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Abstract

Chain-of-Thought (CoT) reasoning, which
breaks down complex tasks into intermediate
reasoning steps, has significantly enhanced the
performance of large language models (LLMs)
on challenging tasks. However, the detailed rea-
soning process in CoT often incurs long genera-
tion times and high computational costs, partly
due to the inclusion of unnecessary steps. To
address this, we propose a method to identify
critical reasoning steps using perplexity as a
measure of their importance: a step is deemed
critical if its removal causes a significant in-
crease in perplexity. Our method enables mod-
els to focus solely on generating these critical
steps. This can be achieved through two ap-
proaches: refining demonstration examples in
few-shot CoT or fine-tuning the model using se-
lected examples that include only critical steps.
Comprehensive experiments validate the effec-
tiveness of our method, which achieves a better
balance between the reasoning accuracy and
efficiency of CoT.

1 Introduction

Large language models (LLMs) are powerful gen-
erative models capable of performing diverse tasks
in different domains (Gramopadhye et al., 2024;
Karabacak and Margetis, 2023; Ling et al., 2024)
and demonstrating strong reasoning capabilities
(Jaech et al., 2024). Recent advancements, such as
few-shot/zero-shot Chain-of-Thought (CoT) (Wei
et al., 2022; Kojima et al., 2022), as well as fine-
tuning (Liu et al., 2023), have significantly en-
hanced the LLMs’ reasoning capabilities by lever-
aging intermediate reasoning steps. In particular,
through few-shot CoT, LLMs can learn from the
reasoning steps in the demonstration examples and
apply similar reasoning patterns to target tasks. In
the case of zero-shot CoT, LLMs are prompted
to"think step by step" to generate reasoning steps.

*Work done during her internship at Amazon.

In fine-tuning, LLMs can also learn from the rea-
soning steps in the fine-tuning samples, further
enhancing their reasoning abilities.

While many existing reasoning methods rely
on available data (e.g., few-shot examples or fine-
tuning datasets), there is limited understanding of
which reasoning steps are truly essential and how
their impact varies across different models. This
gap hinders progress in two key areas: (1) how to
effectively identify and remove unimportant rea-
soning steps from the data to reduce computational
costs, and (2) whether the important reasoning
steps for one model are also important to another.

For example, we observe that removing certain
reasoning steps from the demonstrations in few-
shot CoT can have varying effects: some models
follow the modified examples and generate much
fewer tokens while maintaining reasoning accuracy,
whereas others experience a decline in performance.
Specifically, we consider a math problem of func-
tion solving (Saxton et al., 2019). We compare two
versions of demonstrations when conducting few-
shot CoT: one with full manually crafted reasoning
paths and another containing only intuitively impor-
tant steps, as shown in Figure 1. For most models,
removing certain steps significantly reduces the
number of generated tokens with minimal impact
on accuracy, suggesting that the removed steps con-
tribute limited meaningful information. However,
LLaMA3-8B shows a noticeable decline in accu-
racy, indicating that the importance of reasoning
steps can vary across different LLMs.

Similar to the few-shot CoT scenario, when
given a set of fine-tuning samples with reason-
ing steps, some LLMs may find some steps re-
dundant, and the fine-tuning cannot improve the
prediction accuracy. However, these LLMs will
follow the fine-tuning samples to generate the addi-
tional tokens, raising the computation cost. Other
LLMs may struggle to develop reasoning capa-
bilities when given too few reasoning steps dur-
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Figure 1: Prediction accuracy of few-shot CoT using all/selected steps in the demonstration examples.

ing fine-tuning. This observation will be further
demonstrated in Section 4.

Therefore, in this work, we focus on identifying
unimportant reasoning steps from few-shot exam-
ples or fine-tuning data given a specific LLM. To
achieve this, we propose a method leveraging per-
plexity, a metric commonly used to measure the
confidence or fluency of model-generated text (Je-
linek et al., 1977), to quantify the impact of each
reasoning step. Our contributions are as follows:

First, since perplexity reflects an LLM’s con-
fidence in processing inputs and generating out-
puts (Jelinek et al., 1977), we hypothesize that per-
plexity can serve as an indicator of reasoning step
importance. Specifically, if the perplexity changes
significantly after removing a reasoning step, we
conjecture that the removed step plays a crucial
role in the model’s decision-making process. To
validate this hypothesis, we conduct empirical anal-
yses (Section 2.2) and observe a strong correlation
between changes in perplexity (with and without
a reasoning step) and the prediction performance.
This finding reveals that perplexity effectively quan-
tifies the significance of individual reasoning steps.

Second, inspired by this insight, we de-
velop an algorithm, Stepwise Perplexity-GuIded
RefInemenT (SPIRIT), to remove or merge unim-
portant reasoning steps. To effectively apply this
approach across different scenarios of CoT, we tai-
lor our approach for two different use cases, (1)
few-shot CoT, where the full reasoning steps in
the examples are known (SPIRIT-FS), and (2) fine-
tuning, where the samples only have input and the
final answer at the beginning (SPIRIT-FT).

When developing the algorithms, a common
technical challenge is that some steps, though con-

sidered unimportant by the selection criteria, may
still contain partial usefulness. Removing such
steps could disrupt the coherence of the remain-
ing reasoning process. To address this, we further
refine the algorithm by incorporating a merging
mechanism to ensure the overall coherence of the
whole reasoning process.

Finally, we conduct comprehensive experiments
to examine the effectiveness of the proposed al-
gorithms. In few-shot CoT, our method suc-
cessfully provides demonstrations that guide the
model to generate a more efficient reasoning
process without greatly sacrificing performance.
For fine-tuning, our approach achieves a better
effectiveness-efficiency trade-off than randomly se-
lect steps to be removed. We further include a
case study to analyze the types of reasoning steps
identified as redundant by our method.

2 Preliminary

In this section, we first present the essentials of per-
plexity, and then introduce our exploration on how
to use perplexity to analyze the reasoning steps.

2.1 Perplexity (PPL)
Perplexity was developed in (Jelinek et al., 1977)
and is a common metric for LLMs. It is defined as

PPL(x, {wk}Nk=1)

= exp

(
− 1

N

N∑

i=1

log p(wi | x,w1, . . . , wi−1)

)
, (1)

where x represents the prompt, {wk}Nk=1 denotes
sequence of tokens with total length N which
are conditioned on x. The probability p(wi |
x,w1, w2, . . . , wi−1) is the likelihood assigned by
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the model to the i-th token given the prompt and
the preceding tokens.

