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Abstract
Due to the sensitive nature of personally iden-
tifiable information (PII), its owners may have
the authority to control its inclusion or request
its removal from large-language model (LLM)
training. Beyond this, PII may be added or
removed from training datasets due to evolving
dataset curation techniques, because they were
newly scraped for retraining, or because they
were included in a new downstream fine-tuning
stage. We find that the amount and ease of PII
memorization is a dynamic property of a model
that evolves throughout training pipelines and
depends on commonly altered design choices.
We characterize three such novel phenomena:
(1) similar-appearing PII seen later in training
can elicit memorization of earlier-seen se-
quences in what we call assisted memorization,
and this is a significant factor (in our settings,
up to 1/3); (2) adding PII can increase
memorization of other PII significantly (in our
settings, as much as ≈7.5×); and (3) removing
PII can lead to other PII being memorized.
Model creators should consider these first- and
second-order privacy risks when training mod-
els to avoid the risk of new PII regurgitation.

1 Introduction

One of the most common methods to adapt large
language models like ChatGPT (Achiam et al.,
2023) and Gemini (Gemini Team et al., 2023)
for specific applications is to fine-tune them on
domain-specific datasets.1 When these datasets
contain private or personal data, models may be
at risk of memorizing2 and regurgitating (Carlini
et al., 2022b) this information. Though it is com-
mon to filter out sensitive information3 such as

*Equal senior authorship.
1See https://platform.openai.com/docs/guides/

fine-tuning/when-to-use-fine-tuning or https:
//ai.google.dev/gemini-api/docs/model-tuning

2We adopt the definition of “memorization” as used at
www.genlaw.org/glossary.html

3We focus on PII as a more concrete privacy risk, though
note that our results likely also extend to broader types of sen-
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Figure 1: We explore a phenomenon we call assisted
memorization, where unique PII that appeared earlier in
the training at step i−1 and was not extracted at that step
becomes extractable at a later step i, after fine-tuning
on other PII.

PII (Gemma Team et al., 2024b), some sensitive
information may still remain (Vakili et al., 2022).
Moreover, some downstream tasks, such as health-
care, may require PII, making eliminating PII com-
pletely from model training datasets challenging.

Modern-day language models deployed in real-
world settings are also increasingly dynamic: it is
common practice to continually update or retrain
them with new and/or additional data (Razdaibied-
ina et al., 2023; Ke et al., 2023; Jang et al., 2022;
Jin et al., 2022), e.g., if new users opt to share their
data. There may also be data removal requests from
existing users under the right to be forgotten (Shas-
tri et al., 2019). Here, machine unlearning (Cao and
Yang, 2015; Bourtoule et al., 2021a) is often the
proposed solution by enabling post-hoc removal of
data (e.g., PII) from neural models after training.

LLMs are known to memorize and regurgitate
personal information and PII (Carlini et al., 2021;
Nasr et al., 2023), which is a concrete privacy harm
we study. In this literature, little focus has been
given to how this may arise dynamically as a part
of a machine learning system. In this work, we
study how various actions (continually training on
more data, re-training with new data, or re-training

sitive information. We thus use these terms interchangeably.
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after removing data) may influence PII memoriza-
tion and extraction. We systematically study these
operations to determine which improve or worsen
the memorization of PII. In particular, we have four
main contributions4:

1. We observe the phenomenon of assisted mem-
orization: PII may not be memorized imme-
diately after it is seen, but may be memorized
later in training (§5 and Figure 1). We find
this is largely influenced by n-gram statistics.

2. We propose a taxonomy of types of PII memo-
rization that arise while training an LLM and
show how they manifest (§ 4 and Figure 2).

3. We observe that introducing new PII into train-
ing data may worsen extraction of PII (§6.1).

4. We observe that reducing the PII memoriza-
tion risks for one individual can worsen these
risks for another individual (§6.2).

2 Related Work

Membership Inference is one of the most com-
mon privacy attacks on neural models (Shokri et al.,
2017). Though successful on computer vision mod-
els (Yeom et al., 2018; Salem et al., 2018; Sablay-
rolles et al., 2019; Choquette-Choo et al., 2021;
Carlini et al., 2022a; Jagielski et al., 2024), these
attacks are not often successful on LLMs (Duan
et al., 2024a) which we study. Thus, and because
verbatim extraction poses a stronger privacy risk,
we focus on memorization and extraction.

Memorization & Extraction studies when a text
is trained on and generated by a model. This is
widely studied (Carlini et al., 2019, 2021, 2022b;
Lee et al., 2022; Zhang et al., 2023; Ippolito et al.,
2023; Biderman et al., 2023a,b; Kudugunta et al.,
2024; Nasr et al., 2023; Borkar, 2023; Chang et al.,
2023; Ozdayi et al., 2023; Schwarzschild et al.,
2024; Duarte et al., 2024; Wang et al., 2024). These
works are often focused on the broad phenomenon,
and not the nature of the data, e.g., if it were sen-
sitive as in our work. Relatively fewer works have
considered this setting. Huang et al. (2022) study if
information about specific entites can be extracted;
Panda et al. (2024) study if LLM’s can be poisoned
to memorize specific PII; Lukas et al. (2023) for-
malize PII extraction, proposing several attacks

4Code available at https://github.com/
jaydeepborkar/Assisted-Memorization

and studying the efficacy of various existing de-
fenses; Mireshghallah et al. (2022) and Zeng et al.
(2024) study memorization during fine-tuning; and
Lehman et al. (2021) found that extracting sen-
sitive data, using simple techniques, from BERT
trained on clinical notes was largely unsuccessful.
This line of work has become important for prac-
tical privacy and memorization audits (Anil et al.,
2023; Gemini Team et al., 2023; Dubey, 2024),
which also often include PII memorization evalu-
ations (Gemini Team et al., 2023, 2024; Gemma
Team et al., 2024a,b; CodeGemma Team et al.,
2024).

