenarios, and Video-
LLaVA continues to improve, exploring these mod-
els under additional tampering techniques will pro-
vide deeper insights into their limitations and areas
for refinement.

The dynamic and evolving nature of our bench-
marking framework ensures that future evaluations
will continue to capture advancements in architec-
tural design and tampering robustness.

A.6 Key Findings

Consistent Performers. The InternVL-2.5 series
consistently outperforms other models by achiev-
ing strong F1 (overall) scores across all tampering
types. Notably, even smaller variants like InternVL-
2.5-4B match the robustness of larger models. Such
results highlight the efficiency of its architecture
and training strategy.

Effect-specific Strengths. Models such as
Phi3.5-Vision excel in detecting Masking tamper-
ing, which indicates its specialized capabilities
for handling visual obfuscations. Similarly, the
VILA1.5-40B, designed for long-form video under-
standing, excels in spatial-temporal tasks.

Weaker Models. Certain models, including
Llava-OneVision variants, exhibit consistent weak-
nesses, particularly with temporal disruptions like
Dropping and Repetition. This result may suggest
limitations in their architectural designs and train-
ing paradigms.

Tampering Insights. Dropping and Repetition
emerge as the most challenging tampering types
for all model categories, reflecting the difficulty
of maintaining temporal coherence under such ma-
nipulations. In contrast, Masking is relatively less
disruptive, particularly for tasks relying on contex-
tual cues.

A.7 Discussion and Future Directions

The findings shed light on the importance of task-
specific optimization and tamper-aware training for
improving model robustness. Tasks that involve
complex temporal dependencies or fine-grained
spatial reasoning highlight critical gaps in current
architectures, which need to better integrate tem-
poral embeddings and multi-scale spatial attention
mechanisms. MVTamperBench highlights the crit-
ical importance of robust architectures and diverse
training data & strategies for achieving tampering
resilience. Below, we outline actionable insights
and avenues for future exploration:

Expanding Benchmark Scope. To enhance the
benchmark’s comprehensiveness, future iterations
could evaluate additional model families, including
emerging MLLMs. This will ensure a broader
understanding of robustness trends.

Addressing Weak Models. Models like Llava-
OneVision & Qwen-2-VL highlight the need for
targeted improvements. Techniques such as adver-
sarial training, task-specific fine-tuning, and archi-
tectural enhancements could improve performance.

Introducing New Tampering Types. Expand-
ing the benchmark to include tampering techniques
such as localized masking, noise injection, and
frame-level shuffling would provide a more nu-
anced evaluation of model resilience. Additionally,
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exploring domain-specific tampering types for crit-
ical applications like healthcare and surveillance
could reveal context-dependent vulnerabilities.

Task-specific Insights. Examining performance
at a finer granularity—e.g., evaluating models
on specific task categories or within specialized
domains—could provide actionable guidance for
training and optimization.

Scaling Considerations. Observations such as
diminishing returns for models like Molmo-72B
and Llama-3.2-90B-Vision emphasize the need for
efficient scaling strategies. Future work could ex-
plore methods for optimizing parameter utilization
and balancing architectural complexity with train-
ing data diversity.

Integration with Real-world Applications. Ex-
tending MVTamperBench to evaluate tampering
resilience in real-world domains like media verifi-
cation, misinformation detection, and legal foren-
sics could uncover application-specific challenges
and provide a pathway for practical deployments.

By exploring these directions, we hope that our
MVTamperBench will evolve as a cornerstone
benchmark for tampering detection, and further
drive innovation in tamper-resilient MLLMs and
foster trust in their real-world applications.
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Model Size Drop Mask Repeat Rotate Substitute Overall Performance Size
Category Category

Phi-3-Vision 4 0.002 0.002 0.000 0.002 0.002 0.001 Low Small
llava-onevision-qwen2-0.5b-ov 1 0.001 0.001 0.001 0.001 0.001 0.001 Low Small
Llama-3-VILA1.5-8b 8 0.001 0.003 0.001 0.003 0.001 0.002 Low Medium
llava_video_qwen2_7b 7 0.006 0.006 0.005 0.005 0.006 0.006 Low Medium
Qwen2-VL-7B-Instruct 7 0.005 0.004 0.004 0.025 0.005 0.009 Low Medium
Vintern-1B-v2 1 0.013 0.011 0.012 0.011 0.011 0.012 Low Small
llava-onevision-qwen2-7b-ov 7 0.016 0.038 0.010 0.019 0.016 0.020 Low Medium
llava-onevision-qwen2-7b-ov-
chat