In literature, many studies utilize perplexity, e.g.,
for reference model pruning (Ankner et al., 2024),
attack detection (Alon and Kamfonas, 2023), mis-
information detection (Lee et al., 2020), and uncer-
tainty quantification (Cooper and Scholak, 2024).

2.2 Relationship between Perplexity and CoT
Prediction Accuracy

We conduct preliminary evaluation to investigate
the relationship between PPL and CoT prediction
accuracy when changing the steps used in the rea-
soning procedure. Intuitively, a higher likelihood
indicates that the LLM is more confident to the con-
text, and from Eq.(1), a higher likelihood results is
a lower PPL. Thus, we hypothesize that the PPL is
negatively correlated with the prediction accuracy.

In the experiments summarized in Table 1, we
apply few-shot demonstrations to perform CoT rea-
soning across three tasks from the DeepMind Math-
ematics Dataset (Saxton et al., 2019): Solving lin-
ear equation (AL1), calculating derivative (Diff-
Calc), and measuring time difference (Time-Diff).
For each dataset, we manually construct the demon-
stration examples. All the constructed examples
in the same dataset share the same reasoning steps.
Then we randomly select steps to be removed from
all examples in demonstration and calculate the
perplexity of the resulting generation and the ac-
curacy of CoT reasoning. Table 1 presents the
correlation coefficient between the perplexity and
accuracy and the p-value indicating the statistical
significance of their negative relationship. Notably,
the perplexity for all experiments is computed us-
ing LLaMA3-7B, while accuracy is assessed based
on generations from both LLaMA3-7B and GPT-
4o-mini (in a transfer case).

The results from Table 1 indicate a statistically
significant negative correlation between perplexity
and accuracy across all tasks, aligning with our
hypothesis. This observation paves us a way to
identify unimportant reasoning steps from the rea-
soning path: Since the correlation is negative, if we
remove some steps while maintaining the perplex-
ity of the sample, then it is likely that there will be
no accuracy loss, i.e., the removed steps are unim-
portant. Furthermore, the correlation appears trans-
ferable across models, as perplexity computed with
LLaMA3-7B remains strongly correlated with ac-
curacy evaluated using GPT-4o-mini, indicating the
potential transferability of our proposed method.

Table 1: Correlation Between Perplexity of Reasoning
Generation and Reasoning Accuracy, with p-Values In-
dicating Statistical Confidence

LLaMA3-8B GPT-4o-mini

r p-value r p-value

AL1 -0.690 0.0272 -0.860 0.0014
Diff-Calc -0.997 3.37e−8 -0.993 4.88e−7
Time-Diff -0.850 0.0154 -0.973 0.0002

3 The Proposed Algorithm - SPIRIT
In this section, we present the details of SPIRIT.
Since few-shot CoT and fine-tuning utilize data in
different ways, we first provide the general idea in
Section 3.1 and then describe case-specific details
in Section 3.2 (Few-Shot CoT, SPIRIT-FS) and 3.3
(Fine-Tuning, SPIRIT-FT), respectively.

3.1 General Idea
For both few-shot CoT and fine-tuning, the general
idea is to select unimportant reasoning steps and
then process them. When removing one reasoning
step, the final PPL will be changed. We enumerate
all reasoning steps to get the one whose removal
results in the lowest PPL.

On the other hand, a concern with step removal
is that directly eliminating a step from a structured
reasoning process can lead to coherence issues,
particularly when the step contains intermediate
results necessary for subsequent computations. For
example, consider the reasoning process in Fig-
ure 2. If we remove the step "So, the number of
students present is 40 - 4 = 36 students.", the value
36 appears abruptly in the following step "36 * 3/4
= 27" without proper context, making the solution
difficult to follow. In such cases, merging steps
is necessary to maintain coherence. An appropri-
ate revision could be "(40-4)*3/4 = 27". Based
on these observations, we propose to incorporate a
merging paradigm into the algorithm, whose details
will be introduced in the following subsections.

3.2 Few-Shot CoT (SPIRIT-FS)
When performing few-shot CoT, we assume the
demonstration examples follow a consistent reason-
ing format, e.g., for the function solving problem,
all examples follow the same steps as in Figure 1.
For simplicity, we treat one sentence as one step in
the algorithm. Our goal is to remove unimportant
reasoning steps in the predefined demonstration
examples.
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Algorithm 1 SPIRIT-FS

1: Input: Demonstration set D = {(qdi ,Ri)}, calibration set C = {qci }mi=1, threshold t
2: Initialize D∗ ← D
3: while True do
4: Find the most unimportant step j∗ ← argminj

1
m

∑
i PPL({D∗\rj , qci },M(D∗\rj , qci ))

5: Update perplexity PPLbest ← 1
m

∑
i PPL({D∗\rj∗ , qci },M({D∗\rj∗ , qci }))

6: Derive merged reasoning D∗
merge, ensuring coherence

7: if removal step limit reached then break else D∗ ← D∗
merge

8: end while
9: return Refined demonstration D∗

The detailed procedure of SPIRIT-FS is out-
lined in Algorithm 1. For a demonstration set
D = {(qdi ,Ri)}, qdi represents a demonstration
question and Ri = (r1i , r

2
i , . . .) denotes its cor-

responding reasoning process with the reasoning
steps r1i , r

2
i , . . .. The calibration set C = {qci } is a

set of questions from the dataset, containing tens
of examples, used to assess the impact of reason-
ing step removal by evaluating perplexity changes.
We iteratively refine D by removing unnecessary
reasoning steps. At each iteration, we evaluate
the impact of removing each step rj by computing
the average of PPL({D\rj , qci },M({D\rj , qci }))
over the calibration set (M(·) denotes the LLM
and A\b means removing the element b from set
A). The step rj

∗
that minimizes the perplexity will

be pruned for all demonstration examples.
To maintain coherence, instead of direct removal,

step rj
∗

i is merged with other steps, using either an
LLM or human effort, in a way as the example
shown in Figure 2. The merging process integrates
the step with either the preceding or subsequent
step, depending on the semantic meaning to ensure
coherence. If an LLM is used for merging, we
provide demonstration examples in the prompt to
guide the process. This procedure is repeated until
the stopping criteria is met, e.g., a specified number
of steps to be removed (used in our few-shot CoT
experiments), or a perplexity threshold (used in
fine-tuning experiments).

3.3 Fine-Tuning (SPIRIT-FT)
The full details of SPIRIT-FT are presented in Algo-
rithm 2. Compared to few-shot CoT, some changes
are made for the fine-tuning scenario.