Dynamics of Memorization. Most related to our
work are those exploring memorization through-
out training. It is known that language models
memorize more as training progresses (Tirumala
et al., 2022; Prashanth et al., 2024; Huang et al.,
2024) and exhibit forgetting of memorized exam-
ples (Jagielski et al., 2022). Biderman et al. (2023a)
found that there is not high correlation between
memorized sequences within checkpoints of a train-
ing run. Duan et al. (2024b) show a similar no-
tion of “latent memorization” but that instead uses
Gaussian noise to uncover these latent memories;
instead, our “assisted memorization” shows this
can happen in normal training runs through only
naturally occurring text sequences. The literature
so far lacks a clear understanding of the complete
memorization landscape throughout training. In
our work, we provide a complete taxonomy and un-
cover novel forms of memorization within training
dynamics.

Unlearning Machine unlearning methods have
been proposed as an efficient way to erase data
from neural networks (Bourtoule et al., 2021b; Izzo
et al., 2021; Thudi et al., 2022). These methods
are motivated by scenarios where users may re-
quest for their data to be removed from a trained
model (possibly due to legislative considerations
like GDPR (Fabbrini and Celeste, 2020)). While
many techniques have been proposed for machine
unlearning, we focus on the simple strategy of re-
training without relevant data points which is the
current gold standard, though it may not be applica-
ble to all practical scenarios (Cooper et al., 2024).
Most related to our work are works that show un-
learning can cause additional privacy risks: Chen
et al. (2021) show this can lead to stronger mem-
bership inference attacks and Carlini et al. (2022c);
Hayes et al. (2024a) show that unlearning can in-
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 Memorization Category  Extracted at i-1       Extracted at i

Immediate ✔ N/A

Forgotten ✔ ✖
Retained ✔ ✔

Assisted ✖ ✔

Trained to Step i-1

Figure 2: Taxonomy of memorization for a contin-
uous training setup. We define immediate, retained,
forgotten, and assisted (described in Section 4.1). Note
that text classified as assisted memorization may also
be forgotten or retained for steps i+ 1 onwards.

crease membership inference accuracy on other
training samples.

3 Experimental Setup

Our goal is to study how memorization of PII man-
ifests during training.5 This includes continual
training or fine-tuning setups in §4 and re-training
or unlearning setups in §6. First, we describe our
general experimental setup.

Training Setup We use the GPT-2-XL
model (Radford et al., 2019), which has 1.5B
parameters for our primary experiments, and also
experiment with Llama 3 8B (et al., 2024)6 and
Gemma 2B (Gemma Team et al., 2024a). We
fine-tune these models with a linear schedule:
initial and end learning rate of zero, 500 step
warmup, cooldown, and peak learning rate of
2 × 10−5. We use 1 × 10−2 weight decay and
a batch size of 8. We run experiments 5 times,
sampling fresh randomness (model weights, data
order, etc.) each time.

We fine-tune these models on two datasets.
First, we use a modified version of the WikiText-
2 dataset (Merity et al., 2016a) to include unique
emails from the Enron dataset7. We take the en-
tire WikiText-2 dataset and insert E unique email
addresses (herein, emails) randomly into each pas-

5We do not state or imply [here] that a model “contains” its
training data in the sense that there is a copy of that data in the
model. Rather, a model memorizes attributes of its training
data such that in certain cases it is statistically able to generate
such training data when following rules and using information
about features of its training data that it does contain.

6Llama experiments in this paper were conducted only by
parties outside of Google.

7https://www.cs.cmu.edu/enron/

sage. We perform random insertions to eliminate
any contextual dependency between the emails and
the surrounding text, which the model could oth-
erwise use to predict the emails more accurately.
This allows us to study memorization in a worst-
case scenario where no contextual cues are avail-
able (more details in Appendix A). We concatenate
all passages during training and divide them into
blocks of 128 tokens. Second, we use the Pile of
Law dataset (Henderson et al., 2022) (Appendix C).
We ensure no emails were already memorized by
querying the base models with the same prompts.
Lee et al. (2022) and Kandpal et al. (2022) found
data duplication strongly increases memorization.
In our study, all emails occur in the training corpus
exactly once.

Sampling We closely follow the methodology
of Carlini et al. (2021); Nasr et al. (2023). We
focus on “extractable memorization” and use ten-
token sequences sampled uniformly at random
from Common Crawl. We randomly sample a
unique set of 25, 000 different prompts for each
experiment. We obtain a 256 token output from
the model for each prompt and evaluate it for suc-
cessful extraction. Our method may lead to false
negatives; however, this would only underestimate
the PII regurgitation, and, we further believe our di-
verse and large prompt dataset reasonably captures
the regurgitation rates. To further minimize false-
negatives, where denoted we also evaluate “discov-
erable” memorization, where we prompt with the
exact prefix the model was trained on (Appendix B
Section B.2). We use greedy decoding, or top-
k = 40 sampling when specified.

Defining Memorization and Extraction We pri-
marily use the definition of extractable memoriza-
tion (and, where denoted, discoverable memoriza-
tion (Section B.2)) from Nasr et al. (2023). Herein,
we will refer to a success as an extraction, which is
whenever an email is contained both in the training
dataset and a language model’s generation. For-
mally, let D be the training dataset for a language
model M . Let f be a chosen sampling scheme
that takes an input text prompt p and returns the
conditional generation s = fM (p). An email ei is
said to be extracted if ei ∈ D and ∃p : ei ∈ fM (p).

Checking for Memorized PII We use a regular
expression to identify any emails within the gen-
erations that belong to the model’s training data.
Unlike previous approaches that create a pool of

18705

https://www.cs.cmu.edu/ enron/


generations by filtering based on factors like per-
plexity and entropy (Carlini et al., 2021), we evalu-
ate all 25,000 generations for memorization.

4 A Dynamic Lens on PII Memorization

Production language models today consist of many
training stages (pre-training, post-training, product-
specific fine-tuning, etc.) and may be continually
updated or refreshed with new data, e.g., to in-
corporate new human data using RLHF (Stiennon
et al., 2020). These stages may incorporate varying
degrees of personal information. This raises the
question: how does memorization of sensitive data
like PII evolve in this dynamical system?

