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Abstract
In the last couple years, there has been a flood
of interest in studying the extent to which
language models (LMs) have a theory of mind
(ToM) – the ability to ascribe mental states to
themselves and others. The results provide an
unclear picture of the current state of the art,
with some finding near-human performance
and others near-zero. To make sense of this
landscape, we perform a survey of 16 recent
studies aimed at measuring ToM in LMs and
find that, while almost all perform checks for
human identifiable issues, less than half do
so for patterns only a machine might exploit.
Among those that do perform such validation,
which we call machine validation, none
identify LMs to exceed human performance.
We conclude that the datasets that show high
LM performance on ToM tasks are easier
than their peers, likely due to the presence of
spurious patterns in the data, and we caution
against building ToM benchmarks relying
solely on human validation of the data.

1 Introduction

In cognitive science, theory of mind (ToM) refers
broadly to the capacity to reason about the mental
states of oneself and others (e.g., beliefs, intentions,
emotions) – especially when they may differ from
one’s own (Premack and Woodruff, 1978). In re-
cent years there has been an explosion of interest in
understanding and quantifying the extent to which
language models (LMs) demonstrate this ability.
Numerous benchmark datasets have been designed
to measure this using narratives (Nematzadeh et al.,
2018; Le et al., 2019; Gu et al., 2024), human
conversation (Bara et al., 2021; Soubki et al., 2024),
and adversarial data generation (Sclar et al., 2024).

Despite, or perhaps due to, the growth of ToM
evaluation tools in both diversity and number, the
extent to which one can say that LMs display ToM
remains unclear. Some evaluation metrics find that
ToM is almost non-existent in modern models (Kim

et al., 2023), others determine that there is evidence
but they lack some sort of robustness (Shapira et al.,
2024; Jones et al., 2024), while still others find that
they already meet or exceed human performance in
some respects (Gu et al., 2024; Street et al., 2024).
This contradictory set of results leaves the working
scientist wondering – do LMs have ToM?

In this position paper we argue that the variety of
results seen across these evaluations is, at least in
part, due to a lack of what we refer to as “machine
validation”, an analysis aimed at identifying pat-
terns in data that neural models (but not humans)
might exploit. We begin with a brief history of
approaches to measuring ToM prior to 2020, and a
discussion of how the data may mislead LM-based
studies (§2). We discuss the notion of machine
validation (§3), and then perform a meta-analysis
of 16 recent papers introducing ToM datasets (§4)
and find that those which report strong zero-shot
LM performance tend to lack a form of machine
validation. We present fine-tuning baselines for
a sample of four datasets from our meta-analysis
(§5); we find that simple models achieve perfect
or near-perfect performance on the datasets that
omitted machine validation, leading us to outline a
suggested workflow for creating ToM (and other)
datasets (§6). We conclude with some final rec-
ommendations for the study of LM ToM going
forward (§7).

2 Theory of Mind in Language Models

The term theory of mind was first introduced by psy-
chologists (Premack and Woodruff, 1978) studying
the behavior of chimpanzees. They posit that an
agent has a ToM “if [they] impute mental states
to [them]self and others”. The study of ToM was
later extended to examine the behavior of children
including the, now famous, Sally-Anne test (Wim-
mer and Perner, 1983; Baron-Cohen et al., 1985)
which presents subjects with a narrated or acted
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scene about two or more agents, and a question to
see if the subjects understand the story agents’ cog-
nitive state. This style of observer-based probing is
especially amenable to the study of ToM in LMs,
where question answering is already a well stud-
ied capability (Al-Mamari et al., 2024; Yang et al.,
2018; Joshi et al., 2017). As a result, a number
of datasets inspired by psychological experiments
have been adapted for LMs over the years. Ne-
matzadeh et al. (2018) produce a template-based
question answering corpus (ToM-bAbi) generated
from stories inspired by the Sally-Anne test. Le
et al. (2019) note that such formulaic data results
in a flawed evaluation, especially when using su-
pervised methods, and produce their own templatic
corpus (ToMi) which introduces more noise such
as distractor sentences and reorderings. Despite
these improvements, Sclar et al. (2023) find ToMi
to be vulnerable to similar issues.