First, in fine-tuning, not all datasets contains
complete reasoning steps. For datasets with high-
quality annotated reasoning steps, we directly use
the provided reasoning. However, for datasets that
only include rationales or lack explicit reasoning

step, we employ a capable LLM, such as GPT-4o or
LLaMA3.1-70B, to generate the the full reasoning
steps based on the input and final answer. After
obtaining the reasoning steps, we apply Algorithm
2 to refine them.

Second, due to the different scenario of few-shot
CoT and fine-tuning, the perplexity calculation is
handled differently: In few-shot CoT, given the
prompt, we compute PPL({D, qci },M({D, qci })),
the perplexity based on the actual model generation
in inference. We use a calibration set to compute
the average perplexity over calibration examples,
guiding the refinement of reasoning steps. The
refined steps are then applied to new testing exam-
ples. In contrast, in fine-tuning, when refining the
reasoning steps, we do not have access to inference-
time perplexity after fine-tuning. The perplexity in
this case is calculated directly on the fine-tuning
data, i.e., PPL(qi,Ri). There is no calibration set
involved, as the step selection is performed on the
fine-tuning data itself rather than requiring a sepa-
rate set for evaluation.

Figure 2: Comparison of removing and merging.

To explain the details of Algorithm 21, given a

1Although Algorithm 1 allows different ways for merging
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Algorithm 2 SPIRIT-FT
1: Input: Questions Q = {qi}, reasoning processesR = {Ri}, thresholds t1, t2
2: for each sample i do
3: InitializeR∗

i ← Ri, PPLorig ← PPL(qi,R∗
i )

4: while True do
5: Get the most unimportant step rworst ← argminrj∈R∗

i
PPL(qi,R∗

i \{rj})
6: Update perplexity PPLrem ← PPL(qi,R∗

i \{rworst})
7: if PPLrem > t2 · PPLorig then break
8: else if PPLrem < t1 · PPLorig thenR∗

i ← {R∗
i \rworst}

9: else
10: Generate merged reasoningRmerge, ensuring coherence
11: R∗

i ← Rmerge if PPL(qi,Rmerge) < PPLrem, elseR∗
i ← {R∗

i \rworst}
12: end if
13: end while
14: end for
15: return Refined reasoning processesR∗ = {R∗

i }

set of questions Q = {qi} and their correspond-
ing reasoning processesR = {Ri}, we iteratively
refine each reasoning process Ri, by selectively
removing or merging reasoning steps. At each it-
eration, we identify the step rworst whose removal
minimizes perplexity PPL(qi,Ri∗\rji ). If the re-
sulting perplexity PPLrem falls below a threshold t1
relative to the original perplexity, the step is directly
removed. Otherwise, we generate a merged version
of the reasoning process and compare its perplexity
PPLmerge with PPLrem, selecting the option with the
lower perplexity. This process continues iteratively
until the resulting perplexity exceeds a threshold
t2, at which point refinement is terminated.

We apply capable LLMs to conduct the merging.
The merging prompt (include several examples)
can be found in Appendix I. To save computation
cost, we do not merge steps when PPLrem is below
t1. To justify this design, we provide experiment
results (in Appendix F) to demonstrate that it is
more necessary to conduct merging when PPLrem
is large. In contrast, for small PPLrem, merging
provides only trivial improvement.

4 Experiment

In this section, we conduct comprehensive experi-
ments to demonstrate the effectiveness of SPIRIT.
We present the results of SPIRIT-FS in Section 4.1
and demonstrate the performance of SPIRIT-FT in
Section 4.2. Both sections include the discussion

and stopping, in the fine-tuning scenario, to handle the large
amount of fine-tuning data and the diversity of the reasoning
steps among the data, we explicitly design the merging and
stopping criteria for SPIRIT-FT.

on the transferability of SPIRIT by investigating
whether the reasoning step selection process gener-
alizes across different models. Due to page limit,
we postpone the ablation studies in Appendix A,
where we examine the impact of some key compo-
nents in the design of SPIRIT-FT.

4.1 Few-shot CoT (SPIRIT-FS)

Datasets. We consider the Algebra-Linear-1d Task
(AL1) and Number-Base-Conversion Task (NBC)
from the Mathematics Dataset (Saxton et al., 2019)
for the experiments. For both tasks we randomly
select 500 examples for evaluation.
Language Models. Our experiments use five
LLMs: GPT-3.5-Turbo (Brown, 2020), GPT-
4o-mini (Brown, 2020), LLaMA3-8B-Instruct,
LLaMA3.1-70B-Instruct (Grattafiori and et al.,
2024) and Qwen2.5-7B-Instruct (Team, 2024)
(LLaMA3-8B, LLaMA3.1-70B, Qwen2.5-7B in
short). The temperature is set to 0 to ensure de-
terministic outputs in generation. Notably, when
applying our algorithm to open-source models
(LLaMA3-8B, LLaMA3.1-70B, and Qwen2.5-7B),
we use the corresponding model to compute per-
plexity and refine the reasoning demonstrations.
For GPT-4o-mini and GPT-3.5-Turbo, where di-
rect perplexity computation is unavailable, we in-
stead use LLaMA3.1-70B to estimate perplexity
and generate the refined demonstration examples
(in a transfer case). We show details of the hyper-
parameters of fine-tuning in Appendix D.
Procedures. For both AL1 and NBC, we manu-
ally create the detailed reasoning solution for the
demonstration examples and apply SPIRIT-FS to
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Table 2: Performance of using Algorithm 1 for steps selection in few-shot CoT with Algebra-linear-1d task.

Method
LLaMA3.1-70B LLaMA3-8B Qwen2.5-7B GPT-3.5-Turbo GPT-4o-mini

acc(%) # tokens acc(%) # tokens acc(%) # tokens acc(%) # tokens acc(%) # tokens

Zero-shot 99.60 134.186 86.40 115.698 99.60 142.418 87.60 97.474 99.00 191.104

Few-shot (7 steps) 99.80 72.742 82.00 84.358 99.00 68.626 93.60 68.59 98.00 66.95

Few-shot
(4 steps)

Ours (remove) 99.20 49.28 72.60 55.486 99.20 38.084 94.20 46.58 98.40 47.43
Ours (merge) 99.20 55.478 71.40 55.814 97.80 41.78 91.63 49.185 98.80 49.40

Rand 94.80 48.01 57.00 51.892 93.60 46.726 84.60 42.363 94.40 41.34

Few-shot
(3 steps)

Ours (remove) 95.60 35.934 62.00 42.86 95.40 35.938 91.40 34.536 97.00 34.196
Ours (merge) 96.20 50.894 63.2 44.792 97.00 40.614 90.93 38.074 96.80 36.824

Rand 80.40 41.576 59.00 50.00 86.80 41.768 82.40 37.188 78.60 37.2

Concise 98.40 77.038 64.60 66.276 97.40 58.874 85.40 54.39 96.80 36.82

Table 3: Performance of using Algorithm 1 for steps selection in few-shot CoT with Number-Base-Conversion task.