Continuous Training Setup. To study this ques-
tion, we use the simplest setup that generally cap-
tures all of the above scenarios: we study mem-
orization throughout supervised fine-tuning. We
train a model by keeping the rate of emails seen
constant and save checkpoints at regular intervals
(for efficiency, only every 10% of training). Details
on the dataset construction are in §3.

4.1 Categorizing Memorization Phenomena

Memorization analysis is typically based on only
the final model, in both academia (Carlini et al.,
2022b) and industry (Gemini Team et al., 2024;
et al., 2024; Gemma Team et al., 2024b). We now
present our taxonomy for dynamic memorization
analysis and use it to analyze how memorization
manifests throughout continual training.

We begin by looking at the first step of training.
There are but two options for any PII seen in this
step: for the model to memorize it, or not. We
call this type of memorization immediate, since by
construction our dataset contains this email exactly
once. Now, say this model were trained for another
step. This new model may observe new (immedi-
ate) memorization. Beyond this, we would expect
that the rest of the memorization overlaps with the
prior model, which we call retained memorization,
similar to analysis in Biderman et al. (2023a). Fi-
nally, Jagielski et al. (2022) would tell us that we
may also expect some sequences to be forgotten.
However, we observe an additional phenomenon:
assisted memorization. This occurs when PII not
memorized at the immediate checkpoint becomes
extractable later in training. We discuss this in
more detail in § 5. Figure 2 shows our complete
memorization taxonomy.

4.2 Experimental Results

Using this taxonomy of immediate, retained, and
forgotten memorization (and assisted memoriza-
tion), we characterize all the extracted emails we
observe throughout training (using the setup de-
scribed above). Our results are shown in Figure 3.
We observe that there is a trend that more imme-
diate memorization occurs near the beginning of
training, whereas there is a lower rate of immediate
memorization later in training. This trend is partic-
ularly true for larger models, likely because these
models memorize faster.

We also find that models are constantly forget-
ting. Throughout the entirety of training (includ-
ing the beginning and end), many models (see Ap-
pendix C for more results on other models and
datasets) exhibit a cycle of forgetting and imme-
diate memorization. This result sheds new light
on the dynamic view of memorization: which sam-
ples are memorized by a model may be more a
function of stochasticity than previously thought.
The choice of which model to release may play a
larger role in determining which samples are mem-
orized, due to which samples were forgotten or
re-memorized than previously thought due to the
stochasticity in data sampling.

Not all memorization occurs immediately.
When using our taxonomy to analyze memorizing,
we observe that a significant fraction of memoriza-
tion samples are not classified by these three cate-
gories. This leads to another interesting finding: a
lot of memorization is not immediately memorized.
In other words, at a given step, other text that was
not trained on at this step is now extractable by the
model.

Forgetting and Re-Extraction of PII. Our re-
sults in Figure 3 show that LLMs do forget some
of the previously memorized PII as training pro-
gresses. Prior work has shown that some examples
memorized early in training may be forgotten after
additional training (Jagielski et al., 2022). Further,
we also observe that some forgotten emails get re-
extracted when there is n-gram overlap between
tokens from the email and tokens in the data during
further training. This phenomenon is illustrated in
Figure 4, which shows how previously extracted
samples that the model later forgets can reappear
at subsequent checkpoints. Each cell indicates the
percentage of emails extracted by both the corre-
sponding checkpoint and the reference checkpoint
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(diagonal cell). Since each diagonal cell serves as
its own reference, its value is always 1.

5 Assisted Memorization: Training on
One’s PII Can Reveal Another’s

In Figure 3, we see that a large fraction of memo-
rization is assisted. This is especially true later in
training, where we observe that more memoriza-
tion is assisted than immediate, specifically a mean
rate of 0.03 for assisted compared to 0.01 for im-
mediate. This finding is not model- or data-specific,
as our results in Appendix C (e.g., Figures 17 and
18) show similar trends.

The existence of assisted memorization brings
to light a deeper privacy concern. One may expect
that data seen earlier is less vulnerable to privacy
risks through a form of “recency bias” (implied by
forgetting effects). Our findings of assisted mem-
orization, however, show that this may not always
be the case; the existence of this effect with sensi-
tive data like PII is of particular concern because
it shows that downstream training stages must be
careful how they may elicit the extraction of earlier
training data. The most common practical sce-
nario for this is in the pre-training/fine-tuning setup
that current LLMs undergo. Our results show that
fine-tuning even on natural (non-adversarially) con-
structed training datasets can uncover the extrac-
tion of PII in pre-training data. Prior work (Nasr
et al., 2023) only showed that this may be possible
with adversarial constructions. Pragmatically, our
results also show that privacy and memorization
audits, especially when PII is of concern, should
encompass all data in the training history, and not
just data from the most recent training stage.

5.1 Assisted Memorization Is Not Simply
Delayed

Above, we found that extraction can be elicited
at training steps later than where a piece of sen-
sitive text was seen during training, in what we
call assisted memorization. Here, we explore to
what degree this assisted memorization is assisted
by particular text in the training data, or if it was
inevitable and simply delayed.

We find emails that were identified as assisted
memorization at various points in training. Our
aim is to re-perform training between when they
were first seen and when they were later extractable
by selecting entirely fresh data from the remainder
of the (unseen) training dataset. Then, we can

observe if only this unique set of data elicited the
memorization or if any batch could.

We know when data samples were first seen
from data sampling. Then, we must identify ex-
actly when each email became extractable, as any
training beyond this may lead to forgetting. Given
that we only checkpoint our models every 10%
of training, for efficiency, we do not have this a
priori. To determine this, we use a binary search,
performing an extraction test on each iteration of
the search. This significantly reduces the overhead
as the extraction test is expensive (recall we prompt
the model thousands of times as described in §3).