While recent approaches (see §4) differ greatly
from their predecessors, concerns regarding mod-
els exploiting spurious correlations (Gordon and
Van Durme, 2013; Aru et al., 2023) in order to dis-
play so-called illusory ToM have remained. Early
work on machine ToM did not necessarily focus on
zero-shot performance (Nematzadeh et al., 2018;
Chandrasekaran et al., 2017; Grant et al., 2017) or
even the inclusion of language as input (Rabinowitz
et al., 2018). As zero-shot performance has gained
priority, fewer studies seem to provide fine-tuned
baselines for comparison.

We argue that one manner of checking for the
presence of surface cues is to provide these simple,
fine-tuned baselines. As humans are not thought
to be exploiting such patterns for ToM, very strong
performance of simple models (often prone to rely-
ing on these patterns) can be an indicator of undesir-
able correlations in data or a task that is somehow
easier than prior work. We keep these observations
in mind in our meta-analysis.

3 Machine Validation

Any step taken to ensure that machine performance
on a benchmark is not due to the exploitation of
spurious correlations specific to machine systems
is a form of what we term machine validation, i.e.,
validation designed specifically for machine “sub-
jects”. We find that, despite many ToM datasets
being designed for machine subjects, there is an
over-reliance on validation techniques more suit-
able for humans or, in some cases, no discussion

of validation at all. We are not the first to call for
additional machine validation (Shapira et al., 2024;
Ullman, 2023), and several techniques have already
been proposed (see §6).

There are two broad approaches to machine
validation. The first involves designing the
benchmark such that it has features that allow
one to validate whether models are using certain
surface cues (e.g., Rajpurkar et al. 2018; Kim et al.
2023). This enables additional analysis when using
the benchmark that should then be reported on.
The second approach is to do a post-hoc analysis
of the dataset after creation, checking for the
presence of spurious correlations through some
(possibly statistical) means (McCoy et al., 2019;
Sugawara et al., 2020). Roughly speaking, the
former focuses on determining what models use
at the time of evaluation while the latter focuses
on what is present in the data to begin with.

An advantage of the machine validation tech-
niques above is that they clearly identify the prob-
lem in the event of an issue. A disadvantage is that
they can be fairly specific to the dataset in question,
and can require considerable effort. We consider
fine-tuning simple baseline models a form of this
post hoc approach to machine validation. Though
training on a benchmark is more often thought of
as a way to evaluate the model, it can also be used
to evaluate the benchmark itself. While it will not
pinpoint the exact issue, it can indicate that there is
a problem, which can then be diagnosed.

4 Meta-Analysis

To obtain the 16 papers selected for analysis, we
searched the ACL Anthology for papers since 2020
matching the keyword “theory of mind” and manu-
ally inspected their content. We discarded papers
which primarily contributed methods for improving
models of ToM, rather than evaluation resources.
While a number of datasets in related topics may be
relevant (e.g., emotion recognition), we restrict our
analysis to those specifically designed for ToM. A
similar process was repeated by searching Google
Scholar using the term “language model theory of
mind”. We then read the identified papers, pay-
ing special attention to the manner in which their
data was created, validated, and used in evaluation.
We also reviewed several papers in this citation
network which did not meet our recency threshold.

The final collection is a diverse sample. It
includes a number of datasets compiled to test
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LM Evals Data Evals Superhuman Metadata

Study Zero-Shot Few-Shot Fine-Tuning Human In 1+ Expt. Perspective Format Source Size