Method
LLaMA3.1-70B LLaMA3-8B Qwen2.5-7B GPT-3.5-Turbo GPT-4o-mini

acc(%) # tokens acc(%) # tokens acc(%) # tokens acc(%) # tokens acc(%) # tokens

Zero-shot 75.40 244.10 36.40 195.00 82.80 272.99 62.00 166.39 92.63 319.74

Few-shot (12 steps) 95.60 147.12 62.40 151.77 88.60 157.43 84.20 161.24 95.80 156.66

Few-shot
(9 steps)

Ours (remove) 95.00 107.29 59.40 122.67 84.20 128.69 85.40 113.09 97.00 120.28
Ours (merge) 94.40 110.66 60.00 132.24 85.60 129.87 86.80 118.85 97.80 124.68

Rand 86.60 114.46 52.40 117.69 80.60 123.23 72.00 122.26 91.60 137.28

Few-shot
(6 steps)

Ours (remove) 89.20 92.51 44.60 93.27 75.40 91.28 77.80 97.41 93.00 106.93
Ours (merge) 90.60 95.73 49.80 104.39 77.80 97.66 79.40 103.21 96.60 108.52

Rand 81.60 117.99 41.80 101.35 63.40 92.57 69.20 115.60 86.40 129.52

Concise 73.60 111.65 44.00 100.51 77.00 161.80 58.80 115.14 72.60 112.64

refine the reasoning paths. For AL1, we reduce
the reasoning process from 7 steps to 3 or 4 steps.
For NBC, we reduce the reasoning from 12 steps
to 9 or 6 steps. We present the corresponding ac-
curacy of few-shot CoT in Table 2 and 3, labeled
as "Ours (merge)". To measure the efficiency, we
show the number of generated tokens. To validate
the effectiveness of SPIRIT-FS, we compare the
performance with two baselines methods, (1) ran-
domly select steps to be removed ("Rand"); and
(2) directly ask the model to be concise in genera-
tion ("Concise"). Additionally, we include another
variant of our method, labeled as "Ours (remove)",
where we refine reasoning steps using SPIRIT-FS
but apply only removal without merging.
Results. From the results in Table 2 and 3, it is
observed that in general, across different models
and tasks, our algorithm achieves a better trade-off
between accuracy and efficiency by maintaining
higher accuracy under a similar number of gener-
ated tokens. For example, except for LLaMA3-
8B, all other models maintain comparable accuracy
when the number of reasoning steps is reduced
from 7 to 4 in the AL1 task. Similarly, in the NBC
task, performance remains stable when steps are
reduced from 12 to 9, except for LLaMA3-8B and
Qwen2.5-7B, which experience a slight drop in ac-
curacy. In contrast, baseline methods "Concise"
and "Rand" tend to sacrifice much more accuracy
when the reasoning length is reduced.

In addition, comparing "Ours (merge)" and
"Ours (removal)", it is observed that for the sim-
pler AL1 task, merging does not yield a significant
accuracy improvement, while slightly increasing
the number of generated tokens. But for the more
difficult task NBC, "Ours (merge)" demonstrate a
better accuracy, indicating the necessity of merging
to ensure performance in more complex reasoning
scenarios.
Transferability. From the results in Table 2 and 3,
we can see that, reasoning step selection based on
the perplexity of LLaMA3.1-70B leads to good
performance when applied to GPT-4o-mini and
GPT-3.5-turbo. Specifically, for the AL1 and NBC
tasks, when the number of reasoning steps is re-
duced to 4 and 9, respectively, accuracies remain
unchanged or even slightly improve. As steps are
further reduced, accuracies gradually decrease, but
still outperforms both random step removal and
the approach of simply prompting the model to be
more concise. This suggests that perplexity-based
step selection generalizes well across models.

4.2 Fine-Tuning (SPIRIT-FT)
Datasets. We consider two main datasets in-
cluding GSM8K (Cobbe et al., 2021) and Meta-
MathQA (Yu et al., 2023). For GSM8K, the entire
training set (with 7.4k examples) is utilized for
example refinement and fine-tuning, with evalua-
tion performed on the full evaluation set (with 1.3k
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examples). For MetaMathQA, we randomly se-
lect 19k examples for refinement and fine-tuning,
while 1.95k examples are selected as the testing
data. We provide additional results on the MATH
dataset (Hendrycks et al., 2021) in Appendix E. Fur-
thermore, we include a discussion in Appendix D
on the rationale behind using different benchmark
datasets for evaluation in few-shot/fine-tuning set-
tings.
Language Models. Our main experiments involve
two LLMs: LLaMA3-8B-Instruct and Qwen2.5-
7B-Instruct (LLaMA3-8B, Qwen2.5-7B in short).
Fine-tuning Methods. We consider two fine-
tuning methods including Supervised Fine-tuning
(SFT) and Odds Ratio Preference Optimization
(ORPO) (Hong et al., 2024). We applied LoRA (Hu
et al., 2022) for both methods.
Procedures. We applied SPIRIT-FT to refine the
reasoning paths, fine-tuned the model with the re-
fined data, and evaluated the fine-tuned model by
measuring both prediction accuracy and the num-
ber of generated tokens. The trade-off between
accuracy and efficiency was controlled by adjust-
ing t2, which determines the extent of step re-
moval/merging. Notably, when fine-tuning with
different models, we used the specific model itself
to compute perplexity for unimportant step deter-
mination. We present the relationship between ac-
curacy and efficiency across different models and
different datasets in Figure 3 and 4 for SFT and
ORPO, respectively. The results are labeled as
"Min PPL (merge)".