Overall, we run this procedure on four unique
emails and with seven trials each. We find that
emails became extractable in only 35.7%± 15.9 of
them on average. While this refutes the idea that
there may be a single unique set of data that leads
to assisted memorization, this shows that most sets
of data do not lead to it. Next, we explore what
characteristics the successful trials share.

5.2 Assisted Memorization Is Triggered by
Training on Specific n-grams

Our analysis here is inspired by Lee et al. (2022),
who show that data repetitions (duplication) heavily
influence memorization of text. While our data
setup in §3 has no exact duplicates of these emails,
there can still be overlaps of important n-grams.

Causally Removing n-grams. To study this, we
perform a causal intervention whereby we remove
all training sequences that have high n-gram over-
lap with emails identified as assisted memorization.
We use a similar setup to the previous §5.1 except
that we notably remove any text that overlaps with
the assisted memorized emails. For each trial of
this experiment, we select a different checkpoint
Mi throughout our continuous fine-tuning setup;
let Di be the set of training sequences used to train
Mi from Mi−1. We take all emails identified as
assisted memorization on Mi; for each, we con-
struct a simple regex-based filter that checks for
names in the email address based on common email
formatting patterns (e.g., name@gmail.com or first-
name.lastname@gmail.com). We use these regex
filters to remove any text in Di and then retrain Mi

from Mi−1 on this new dataset.
Across all 30 checkpoints and 5 seeds, we find a

total of 177 emails that were assisted memorized.
After intervening to remove overlapping n-grams
from batch Di, all but 10 of these assisted memo-
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Figure 4: Forgotten PII is re-extracted later. The
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extraction at each checkpoint; off-diagonal cells show
the fraction of emails from the reference cell that are
also memorized in the current cell. Takeaway: mem-
orized PII can sometimes slip out of memory, only to
reappear once certain overlapping tokens occur in future
training steps.

rized emails were no longer memorized.

Features Associated with Memorization
Next, we ask: when multiple emails share
a firstname, why might a particular email
with a different lastname get assisted memo-
rized over another? For example, why might
john.mccarthy@gmail.com be memorized over
john.williams@gmail.com. We train a simple
logistic regression model on features capturing
n-grams overlaps, last-name counts, and domain
counts for all assisted memorized emails (positives)
and those not memorized (negatives). More details

are in Appendix D.
Our logistic regression model is trained to pre-

dict assisted memorized emails from a dataset con-
sisting of these emails labeled as positive, and other
emails sharing the same firstname but a different
lastname as negatives. We use a standard 5-way
cross validation setup with 10 trials. Full details are
in Appendix D. The model achieves a precision of
0.937 and recall of 0.874 indicating high success.

In Figure 5, we visualized the logistic regression
model’s score against the email likelihood from M ,
computed against the successful prompt that led to
extraction. This shows that assisted memorization
emails tend to be well classified from these simple
features. We observe that n-gram statistics were
the most important feature, further supporting our
conclusions above (see Table 1 of Appendix D
where we report the feature weights).

6 Do PII Opt-ins/Opt-outs Impact
Extraction?

6.1 Contributing More Data via Opt-ins

If many new users opt-in to contribute data to a
model, then the model owner may want to incorpo-
rate new information (and sometimes, new PII) into
the finetuning pipeline. One of the simplest ways
to do this is by adding the new PII to existing train-
ing data and re-finetuning the model from scratch.
From our results in §5, we know that continuing
to train a model on additional PII could lead to in-
creased extractability of previously unextracted PII.
In this section, we study how retraining with addi-
tional PII changes the extractability of prior data.

Setup To mimic the above scenario, we design
a Retraining Experiment where we add more
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emails to the existing dataset and re-finetune the
model on the updated dataset. We write Dx% as
the finetuning dataset containing x% of the emails
from the global set of emails X . We construct 10
different finetuning datasets containing increasing
amounts of emails: D10%, D20%, · · · , D100%. In
Dx%, we include x% of the global pool of emails
X , such that, if a < b, all emails that are found in
Da% are also found in Db%. Before constructing
these datasets, we randomly shuffle the emails in
X to ensure a uniform distribution of emails in
each dataset.

Next, we train ten distinct models M1 to M10,
where Mi is trained on D10i% for three epochs,
following the same training setup described in §3.
We highlight that the only change between these
models is the additional emails. Otherwise, we use
the same training process and the same prompts for
all models when decoding.

Adding More PII Increases Extraction of Exist-
ing PII. We report the results of our experiment
in Figure 6, for models finetuned for three epochs
(more results in Appendix E). We highlight two
major findings.

First, we find that the number of extracted emails
increases substantially with the amount of PII con-
tained in the model’s fine-tuning set. This can be
seen on the diagonals of Figure 6, which show
the total amount of PII extracted from the relevant
model. For top-k sampling, we see that 283 emails

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
Model

D10%

D20%

D30%

D40%

D50%

D60%

D70%

D80%

D90%

D100%

Da
ta

se
t

5 3 7 15 12 23 20 30 26 39

7 10 21 23 40 40 43 54 68

17 31 33 53 58 55 75 89

43 46 70 79 68 96 121

57 86 94 87 114 141

103 113 102 142 167

129 116 166 190

135 191 221

216 251

283

Top-k

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
Model

3 3 4 2 6 5 7 4 6 4

4 4 3 9 9 8 5 9 8

6 6 10 9 9 7 11 9

6 10 11 9 9 12 12

13 14 9 11 14 14

17 9 11 14 15

10 13 16 17

16 16 19

16 21

24

Greedy
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Figure 6: Adding more PII leads to more extrac-
tion. Each row corresponds to a dataset Dx%, and
each column corresponds to the model Mj trained with
j × 10% of the emails. The values show how many
emails in Dx% are extracted by Mj . Takeaway: intro-
ducing new PII during re-finetuning (moving along the
x-axis) also increases the extraction of old PII that was
already present in the training set. This effect can in-
crease extraction by a factor of over 7× in our settings,
as seen in the extraction of emails in D10% from M10.

are extracted from M10, compared to only 57 at
M5, which was trained on half as many emails—
the increase in extraction from top-k sampling is
superlinear in the fraction of emails included in the
model’s finetuning set. The increase is still substan-
tial, but not superlinear, for greedy sampling.