7 0.020 0.050 0.013 0.027 0.020 0.026 Low Medium

llava-onevision-qwen2-72b-ov-
chat

72 0.021 0.125 0.018 0.034 0.021 0.044 Low Large

llava-onevision-qwen2-72b-ov 72 0.020 0.132 0.017 0.033 0.021 0.045 Low Large
Ovis1.6-Llama3.2-3B 3 0.057 0.064 0.050 0.053 0.058 0.057 Low Small
InternVL2-1B 1 0.074 0.070 0.067 0.074 0.074 0.072 Low Small
llava_video_qwen2_72b 72 0.019 0.254 0.017 0.053 0.022 0.073 Low Large
Qwen2-VL-72B-Instruct 72 0.279 0.544 0.282 0.374 0.284 0.352 Moderate Large
VILA1.5-13b 13 0.378 0.422 0.383 0.391 0.382 0.391 Moderate Medium
Pixtral-12B 12 0.452 0.469 0.453 0.454 0.453 0.456 Moderate Medium
VILA1.5-3b 3 0.457 0.609 0.469 0.536 0.470 0.508 Moderate Small
InternVL2_5-2B 2 0.500 0.538 0.505 0.523 0.499 0.513 Moderate Small
InternVL2_5-2B-MPO 2 0.518 0.558 0.519 0.534 0.517 0.529 Moderate Small
NVLM 72 0.588 0.595 0.598 0.595 0.588 0.593 Moderate Large
Ovis1.6-Gemma2-9B 9 0.600 0.593 0.600 0.602 0.600 0.599 Moderate Medium
Qwen2-VL-2B-Instruct 2 0.610 0.594 0.606 0.601 0.612 0.605 Moderate Small
Chat-UniVi-7B-v1.5 7 0.662 0.642 0.663 0.661 0.661 0.658 Moderate Medium
Chat-UniVi-7B 7 0.667 0.666 0.666 0.666 0.666 0.666 Moderate Medium
molmo-7B-O-0924 7 0.667 0.667 0.667 0.667 0.667 0.667 Moderate Medium
Video-LLaVA-7B-HF 7 0.667 0.667 0.667 0.667 0.667 0.667 Moderate Medium
molmo-72B-0924 72 0.667 0.667 0.667 0.667 0.667 0.667 Moderate Large
Vintern-3B-beta 3 0.670 0.669 0.674 0.669 0.670 0.670 Moderate Small
Phi-3.5-Vision 4 0.676 0.822 0.677 0.682 0.677 0.707 Moderate Small
InternVL2-8B 8 0.705 0.761 0.689 0.740 0.711 0.721 Moderate Medium
Aria 25 0.717 0.738 0.716 0.719 0.716 0.721 Moderate Medium
molmo-7B-D-0924 7 0.833 0.833 0.832 0.833 0.833 0.833 High Medium
molmoE-1B-0924 1 0.842 0.842 0.842 0.842 0.842 0.842 High Small
Llama-3.2-11B-Vision-Instruct 11 0.846 0.847 0.848 0.847 0.845 0.847 High Medium
InternVL2_5-26B-MPO 26 0.848 0.848 0.847 0.848 0.848 0.848 High Large
Llama-3.2-90B-Vision-Instruct 90 0.854 0.853 0.853 0.853 0.854 0.853 High Large
InternVL2_5-26B 26 0.858 0.858 0.858 0.858 0.858 0.858 High Large
InternVL2_5-4B 4 0.860 0.861 0.860 0.861 0.860 0.860 High Small
InternVL2_5-38B-MPO 38 0.857 0.868 0.859 0.868 0.859 0.862 High Large
InternVL2_5-8B-MPO 8 0.864 0.864 0.864 0.864 0.864 0.864 High Medium
InternVL2-40B 40 0.863 0.870 0.864 0.870 0.865 0.866 High Large
InternVL2_5-38B 38 0.871 0.875 0.872 0.875 0.871 0.873 High Large
InternVL2-26B 26 0.872 0.876 0.872 0.874 0.873 0.873 High Large
InternVL2_5-8B 8 0.875 0.875 0.875 0.875 0.875 0.875 High Medium
VILA1.5-40b 40 0.879 0.880 0.878 0.880 0.879 0.879 High Large

Table 7: Performance metrics for various models.
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