For evaluation, in the experiments of SFT, we
compare SPIRIT-FT with three control sets, (1) a
variant of SPIRIT-FT where we only remove but
not merge steps ("Min PPL (remove)"); (2) ran-
domly select steps to be removed ("Randomly re-
move"); and (3) applying an inverse of Algorithm 2
to remove the most important steps whose removal
maximize the perplexity ("Max PPL (Remove)").
For ORPO, we utilize some of the above datasets
to form chosen/rejected pairs: (1) Chosen: Min
PPL (Merge) / Rejected: Max PPL (Remove); (2)
Chosen: Min PPL (Remove) / Rejected: Max PPL
(Remove); (3) Chosen: Max PPL (Remove)/ Re-
jected: Min PPL (Remove). The labels for the
above settings are "Min PPL (merge)", "Min PPL
(remove)" and "Max PPL (remove)", respectively.
Results. Based on the SFT results in Figure 3,
across different models and datasets, compared
with randomly selecting steps to be removed,
SPIRIT-FT consistently demonstrate a better trade-

Figure 3: Accuracy-Efficiency Relation when fine-tuning
with SFT. (a) Qwen2.5-7B, GSM8K; (b) LLAMA3-8B,
GSM8K; (c) Qwen2.5-7B, MetaMathQA; (d) LLAMA3-8B,
MetaMathQA

off between accuracy and efficiency by achieving
a higher accuracy when the number of generated
tokens is similar. In addition, the performance
of "Randomly remove" is better than "Max PPL
(remove)", which provide further evidence that per-
plexity is effective in measuring the importance of
the reasoning steps. Comparing the results of "Min
PPL (remove)" and "Min (merge)", the algorithm
with merging demonstrates a better performance
than directly removing steps, which confirms the
necessity of conducting merging to maintain coher-
ence in the reasoning process.

For the results regarding ORPO in Figure 4, a
general order of the performance among different
sets in terms of accuracy-efficiency trade-offs is
"Min PPL (merge)" > "Min PPL (remove)" > "Max
PPL (remove)". These results also provide evi-
dence that minimizing perplexity is an effective
criterion for selecting reasoning steps, and incor-
porating merging further enhances performance by
preserving coherence in the reasoning process.
Transferability. We examine the transferability of
SPIRIT-FT across models in Figure 5. It shows
the results where LLaMA3-8B is used to calculate
perplexity, and the refined dataset is subsequently
applied to fine-tune either LLaMA2-7B-Chat or
Qwen1.5-7B-Chat. For comparison, we also pro-
vide the results in which the step removal is per-
formed using the perplexity computed by the same
model as the fine-tuning target.
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Figure 4: Accuracy-Efficiency Relation when fine-tuning
with ORPO. (a) Qwen2.5-7B, GSM8K; (b) LLAMA3-8B,
GSM8K; (c) Qwen2.5-7B, MetaMathQA; (d) LLAMA3-8B,
MetaMathQA

From Figure 5 we can see that, in general, the
the ranking of the performance among "Max PPL
(Remove)," "Randomly Remove," "Min PPL (Re-
move)," and "Min PPL (Merge)" remain consis-
tent even when the perplexity is computed using a
different model. This suggests that the LLaMA3-
8B exhibit similar patterns with LLaMA2-7B and
Qwen2.5-7B in how to process and learn from
data, indicating a shared understanding of reason-
ing step importance and a transferability of perplex-
ity across models.

On the other hand, a surprising observation in
Figure 5 is that when applying the method to
LLaMA2-7B and Qwen1.5-7B, using the perplex-
ity of LLaMA3-7B to calculat perplexity results in
even better prediction performance than using the
corresponding LLMs themselves for determining
unimportant steps. To explain this, our conjecture
is that the perplexity of weaker LLMs is influenced
by additional factors beyond the true importance of
reasoning steps such as the coherence as a human
language (i.e., utility (Shi et al., 2024)) and the un-
derstanding of math notations (Zhang et al., 2024b),
making it less effective for uncertainty quantifica-
tion for the reasoning itself.

5 Case Study for SPIRIT-FT

In this section, we provide case studies for more
details about the types of reasoning steps identi-

Figure 5: Transferability of PPL when calculated using
LLaMA3-8B and evaluated on LLaMA2-7B / Qwen1.5-7B.

fied as redundant by SPIRIT-FT2. Recall from Al-
gorithm 2 that, based on the perplexity, certain
reasoning steps are removed entirely, while oth-
ers are merged with other steps to maintain co-
herence. Although different models are used to
compute perplexity, we observe that the patterns of
step removal and merging remain consistent across
models, including LLaMA3 and Qwen2.5. Due to
page limit, besides the following general descrip-
tion, we postpone the detailed quantitative analysis
to Appendix G.

5.1 Analysis of Removed Steps

In this subsection, we present examples and analy-
sis of reasoning steps that SPIRIT-FT consistently
identifies for direct removal. In general, the re-
moved steps can be classified into the following
types, with examples provided in Table 7 (Ap-
pendix H).

1. Redundant wordings: Generic or concluding
phrases such as “So that is our answer.” that do
not add meaningful insights or further clarity
to the solution.

2. Repetition of problem conditions: Steps that
merely restate conditions explicitly provided
in the original question prompt without con-

2We only conduct the analysis for fine-tuning because the
few-shot case only merge steps instead of removing.
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tributing to the reasoning process. For in-
stance, in Table 7, the sentence "Yesterday,
Julie read 12 pages." simply repeats informa-
tion from the prompt and is thus pruned by
SPIRIT-FT.

3. Planning statement: Sentences which merely
outline or plan subsequent reasoning steps in-
stead of actually performing them. For exam-
ple, in Q2 in Table 7, “Combine like terms”
and “Divide both sides by 9” are selected for
pruning.

These types of steps share a common characteris-
tic: while they contribute to the overall coherence,
clarity, or structure of an answer, they do not pos-
sess essential reasoning content. For sufficiently
capable models, such structural elements could be
implicitly captured or reflected in the subsequent
reasoning steps, making their explicit inclusion
unnecessary. In this sense, these steps can be con-
sidered redundant. This also aligns with how hu-
mans perceive redundancy in explanations: when
the core logic of an answer is preserved, auxiliary
phrases that merely restate known facts or state in-
tentions are often seen as dispensable (Bussmann
et al., 2006).

5.2 Analysis of Merge Steps
Steps selected for merging, rather than direct re-
moval, usually contain intermediate reasoning con-
tent (such as partial computations or transitional
logic) that contribute meaningfully to the final an-
swer. Direct removal of these intermediate steps
tends to result in a significant increase in perplexity.
Therefore, the algorithm would select to merge the
step (which will lead to lower perplexity) instead
of directly removing it (as the example shown in
Figure 2).

Besides the contents to merge, we also observe
a consistent pattern in the position of merged steps:
they tend to occur more frequently in the later parts
of the reasoning chain, particularly in the last rea-
soning step before the final answer. A possible ex-
planation is that, the steps become more predictable
or deterministic near the end of the reasoning pro-
cess. In this case, the intermediate computations
can be safely merged without compromising inter-
pretability.