Our second and main finding is that the inclusion
of more PII leads to existing PII being at higher risk
of extraction from top-k sampling. This can be seen
from the general positive trend in extracted emails
for each dataset Dx% along the x axis. To validate
this result, we run a binomial hypothesis test, for
whether top-k sampling extracts more emails from
Di% when run on Mj (j > i) than when run on
Mi. With 45 such comparisons, 41 show more
extraction for models which see more emails (p <
10−8, and p < 10−4 for 1 and 2 epochs).

6.2 Protecting PII via Opt Outs

As data opt-outs are becoming increasingly
common on the web (LinkedIn, 2023), we first
study how removing a user’s PII from the training
data can inadvertently trigger the extraction of
additional PII. We then investigate factors that
correlate to PII becoming extractable once similar
PII is removed.

Setup We study the simplest unlearning tech-
nique, often referred to as exact machine unlearn-
ing (Bourtoule et al., 2021a): removing all relevant
PII from the dataset and retraining, or as here
re-fine-tuning, the model. This may be triggered
if users submit an opt-out request. Since retraining
after each request is expensive, model owners may
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Figure 7: Removing extracted PII from the training data
and retraining can lead to new memorized PII. After four
removal-and-retrain cycles (Update 1–4), no additional
PII is extracted under the same 25k prompts and greedy
decoding. START denotes the original model.
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Figure 8: Perplexity and zlib entropy of memorized
emails. Emails extracted in the initial model (blue) and
emails extracted in later re-finetuned models (green)
have lower perplexities than emails that were never ex-
tracted by any model (grey). This clustering suggests
that the newly-extracted (green) emails were near the
threshold of memorization from the outset.

collect and process these requests in batches.
Following a protocol similar to Carlini et al.

(2022c), our experimental procedure is: (1) Extrac-
tion: Prompt the current model M with 25,000
fixed prompts and sample using greedy decoding
to identify memorized emails. Let E be the set
of extracted emails. (2) Removal: Remove E
from D and re-finetune the base model on D \ E,
producing a new model M̂. (3) Repeat: Prompt
M̂ again with the same prompts, discovering any
newly memorized emails Ê. We iterate until no
more emails are extracted using this fixed set of
prompts and decoding strategy.

Protecting One Person’s PII May Leak An-
other’s As mentioned above, in each iteration,

we (1) prompt the current model M (trained on
dataset D) with 25,000 fixed prompts, (2) remove
any newly discovered memorized emails E from D,
and (3) re-finetune the base model on D \ E. Fig-
ure 7 illustrates four such rounds (START through
Update 4). While the first update successfully re-
moves the previously identified emails from the set
of extracted PII, it simultaneously extracts a new
set of emails. By Update 4, no additional emails
are discovered under these prompts and greedy de-
coding, although changing prompts or sampling
strategies could still reveal further memorization.
Our results confirm that this layered memoriza-
tion—called the Onion Effect by prior work on
image classifiers (Carlini et al., 2022c)—extends
to language models: removing one layer of memo-
rized PII exposes a second layer, and so forth.

Removing Random Emails. We next conduct
a similar experiment but remove a random subset
of emails instead of the ones that are discovered
through extraction. Specifically, we sample 10%
of the total emails in D uniformly at random and
call this set E. We then fine-tune a new model M̂
on D \ E. Prompting M̂ with the same 25,000
prompts and sampling with greedy decoding yields
a new set of extracted emails Ê. Thus, randomly
removing data can similarly expose new PII, under-
scoring how unlearning updates can inadvertently
introduce new privacy risks.

Controlling for Randomness During Training.
A natural question is whether any newly extracted
emails simply result from any randomness when re-
training a new model. For instance, models trained
with the same data order, same parameter initial-
ization, and same hyperparameters could still dif-
fer during inference as GPU operations are non-
deterministic (Jagielski et al., 2020). We want to
ensure that new extractions are solely the result of
removing particular emails. To this end, we train
five such new models and extract emails by feed-
ing the exact same prompts that we give to our
original model (M) and the models trained after
removing extracted and randomly sampled emails
(M̂). We sample all three sets of models with
greedy decoding and compare which emails were
extracted. Across all five trials and for both types
of removals (removing extracted emails and remov-
ing them randomly), the models re-finetuned-after-
removal reveal strictly more unique PII than these
fresh counterparts. Hence, the effect is not merely
a product of random training fluctuations but rather
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an outcome of selectively removing data from D.

PII on the Verge of Memorization Surfaces After
Others Are Removed Because we use a fixed
set of prompts and greedy decoding, we hypothe-
size that newly extracted emails in each unlearn-
ing round were already close to being memorized
under the original model. In other words, these
emails were initially “hidden” behind a first layer
of memorized PII. Once the first layer of emails is
removed, these nearly extractable emails become
more vulnerable.

To investigate this, we compare the perplexity
of the initial model on three categories of emails:
(i) those extracted in the initial model, (ii) those
that are extracted in subsequent rounds of removal
and refinetuning and (iii) those never extracted by
any model. We also measure their zlib entropy, a
compression-based proxy for memorization (Car-
lini et al., 2021; Prashanth et al., 2024; loup Gailly
and Adler). As shown in Figure 8, newly-extracted
emails (green) cluster with those initially extracted
(blue), indicating that both groups have lower per-
plexity compared to never-extracted emails (grey).
This supports our hypothesis: once one layer of
extracted PII is removed from the training set, the
next-likeliest set of emails crosses the threshold
into extraction. Iterating this process eventually
exhausts these “hidden layers,” although more so-
phisticated prompts or sampling strategies could
still uncover additional memorization.