Common-ToM (Soubki et al., 2024) 60.6 - 64 80 No Observer MC (2) Natural 7,374
FANToM (Kim et al., 2023) 26.6 - 53.7 87.5 No Observer FR, MC (2) LM 10,317
OpenToM (Xu et al., 2024) 52.8 - 72.7 92.2 No Observer MC (2/3) LM 13,708
ToMBench (Chen et al., 2024) 74.7 - - 86.1 No Observer MC (4) Manual 2,470
Social IQa (Sap et al., 2022) 42 73 83* 87 No Observer MC (3) MTurk 1,954
MindCraft (Bara et al., 2021) - - 41.7 56.7 No Interactant MC (3, 21) Natural 1,200
FauxPas-EAI (Shapira et al., 2023) 40 - - 82 No Observer MC (2) Manual 40
MMToM-QA (Jin et al., 2024) 46.7 - 76.7 93 No Observer MC (2) LM 600

Hi-ToM (Wu et al., 2023) 58.9 - - - No (?) Observer MC (15) Template 600
Adv-CSFB (Shapira et al., 2024) 70 - - - No (?) Observer MC (3) Manual 183
ExploreToM (Sclar et al., 2024) 74 - - - No (?) Observer FR, MC (2) LM 1,000*

EPITOME (Jones et al., 2024) 58.9 - - 70.6 Yes Observer FR, MC (2) Manual 446
BigToM (Gandhi et al., 2024) 84.5 89.7 - 86 Yes Observer MC (2) LM 5,000
Strachan et al. (2024) 88.2 - - 89.2 Yes Observer MC (2) Manual 105
MoToMQA (Street et al., 2024) � 88.6 - - 90.4 Yes Observer MC (2) Manual 70

SimpleToM (Gu et al., 2024) 89.5 97.1* - - Yes (?) Observer MC (2) LM 3,441

Table 1: An overview of the ToM datasets surveyed (� indicates not publicly available). The format of the evaluation
is noted as multiple choice (MC) with the number of choices appearing in parenthesis, or free response (FR). Size is
based on the number of questions and shading indicates performance relative to human baselines (if available). We
make note of if their results find models to exceed human performance by at least one reported metric. For datasets
that do not provide a human baseline we guess (?) based on similar tasks. Additional details (∗) are in Appendix A.

higher order ToM (Wu et al., 2023; Street et al.,
2024), incorporate more tasks (Chen et al., 2024;
Jones et al., 2024; Xu et al., 2024; Strachan et al.,
2024), include additional modalities (Soubki et al.,
2024; Jin et al., 2024), involve social reasoning
(Sap et al., 2022; Shapira et al., 2023), and expand
on belief-oriented approaches (Street et al., 2024;
Shapira et al., 2024; Gandhi et al., 2024; Kim
et al., 2023). Gu et al. (2024) make a distinction
between explicit ToM (i.e., inferring mental states)
and implicit ToM (i.e., making judgments based
on these states). In (Bara et al., 2021), agents are
evaluated in their ability to cooperate with humans
to complete objectives in MineCraft. Sclar et al.
(2024) generate questions adversarially, making
the evaluation adaptive.

4.1 Data

We compile summary statistics for the 16 studies
reviewed. This includes the performance (where
available) of humans and their best models in
zero-shot, few-shot, and fine-tuning experiments.
Eight of the datasets involve composite scores
(i.e., the benchmark evaluated more than one
aspect of ToM). In this case we compute the mean
of reported performance across these categories.
We also identify the type of ToM (Kalbe et al.,
2010) the studies focus on, classifying the types as
cognitive (e.g. beliefs, thoughts) and/or affective
(e.g. emotions, desires), as well as whether
non-text modalities are available in the corpus.

Other analyses of ToM benchmarks have called

for evaluations which situate models as interactants
rather then just passive observers (Shapira et al.,
2024; Ma et al., 2023). We make note of this
feature. We also record the datasets’ answer format
(multiple choice or free response), source (e.g.,
manually created by experts, LM generated), and
size. The last thing we collect is whether the
evaluation finds models to exceed human perfor-
mance by at least one of their reported metrics
(i.e., “superhuman performance”). For datasets
which do not provide a human baseline we make
an educated guess based on human performance
for similar tasks. For additional details regarding
the methods of our survey, see Appendix A.