6 Related Works

Inference-Stage Techniques in LLM Reasoning.
Many studies aim to enhance LLM reasoning at the

inference stage, without modifying model weights.
Early work (Wei et al., 2022) uses few-shot demon-
strations to guide reasoning, while (Kojima et al.,
2022) shows that simply prompting the LLM to
"think step by step" also improves the accuracy
without demonstrations. Subsequent techniques,
such as Graph-of-Thoughts (Besta et al., 2024),
Tree-of-Thoughts (Yao et al., 2024), and Forest
of Thoughts (Bi et al., 2024), further adapt the
reasoning paradigm. Other works focus on self-
consistency (Wang et al., 2022; Wan et al., 2023)
or structured input analysis (He et al., 2024). Dif-
ferent from the aforementioned literature, our work
examines the importance of each reasoning step.

CoT Fine-Tuning. In literature and real practice,
there are two common types of LLM fine-tuning
methods: supervised fine-tuning (SFT) and rein-
forcement learning (RL)-based alignment methods.

SFT is commonly used to adapt an LLM to down-
stream task, and various studies have investigated
SFT. For example, (Zhou et al., 2024) hypothesizes
that LLMs require only a few samples from the tar-
get task to align with desired behaviors.(Dong et al.,
2023) explores how SFT affects different LLM ca-
pabilities, while (Ovadia et al., 2023) compares
fine-tuning with retrieval-augmented generation,
and (Ling et al., 2024) investigates overfitting in
SFT. Other works focus on data selection for SFT,
such as (Shen, 2024) and (Zhang et al., 2024a).

RL-based alignment methods incorporate prefer-
ence labels into loss function, e.g., reinforcement
learning with human feedback (Ziegler et al., 2019),
direct preference optimization (DPO) (Rafailov
et al., 2024), ORPO (Hong et al., 2024), BCO (Jung
et al., 2024), and KTO (Ethayarajh et al., 2024).

7 Conclusion

In this paper, we introduce SPIRIT, a method
for refining reasoning steps in few-shot CoT and
CoT fine-tuning for improving reasoning efficiency
while maintaining accuracy. Based on the obser-
vation that changes in perplexity correlate with
reasoning step importance, SPIRIT works by itera-
tively identifying unimportant steps through eval-
uating the change in perplexity, then merge the
unimportant steps. Experiments demonstrate the
effectiveness of SPIRIT in improving the trade-off
between accuracy and efficiency in both few-shot
CoT and CoT in fine-tuning.
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Limitations

While the main observation in Section 4.2 is on
the transferability of the algorithm, we also ob-
serve that the perplexity from the stronger model
(LLaMA3-8B) works even better than using the
weaker model’s own perplexity (Qwen1.5-7B and
LLaMA2-7B) in selecting the unimportant reason-
ing steps. This implies that perplexity contains
more information than what is needed in SPIRIT,
indicating the potential limitation of using perplex-
ity in the algorithm: If we want to fine-tune an
even weaker model, we would better use a stronger
model’s perplexity. This observation also implies
the potential interplay between data quality and the
model’s capability: A "good" quality with high-
quality complex reasoning steps may not benefit
a weak model. We believe this observation can
inspire future works in data attrition and data selec-
tion to consider the model’s own capability.

Another limitation is that, in the algorithm and
experiments, we assume reasoning steps among
few-shot examples match with each other sentence
by sentence. This can be further enhanced if the
reasoning steps match the general pattern. How-
ever, since different tasks have diverse reasoning
patterns, we anticipate that such an enhancement
should be specifically designed for the given task
and dataset.
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A Ablation Studies

In this section, we conduct ablation studies
by applying different variations of SPIRIT-FT
to validate the reasonableness behind the key
components in the design of the algorithm:

(1) Always applying merging and no removal:
Instead of comparing the effects of merging and
removal, we modify the approach to always apply
merging after selecting a step for refinement.
(2) Removing the threshold t1: , meaning that
after determining which step to remove, we no
longer check if the resulting perplexity is below a
threshold. Instead, we always proceed with merg-
ing and then compare the effects of merging versus
removal.
The results of (1) and (2) are presented as scat-
ter point in Figure 6 and 7 respectively, labeled
as "Always merging" or "Removing t1 threshold",
respectively, with comparisons to the performance
of the original algorithm.

From the results in Figure 6, we observe that al-
ways applying merging leads to performance com-
parable to the original algorithm, when the number
of generated tokens is high. However, as the num-
ber of tokens is reduced below 80, performance
degrades significantly compared to the original de-
sign, indicating that blindly merging steps without
considering removal can compromise reasoning
effectiveness.

In addition, Figure 7 shows that, when remov-
ing t1 threshold, performance appears to improve
slightly. However, this comes at the cost of greatly
increased computation, as the algorithm involves
more rounds of merging. This results highlight

that our method provides a more computationally
efficient approach while effectively preserving per-
formance.

Figure 6: Performance of SPIRIT-FT when always applying
merging

Figure 7: Performance of SPIRIT-FT when removing the t1
threshold.

B Additional Implementation Details and
Adjustments

Perplexity Calculation Adjustment In practice,
when calculating the perplexity, the computation
starts from the second token rather than including
the first generated token. This avoids the poten-
tial issue that the initial token is assigned a very
low probability and acts as an outlier. Including
the initial token could unintentionally correlate the
perplexity with the generation length, as its effect
diminishes when averaged over a longer sequence.
Alignment Adjustment for Qwen2.5-7B Fine-
Tuning. Notably, when applying fine-tuning to
Qwen2.5-7B, a challenge is that standard LoRA
sometimes failed to achieve proper alignment be-
tween the model’s generation and the fine-tuning
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data, particularly when more removal was involved.
To address this, we applied a backdoor technique
by adding a control phrase to the prompt during
fine-tuning. Specifically, we appended "Answer
should end with ‘The answer is’." at the end of
the question in the fine-tuning data. During infer-
ence, we included the same phrase to reinforce the
pattern learned from fine-tuning, ensuring better
alignment in the model’s response generation.

C Additional related works

Test-Time Scaling Law. There are some recent
discoveries of the test-time scaling law (Brown
et al., 2024; Snell et al., 2024; Saad-Falcon et al.,
2024). While our method focuses on enhancing
the reasoning efficiency through removing unim-
portant reasoning steps from the data, one may
question whether this contradicts to the test-time
scaling law. To explain this, there is no self-
reflection/self-correction mechanism considered in
this work, and there is only one reasoning path for
each example/fine-tuning data, and we observe an
accuracy-token length trade-off. In contrast, for
test-time scaling law, if we explore more reasoning
paths, such an over-thinking can help obtain the
correct answer. Our method is perpendicular to
the test-time scaling law, and the idea of removing
unimportant reasoning steps in our work is also
applicable to the test-time methods to reduce the
computation cost as well.