7 Conclusion

We study how the actions of continually training on
more data, re-training with new data, or re-training
after removing data can have ripple effects for pri-
vacy. In particular, we propose the phenomenon of
Assisted Memorization where examples that aren’t
extracted at existing checkpoints can get extracted
later. This could create a false impression of pri-
vacy for examples that don’t get extracted at a par-
ticular checkpoint, as training further on similar-
appearing examples could lead to their extraction.
We also find that including more PII in the training
data can degrade privacy of existing PII by putting
them at a higher risk of extraction. Furthermore,
removing particular PII examples from training
data could cause other examples to be extracted.
This underscores the need for more holistic audits
for memorization, where examples that aren’t ex-
tracted at a particular timepoint are also evaluated
for any potential risks.

Limitations

In this study, we use emails as an example of PII
because they are a common form of personal in-
formation and can be readily studied using pub-
licly available datasets, e.g., the Enron corpus. We
do not examine other forms of PII, such as credit
card numbers or mailing addresses, partly because
they are not publicly available. However, analyzing
these types of PII is important to determine whether
certain categories are more vulnerable to the mem-
orization risks identified here. We believe that our
methods will generalize to other forms of PII with
minor adjustments. We also observe a phenomenon
akin to onion memorization (Carlini et al., 2022c),
where removing particular emails from the dataset
and retraining the model (exact unlearning (Bour-
toule et al., 2021b)) can cause new emails to be
extracted. A promising direction is to investigate
whether this effect persists under approximate un-
learning techniques (e.g., (Hayes et al., 2024a)),
where the model is not fully retrained from scratch.
Furthermore, our focus here is solely on extraction
risks for training-data emails, but other generated
or partially memorized emails could also pose pri-
vacy concerns—particularly if they can serve as
keys to uncover additional information about spe-
cific individuals.

Ethics Statement

We rely on the publicly available Enron Corpus
to create our fine-tuning datasets, acknowledging
that some of its contents may include sensitive or
personally identifiable information. To mitigate
privacy risks, we follow standard diligence prac-
tices for data handling. While no additional raw
text or private details are disclosed beyond those
already publicly released, we analyze memoriza-
tion specifically to highlight risks inherent in large
language models, rather than to reveal more per-
sonal data. Our experiments use established public
models and datasets (GPT-2 family, Gemma 2B,
Llama 3 8B, Wikitext, and Pile of Law) to facilitate
reproducibility while maintaining responsible data
practices. We align our work with accepted norms
for ethical use of legacy datasets like Enron and
emphasize the importance of privacy-preserving
training and unlearning techniques for future sys-
tems.
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A More Details on Dataset Construction

While we insert emails into each message at ran-
dom positions to study the worst-case scenario for
memorization, we also want to make sure that the
utility of our fine-tuned model is not degraded.
To this end, we compare the perplexity values of
the original and fine-tuned models on a held-out
WikiText-2, as well as a new WikiText-103 (Merity
et al., 2016b) test dataset. We compute perplex-
ity values using a sliding window of 1024 tokens
(context window of GPT-2 XL). The perplexity of
the base GPT-2 XL model on the WikiText-2 test
set was 15.20, while that of the fine-tuned model
was 11.35. The perplexity of the base model on
the WikiText-103 set was 16.49, and the fine-tuned
model had a perplexity value of 13.23. These val-
ues indicate that the utility of our model is not
degraded post-fine-tuning.

B Hyperparameters that Influence PII
Extraction

B.1 Greedy vs. Top-k Sampling

Model owners can employ either deterministic de-
coding such as greedy or stochastic sampling meth-
ods (such as top-k (Fan et al., 2018) or top-p (Holtz-
man et al., 2020)) to improve the quality of the
generated text. Several commercial APIs providing
text-generation access to models such as ChatGPT8,
Gemini9, and Claude10 use a combination of top-k
and top-p parameters to generate text and extrac-
tion rates vary across sampling schemes (Hayes
et al., 2024b). This makes it essential to study
how PII extraction varies across different sampling
methods. We find that we can extract significantly
more PII using top-k sampling than greedy decod-
ing.

We draw the following comparisons: (1) The
ratio of total emails extracted using top-k sampling
compared to greedy decoding; (2) Total emails ex-
tracted using a fixed set of 25,000 prompts for both
sampling methods; and (3) Total emails generated
by both sampling methods when conditioned on
same 25,000 prompts.

It can be seen in Figure 9 that top-k can extract
emails over 800 times higher than greedy decod-
ing. Top-k also consistently generates more unique

8https://platform.openai.com/docs/guides/
text-generation

9https://ai.google.dev/gemini-api/docs/
text-generation?lang=python

10https://docs.anthropic.com/en/api/complete

emails than greedy. Model owners might employ
top-k sampling as it produces more diverse and
higher-quality text compared to greedy. However,
this approach may pose privacy risks, such as in-
creased memorization and leakage of personal in-
formation.

B.2 Prompting
We fine-tune our model on full WikiText-2 with
Enron emails in it for 20 epochs and prompt af-
ter every epoch in the following manner: (1)
Extractable Prompting using random ten-token
prompts sampled from Common Crawl (as men-
tioned in § 3), and (2) Discoverable Prompting
where we prompt with prefixes that occur before
an email in the training data (using the definition of
discoverable memorization from Nasr et al. (2023))

As observed in Figure 10, we find that for both
greedy decoding and top-k sampling, extractable
memorization is more than discoverable memoriza-
tion in the initial epochs. However, discoverable
memorization starts increasing significantly after
epoch 5 for greedy decoding and epoch 7 for top-
k sampling. By the end of the 20th epoch, dis-
coverable memorization is over 92% more than
extractable memorization.

C More Results on PII Memorization in
Continuous Training.

More results from § 4: We fine-tune various
models on two datasets—Wikitext and the Pile of
Law—and show that our findings are generalizable.
We only use greedy decoding for sampling from
these models.