4.2 Findings
The results from our survey are shown in Table 1.

The Good The use of LMs to generate ToM data
has raised some concern due to the possibility of
low lexical diversity and other output patterns (Xu
et al., 2024; Soubki et al., 2024). However, in our
analysis we do not see any indication that model
performance is strongly correlated with whether the
source was human or synthetic. Prior reviews have
also called for ToM benchmarks to broaden their
scope (Ma et al., 2023). We find several recent
benchmarks answer this call by incorporating a
variety of skills beyond false beliefs (Chen et al.,
2024; Jones et al., 2024; Gu et al., 2024).

The Bad Only a single benchmark (Bara et al.,
2021) places models in the role of an active
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Task Subset Accuracy

FANToM g

Kim et al. (2023)
Y/N 65.8 ± 1.63
MC 49.3 ± 2.12

Common-ToM à

Soubki et al. (2024) All 61.3 ± 4.95

SimpleToM g

Gu et al. (2024)

State 100 ± 0.00
Judgment 100 ± 0.00
Behavior 96.6 ± 5.06

BigToM g

Gandhi et al. (2024)
Without Belief 96.7 ± 1.62
With Belief 92.8 ± 9.41

Table 2: Accuracy of BERT (~110M params), GPT-2
(~137M params), and Flan-T5-base (~248M params)
when fine-tuned on various ToM benchmarks. Results
are computed over five folds (g) or three seeds (à) for
the three models, and then pooled for the mean and
standard deviation calculations.

participant – perhaps one of the most common
scenarios for humans. The remaining all evaluate
models’ abilities to make ToM inferences as a
passive observer. Additionally, only three of the
benchmarks include input data in a form other than
text and only four include affective aspects of ToM
in their evaluation.

The Ugly Many papers discuss the dangers of
models exploiting surface-level patterns and spu-
rious correlations to motivate their data creation
methodology. Despite this awareness, only one
paper (Xu et al., 2024) performs a validation step
aimed at identifying and correcting this. A surpris-
ing number of papers provide no human baseline to
compare against, making it difficult to situate the
source of their dataset’s difficulty.

Every benchmark which identifies models with
superhuman ToM omits machine validation (e.g.,
computing lexical overlaps, providing fine-tuned
model baselines) of their dataset.

5 Case Study

We hypothesize that datasets which report super-
human performance will likely see strong perfor-
mance in fine-tuning experiments (i.e., fail machine
validation). To investigate this we compare the fine-
tuning performance of BERT (Devlin et al., 2018),
GPT-2 (Radford et al., 2019), and Flan-T5-base
(Chung et al., 2022) across two datasets which did
not find superhuman performance (FANToM and
Common-ToM) and two datasets which did (Sim-
pleToM and BigToM). The models were chosen
to be relatively small by modern standards and
include an encoder-only model (BERT, ~110M

params), decoder-only model (GPT-2, ~137M
params), and encoder-decoder model (Flan-T5,
~248M params). The datasets were selected some-
what arbitrarily from our set of 16 studies to include
datasets which we perceived to report poor, mod-
erate, and strong performance, respectively. For
FANToM we discard the free response questions
to maintain comparability. We average over three
seeds for Common-ToM using the author’s splits
and, for all other datasets, over five folds using
cross-validation. We report the average accuracy of
all models across all runs. Further details, includ-
ing hyperparameters, can be found in Appendix B.

5.1 Results

The results of our fine-tuning experiments, aver-
aged over all runs, can be seen in Table 2. For
FANToM and Common-ToM, accuracies roughly
replicate those reported by the original authors
which also fall broadly in line with fine-tuning
performance for the other datasets surveyed. On
SimpleToM, our models achieve near perfect per-
formance across both their implicit and applied
ToM questions. Similarly high performance is ob-
served on BigToM, both in the case where initial
beliefs are and are not provided. All models per-
form very comparably across the datasets with the
exception of BigToM where BERT performs a bit
worse than the other models in the condition that
included initial beliefs (See Table 3 for details).
Across runs, standard deviations were generally no
more than a few percent. These results are very
unusual and, we argue, likely indicate that either
(1) the benchmarks are markedly easier than oth-
ers or (2) zero-shot models are exploiting spurious
correlations in these datasets.