D Additional Experiment Details and
Discussions

Hyperparameters in Fine-tuning. For SFT, we
set the batch size to 128, the learning rate to 5e-
5, and the training epoch to 3.0 for all datasets.
For ORPO, the batch size is 64, learning rate is
5.0e-6 and training epoch is 5.0. The optimizer for
all fine-tuning experiments is AdamW (Loshchilov
and Hutter, 2019).
Reasons for Selecting Different Benchmarks for
Few-shot/Fine-tuning Settings. The datasets used
in the few-shot CoT and fine-tuning scenarios differ
due to the varying effectiveness of controlling the
model’s generation behavior in each setting. In few-
shot CoT, we rely on in-context examples to guide
the model toward concise reasoning. We observed
that for complex datasets like GSM8K and Meta-
MathQA, it is difficult to guide the model to skip
certain reasoning steps using only a few demon-
stration examples. The model tends to revert to the

detailed, multi-step reasoning patterns learned dur-
ing pre-training, making it hard to enforce concise
generation purely via prompting.

In contrast, for tasks with more uniform struc-
ture—such as solving single-variable equations or
converting numbers between bases—the few-shot
CoT proves effective in reducing unnecessary rea-
soning steps. These tasks often share consistent so-
lution formats, which makes it easier for the model
to generalize from a small number of examples.

As a result, we adopt different datasets for each
scenario: simpler, structurally consistent tasks are
used in the few-shot CoT setting to better evaluate
the model’s ability to generate efficient reasoning,
while more complex and diverse datasets are re-
served for the fine-tuning setting, where model
behavior can be directly shaped through training.

In addition to the above intuition, we also con-
duct additional experiments and include Algebra-
linear-1d in the fine-tuning scenario (originally
used in the few-shot CoT) to facilitate a fair com-
parison of model performance across both settings.
The results are summarized in Table 4. For compar-
ison, we also provide the results for few-shot CoT
setting in the same table. From the results, it can be
observed that SPIRIT-FT consistently demonstrates
superior performance, effectively preserving accu-
racy even after significantly reducing the number
of reasoning steps. In contrast, randomly selecting
steps to remove or applying the inverse criterion
(Max PPL) lead to notably worse prediction accu-
racy compared to SPIRIT, particularly at deeper
pruning levels.

Moreover, when comparing the results of
SPIRIT-FT with SPIRIT-FS, we observe a clear im-
provement in model accuracy under the fine-tuning
setting. This is intuitive as fine-tuning not only
helps the model adapt to generating more concise
reasoning but also enhances the model’s overall
ability on the specific task through direct parameter
updates. In both settings, our method (SPIRIT)
demonstrates effectiveness at improving reasoning
efficiency while maintaining solution correctness.

E Additional Experiment Results

In this subsection, we present additional experi-
mental results using a random subset of the MATH
dataset (Hendrycks et al., 2021), consisting of 1200
examples. The results are summarized in Table 5.
Before fine-tuning, the model achieves a reason-
ing accuracy of 64.18% with an average of 366.96
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Table 4: Accuracy-Efficiency Relation on Algebra-linear-1d task with LLaMA3-8B-Instruct

Level of pruning Min PPL merge Rand removal Max PPL remove

acc # tokens acc # tokens acc # tokens

Fine-Tuning
(SFT)

1 99.40% 61.018 98.60% 55.794 97.80% 56.816
2 99.00% 44.714 97.00% 47.050 95.40% 45.376
3 99.00% 29.518 91.00% 28.772 74.20% 32.818
4 98.40% 17.986 80.60% 23.216 70.20% 16.532

Few-Shot 1 71.40% 55.814 57.00% 51.892 - -
2 63.20% 44.792 59.00% 50.000 - -

generated tokens per example.

Table 5: Performance comparison across different prun-
ing strategies after fine-tuning.

Min PPL (merge) Rand Removal Max PPL Remove

acc # tokens acc # tokens acc # tokens

0.6972 143.4885 0.6560 144.5436 0.6229 140.500
0.6946 127.0134 0.5711 127.9151 0.5688 123.486
0.6904 116.9908 0.5505 113.1399 0.5390 111.899
0.6078 81.1766 0.5138 97.9725 0.4518 91.839

From the results, we can observe that, when ap-
plying SPIRIT, we are able to successfully com-
press the reasoning process while preserving the
accuracy. Before fine-tuning, the average num-
ber generated tokens is around 370, with accuracy
64.18%. After fine-tuning, we can preserve the
accuracy to around 69.7% when the number of
generated tokens is 143.5. Even when the reason-
ing continued to be compressed to 117 tokens, the
model can still achieve an accuracy of around 69%.
In comparison, randomly selecting steps to be re-
moved or applying the inverse criterion (Max PPL)
lead to notably worse prediction accuracy com-
pared to SPIRIT, particularly when the number of
generated tokens are smaller. These results demon-
strate the effectiveness of SPIRIT in MATH.

F Additional Validation to Support the
Design of t1

In this section, we provide additional empirical
experiment to demonstrate that when PPLrem is
larger, it is more necessary to conduct merging.

We manually examine several removal cases,
where a reasoning step is eliminated, and catego-
rize them into three classes:
(1) No coherence issue – Removing the step does
not disrupt reasoning, so merging is unnecessary.
(2) Minor coherence issue – Removing the step

slightly affects coherence; merging is beneficial
but not essential.
(3) Obvious coherence issue – Removing the step
leads to a clear loss of coherence, making merging
necessary.
For each case, we compute the perplexity change
ratio (after removal / before removal) and plot the
results in Figure 8.

From Figure 8, we observe that, in general, the
greater the need for merging, the higher the per-
plexity change. These results support the choice
of setting a threshold t1, as when the perplexity
gain is small, direct removal is sufficient, making
merging unnecessary.

G Additional Analysis for Case Study

In this section, we present additional quantitative
analysis related to the case study, focusing on the
frequency with which each type of reasoning step
is pruned.

Through some exploration, we found that the fre-
quency of each type of reasoning step being pruned
is heavily influenced by how often each type of step
appears in the reasoning process. In addition, when
setting different values of t2, the extent of pruning
varies, which in turn affects the observed frequen-
cies of pruned step types. As a result, to simplify
the analysis, we instead analyze the average re-
moval order, which reflects the relative priority
of different step types being removed during the
pruning process.