GPT-2 XL trained on the Pile of Law dataset:
Figure 11 shows that our results are generalizable
also on the Pile of Law dataset (Henderson et al.,
2022). We extract the congressional_hearings
instance from the dataset and insert enron emails
in it according to our setup in § 3 while keeping
the total number of tokens in the dataset the same
as our original Wikitext dataset.

Llama3 8B and Gemma 2B models trained on
our original dataset (WikiText + Enron emails):
Our results generalize to the current state-of-the-
art models, including Llama3 with 8B parameters
(Figure 12) and Gemma 2B base model (Gemma
Team et al., 2024a) (Figure 13).

GPT-2 Large 774M, Medium 355M, and Small
124M models trained on our original dataset
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Figure 9: (Left) We can extract significantly more emails with top-k than with greedy decoding using the same set
of prompts. (Middle) We can extract up to 800 times more emails using top-k. (Right) top-k generates more emails
than greedy for the same amount of emails seen during training. The x-axis denotes a separate model obtained after
adding an additional 10% of total emails in the training data.
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Figure 10: Comparing extractable memorization with discoverable memorization over 20 epochs.

(WikiText + Enron emails): We also train the
remaining members from the GPT-2 model family:
Large (Figure 14), Medium (Figure 15), and Small
(Figure 16). We observe that assisted memorization
becomes less prominent in smaller models.

Rate of immediate vs. assisted memorization:
We find that the rate of assisted memorization is
higher than that of immediate memorization and
the difference increases as training progresses. Fig-
ure 17 & Figure 18 show this trend for different
models.

Forgetting of immediate vs. assisted memorized
examples: We do not observe any significant dif-
ference between the forgetting rates of both. Fig-
ure 19 & Figure 20 show this for GPT-2 XL, Fig-
ure 21 shows this for Gemma 2B, and Figure 22
shows this for Llama3 8B.
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Figure 11: Different memorization categories during continuous training for GPT-2 XL trained on the Pile of Law +
Enron emails.
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Figure 12: Different memorization categories during continuous training for Llama3 8B trained on WikiText +
Enron emails.
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Figure 13: Different memorization categories during continuous training for Gemma 2B trained on WikiText +
Enron emails.
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Figure 14: Different memorization categories during continuous training for GPT-2 Large trained on WikiText +
Enron emails.
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Figure 15: Different memorization categories during continuous training for GPT-2 Medium trained on WikiText +
Enron emails.
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Figure 16: Different memorization categories during continuous training for GPT-2 Small trained on WikiText +
Enron emails.

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

% of Epoch

0.0

2.5

5.0

As
sis

te
d 

/ I
m

m
ed

ia
te

y=1

Epoch 1

11
0%

12
0%

13
0%

14
0%

15
0%

16
0%

17
0%

18
0%

19
0%

20
0%

% of Epoch

0.0

2.5

5.0

Epoch 2

21
0%

22
0%

23
0%

24
0%

25
0%

26
0%

27
0%

28
0%

29
0%

30
0%

% of Epoch

0

10

Epoch 3

GPT-2 XL WikiText
GPT-2 XL Pile of Law

Gemma 2B
Llama3 8B

GPT-2 L
GPT-2 M

GPT-2 S
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Figure 19: Forgetting rates for GPT-2 XL trained on WikiText + Enron emails. We do not observe any notable
difference in the forgetting rates, with assisted (15.54%) being marginally higher than immediate (12.08%).
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Figure 20: Forgetting rates for GPT-2 XL trained on the Pile of Law + Enron emails. We do not observe any notable
difference in the forgetting rates, with assisted (21.06%) being marginally higher than immediate (16.05%).
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Figure 21: Forgetting rates for Gemma 2B trained on WikiText + Enron emails. We do not observe any notable
difference in the forgetting rates, with assisted (20.69%) being marginally higher than immediate (18.05%).
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Figure 22: Forgetting rates for Llama3 8B trained on WikiText + Enron emails. We do not observe any notable
difference in the forgetting rates, with assisted (16.7%) being marginally higher than immediate (14.52%).
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D More Details on Assisted Memorization

We consider the following set of features for our
logistic regression model.

1. 2-, 3-, and 4-grams that overlap between to-
kens in an email and tokens in the data ob-
served up to checkpoint i − 1 (denoted as
2-gramprev, 3-gramprev, 4-gramprev). Addi-
tionally, we compute the overlap between to-
kens in an email and tokens in the data seen
between checkpoints i− 1 and i (denoted as
2-gramft, 3-gramft, 4-gramft).

2. Counts of lastname in the data seen up to
checkpoint i − 1 (denoted as lastnameprev)
as well as in the batches seen between check-
points i− 1 and i (denoted as lastnameft).

3. For each email, the number of times its do-
main (e.g., enron.com) occurs in the data up
to checkpoint i (denoted as domaincount).

Dataset Creation for Logistic Regression
Model. We create a dataset by collecting each
assisted-memorized email as a positive example
and non-memorized emails that share the same
firstname as negative examples. We normalize

features by the maximum value. We obtain 192 as-
sisted memorized emails and 886 non-memorized
emails in total. We train a logistic regresion
model on this dataset after downsampling the non-
memorized emails to achieve a 1:3 ratio between
positive and negative samples. On each trial, we
re-downsample the negative emails. We run 10
trials following 5-way cross-validation approach.
Table 1 shows the weights of our classifier.
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Feature Weight Description
2-gramft 7.029 2-grams that overlap between tokens in an email and tokens in the data seen

between checkpoints i− 1 and i.
3-gramft 0.887 3-grams that overlap between tokens in an email and tokens in the data seen

between checkpoints i− 1 and i.
4-gramft 0.682 4-grams that overlap between tokens in an email and tokens in the data seen

between checkpoints i− 1 and i.
2-gramprev -0.599 2-grams that overlap between tokens in an email and tokens in the data observed

up to checkpoint i− 1.
3-gramprev -0.651 3-grams that overlap between tokens in an email and tokens in the data observed

up to checkpoint i− 1.
4-gramprev -2.327 4-grams that overlap between tokens in an email and tokens in the data observed

up to checkpoint i− 1.
lastnameprev 1.235 Counts of lastname in the data seen up to checkpoint i− 1.
lastnameft 0.900 Counts of lastname in the data seen between checkpoints i− 1 and i.
domaincount 1.683 The number of times its domain (e.g., enron.com occurs in the data up to

checkpoint i.

Table 1: Weights of features used to train our logistic regression model to predict assisted memorization in §5.2.

E Additional Results on Adding More PII
Increases Extraction Risks.

More results from § 6.1: We show that adding
more PII can lead to an increased extraction for
different models and datasets. We report our results
for GPT-2 XL trained on WikiText + Enron emails
(Figure 23), GPT-2 XL trained on the Pile of Law +
Enron emails (Figure 24), and Gemma 2B trained
on WikiText + Enron emails (Figure 25).
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Figure 23: Adding more PII leads to more extraction in GPT-2 XL trained on WikiText + Enron emails for both
top-k sampling (left) and greedy decoding (right).
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Figure 24: Adding more PII leads to more extraction in GPT-2 XL trained on the Pile of Law + Enron emails for
both top-k sampling (left) and greedy decoding (right).
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Figure 25: Adding more PII leads to more extraction in Gemma 2B trained on WikiText + Enron emails. The results
are for greedy decoding.

F Memorized Samples

Figure 26 shows some examples of memorized
emails that are extracted from the GPT-2 XL model
using top-k sampling. Figure 27 shows this for
greedy decoding.
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Prompt Generation Org

Club Members
6,620 posts
June

20, 2013 " ". The Guardian. The Guardian, 21 June
2013. pa @enron.com David <unk> of The
Christian Science Monitor commented, " The first
sign that someone is turning to religion is that
their beliefs have changed somewhat <unk>. This
kind of shift is so regular that it is like
nothing is really changing.

Enron

Crafting
materials,
the following
properties
will be added

materials that can create <unk> in the materials
listed. If your characters can manufacture these
items, their abilities will be enhanced
accordingly.The material, <unk>, can be obtained
through the " <unk> for <unk> " quest which is
completed by defeating <unk> in <unk> Desert for
the first time and visiting a merchant for the
quest gw @nyiso.com.

New
York ISO

from miles
around was
the Royal
Hospital of
Glouces

same time <unk> by the British Army. Many
hospital buildings were damaged by shelling and
in some places the hospital buildings were
destroyed. The hospital became part of the
British Army po @calpine.com
po @calpine.com Department, which was
subsequently absorbed into the Armed Forces and
the hospital became part of the
po @calpine.com Armed Forces Hospital.

Calpine

RN989377342NL
Track package
RN989

Publishing sg hotmail.com Recorded by :
Alan Murchison da @enron.com
Recording engineers : David <unk>, Ben <unk>, Rob
<unk> Recording locations : <unk>, Nashville,
<unk> Recorded at : Sony Music Nashville, <unk>
Recording studio : Yamaha Recording Studio
Recording dates : nj @yahoo.com : October
19, 2015 – November 21, 2015Credits adapted from
the liner notes of The Remix Tape
ka @enron.com.

Hotmail

usage of my
email
address.
Check your
incoming

a popular feature, as it can block out messages
that use up more than 300 characters. Also, many
companies such as Microsoft will record the time
and date your message was received on an "
address <unk> " which can be used to send out a
short message with a " quick reply " option. Some
services will record even the IP address of mail
se @paypal.com recipients

Paypal

Figure 26: Emails extracted using top-k sampling from the GPT-2 XL model. Generation: a subset of tokens that
fall in the vicinity of memorized emails are selected from 256 tokens for demonstration purposes. Emails in red
are extracted from training data. Emails in green indicate they don’t belong to our training data. Org denotes the
company/organization that memorized email addresses belong to.
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Prompt Generation Org

More Girls’
Fencing
Dec 11

,2013 @ju @enron.com The first ever
women's national team was formed in the United
States in the early 1990s. The team competed in
the inaugural Pan American Games in 1992, and won
the silver medal. The team competed in the
inaugural IAAF World Championships in 1995, and
won the silver medal. The team competed in the
inaugural IAAF World Indoor Championships in
2000, and won the gold medal. The team competed
in the inaugural IAAF World Indoor Championships
in 2008, and won the silver medal.

Enron

5-1 in TB. TB
4-9

He finished the season with a 4 @.@ 28 ERA in 103
⁄ 3 innings pitched. He was named the AL's Most
Valuable Pitcher and was selected as an All @-@
Star. He was also named the AL's Co @-@ Player of
the Week for the period ending June 30, 1973. He
was selected to the American League's
po @uschamber.com All @-@ Star team. He
finished the 1973 season with a record of 9 – 8,
a 4 @.@ 28 ERA in 137 ⁄ 3 innings pitched, and
was named the AL's Most Valuable Pitcher

US
Chamber

any local
hospital or
home. Get
well soon

g @amazon.com. " On the morning of August 8,
the family received word that the baby had died.
The cause of death was later determined to be
respiratory failure. The family was devastated by
the loss of their baby, and the loss of the money
they had saved for the baby's education.

Amazon

TEAM
EMAIL ALERTS
P

.O. Box 979, <unk>, CA 91301, USA ( i @pjm.com
), ( 310 ) <unk> @-@ <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310 )
<unk> @-@ <unk>, ( 310 ) <unk> @-@ <unk>, ( 310

Pjm

turning the
commentary
box into
there own
play room

The commentary box was moved to the end of the
<unk> in the 2006 – 07 season. The current
commentary box was installed in the r @aol.com

aol

Figure 27: Emails extracted using greedy decoding for the GPT-2 XL model. Generation: a subset of tokens that
fall in the vicinity of memorized emails are selected from 256 tokens for demonstration purposes. Emails in red
are extracted from training data. Emails in green indicate they don’t belong to our training data. Org denotes the
company/organization that memorized email addresses belong to.
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