Specifically, we select 30 examples from the
GSM8K dataset whose pruning process involves
more than one category of removed steps. For each
example, we recorded whether the 1st, 2nd, 3rd
(and so forth) removal corresponds to (1) redundant
wording, (2) repetition of problem conditions, (3)
planning statements, or (4) steps to be merged (We
use LLaMA3-8B for the calculation of perplexity).
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Figure 8: Perplexity Change across different cases.

Table 6: Average removal order

Avg. order

Removed Redundant wording (1) 1.2333
steps Repetition of problem conditions (2) 1.2500

Planning statements (3) 2.2167

Merged steps (4) 2.8333

Finally, for each category, we calculate the average
removal order across all examples in which a step
of that type is pruned. The results are shown in
Table 6.

From the results in Table 6, we observe that, dur-
ing the pruning process, removals tend to occur
earlier than merges. This indicates that SPIRIT pri-
oritizes directly removing clearly redundant steps
first. When the most evidently unnecessary steps
are pruned, it then proceeds to identify steps that
can be merged with others to further compress the
reasoning without compromising coherence.

Regarding the types of removed steps, SPIRIT
tends to remove redundant wording and repetition
of problem conditions earlier in the pruning pro-
cess, followed by planning statements. This aligns
with the intuition that steps which do not introduce
new information are more likely to be pruned early.
In contrast, planning statements, which may offer
useful guidance for the model’s reasoning trajec-
tory, are less likely to be removed or are pruned
later in the process.

Notably, in SPIRIT, we use a threshold to deter-
mine the extent of pruning. If we set larger, SPIRIT
will allow deeper pruning, meaning that steps with

higher removal orders (as shown in Table 6) will
be included in pruning. Conversely, with a smaller,
only steps with lower average removal orders will
be selected for removal.
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H Examples of removed steps

Table 7: Examples of removed steps

Pruning Type: Repetition of Problem Condition

Q1: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today, she read twice
as many pages as yesterday. If she wants to read half of the remaining pages tomorrow, how many pages
should she read? Let’s think step by step.
A1: Yesterday, Julie read 12 pages.
Today, she read twice as many pages as yesterday, so she read 12× 2 = 24 pages.
In total, she has read 12 + 24 = 36 pages.
There are 120− 36 = 84 pages left in the book.
If she wants to read half of the remaining pages tomorrow, she should read 84/2 = 42 pages.
The answer is 42.

Pruning Type: Planning Statement

Q2: Angela is a bike messenger in New York. She needs to deliver 8 times as many packages as meals. If
she needs to deliver 27 meals and packages combined, how many meals does she deliver? Let’s think step
by step.
A2: Let m be the number of meals Angela delivers.
Since she needs to deliver 8 times as many packages as meals, the number of packages she delivers is 8m.
The total number of meals and packages she delivers is 27, so we can set up the equation:
m+ 8m = 27
Combine like terms:
9m = 27
Divide both sides by 9:
m = 3
So Angela delivers 3 meals.
The answer is 3.
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I Prompt for Instructing Merging

Example 1:
Q: A portable computer drive has enough kilobytes of storage space to store 2000 photos. Each photo is 1.5 kilobytes in size.
How many 200-kilobyte videos can it store if it already has 400 photos on it? Let’s think step by step.
A: The drive has 2000 photos * 1.5 kilobytes = 3000 kilobytes of storage space.
It already has 400 photos * 1.5 kilobytes = 600 kilobytes of photos on it.
So, it has 3000 - 600 = 2400 kilobytes of storage space left.
Each video is 200 kilobytes in size.
The answer is 12

After removing ’The drive has 2000 photos * 1.5 kilobytes = 3000 kilobytes of storage space.’, the answer become:
A: The drive already has 400 photos * 1.5 kilobytes = 600 kilobytes of photos on it.
So, it has 2000 photos * 1.5 kilobytes - 600 kilobytes = 2400 kilobytes of storage space left.
Each video is 200 kilobytes in size.
The answer is 12

Example 2:
Q: Leah bought 3 boxes of birdseed. When she went to put them away, she discovered that she already had 5 boxes in the pantry.
Her parrot eats 100 grams of seeds each week and her cockatiel eats 50 grams of seeds in a week. If each box of birdseed
contains 225 grams, for how many weeks can she feed her birds without going back to the store? Let’s think step by step.
A: Leah has a total of 3 + 5 = 8 boxes of birdseed. Each box contains 225 grams of birdseed, so she has a total of 8 * 225 = 1800
grams of birdseed.
Her parrot eats 100 grams of seeds each week and her cockatiel eats 50 grams of seeds in a week, so together they eat 100 + 50 =
150 grams of seeds per week.
To find out how many weeks the birdseed will last, we can divide the total amount of birdseed (1800 grams) by the amount eaten
per week (150 grams):
1800 / 150 = 12 weeks
The answer is 12

After removing ’Leah has a total of 3 + 5 = 8 boxes of birdseed.’, the answer become:
A: Each box contains 225 grams of birdseed, so Leah has a total of (3 + 5) * 225 = 1800 grams of birdseed.
Her parrot eats 100 grams of seeds each week and her cockatiel eats 50 grams of seeds in a week, so together they eat 100 + 50 =
150 grams of seeds per week.
To find out how many weeks the birdseed will last, we can divide the total amount of birdseed (1800 grams) by the amount eaten
per week (150 grams): 1800 / 150 = 12 weeks
The answer is 12

Example 3: Q: Joy can read 8 pages of a book in 20 minutes. How many hours will it take her to read 120 pages? Let’s think
step by step.
A: To find out how many minutes it takes her to read 1 page, we divide 20 minutes by 8 pages: 20 minutes / 8 pages = 2.5
minutes per page.
To find out how many minutes it takes her to read 120 pages, we multiply 2.5 minutes per page by 120 pages: 2.5 minutes per
page * 120 pages = 300 minutes.
To convert minutes to hours, we divide 300 minutes by 60 (since there are 60 minutes in an hour): 300 minutes / 60 = 5 hours.
The answer is 5

After removing ’To convert minutes to hours, we divide 300 minutes by 60 (since there are 60 minutes in an hour): 300 minutes /
60 = 5 hours.’, the answer become:
A: To find out how many minutes it takes her to read 1 page, we divide 20 minutes by 8 pages: 20 minutes / 8 pages = 2.5
minutes per page. To find out how many minutes it takes her to read 120 pages, we multiply 2.5 minutes per page by 120 pages:
2.5 minutes per page * 120 pages = 300 minutes.
The answer is (300 / 60) = 5

Learn from the above example to do the following modification. Remember not to change the final results (the number after ’The
answer is’).
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