6 Validating Your Benchmark

The results of our survey and case study suggest
what we suspected from the start — human
validation is not enough for ToM benchmarks.
Roughly half of the surveyed papers discuss
some form of machine validation in the design
phase but only six provide such analysis after
construction. We outline a workflow for validating
ToM benchmarks here.

When designing tasks, think carefully about the
sort of heuristics that a model might use to perform
well while avoiding ToM reasoning. Two ways to
make this less likely are to introduce noise, and
to construct adversarial examples. Some examples

18498



of noise include adding distractor sentences (Le
et al., 2019) and including (possibly multiple)
rephrasings of the same task (Sclar et al., 2023;
Kim et al., 2023). This can be complemented
by the addition of adversarial examples, such
as entries that should be impossible to predict
(Rajpurkar et al., 2018), or that vary the scenario
to reveal model biases (Ullman, 2023). If this
introduces subsets that can be used to detect when
models are relying on surface cues, this analysis
should be included and made clear to users.

Ideally, there are few spurious correlations in
the benchmark for models to exploit in the first
place, but some work should be done to estimate
their prevalence in the completed benchmark. This
gives an idea of how likely strong performance is to
be a false positive. After construction, always train
a simple fine-tuned baseline. This could be a small
LM (as we do in §5) or a more classical statistical
model. If this baseline performs unexpectedly well,
consider searching for lexical overlaps (McCoy
et al., 2019), employing one of the growing num-
bers of interpretability techniques (Rai et al., 2025),
or returning to options from the design phase.

7 Where Do We Go From Here?

We have found that less than half of the 16 LM
ToM studies we examined evaluate their dataset
for patterns only a machine might exploit (i.e., per-
form machine validation). Among those which do
perform such validation, none identify LMs to ex-
ceed human performance on any aspect of their
benchmark, while all studies that find superhuman
performance omit such checks. We then performed
machine validation by providing a fine-tuning base-
line. We found that a small, fine-tuned system
could achieve near perfect accuracy on the datasets
which did not perform machine validation. This in-
dicates these datasets are, in some sense, easier than
their peers, likely due to the presence of spurious
patterns in the data. In the following paragraphs
we offer some closing thoughts and suggestions.

How do you interpret LM performance on tests
designed for humans? It is notable that ToM
was first studied in animals, and the manner of test-
ing underwent significant changes when attention
was turned towards humans. It is entirely possible,
as others have also noted (Ullman, 2023; Shapira
et al., 2024; Markowska et al., 2023), that our meth-
ods will need to change further to study this phe-
nomena in LMs. In the case of animals to humans,

experimenters had to mind the change in capabili-
ties between these two subjects. When observing
the performance of LMs on tests originally used
for humans, we can’t necessarily take away the
same conclusions – the capabilities of the subject
have changed again. Models may exploit patterns
present in our evaluations, otherwise undetectable
by humans, that do not broadly generalize to what
we wish to measure.

Other evaluation options Changing our eval-
uation approach might avoid this situation alto-
gether. Moving away from observer-based ToM
evaluations towards ones where the agent is situ-
ated (Bara et al., 2021), adaptive evaluations (Sclar
et al., 2024; Sap et al., 2022), and simulated envi-
ronments (Jin et al., 2024) all reduce the chances
of measuring primary spurious patterns. In other
words, we should couple evaluations more closely
to the conditions in which ToM is actually used.

Fine-tuning small models is necessary but not
sufficient Fine-tuning small models situates the
difficulty of a dataset. Unexpectedly strong perfor-
mance is likely an indicator of undesirable patterns
or relative ease. While this may not directly say
what in the data models are exploiting, it will indi-
cate that there is probably an issue. The growing
number of interpretability techniques (Zhu et al.,
2024) and even more classical approaches like mea-
suring lexical overlap (Xu et al., 2024) can help to
track down the culprit. We can borrow from the
extensive work on more general QA datasets which
has run into similar issues, like shortcutting (Sen
and Saffari, 2020; Jiang and Bansal, 2019). This is
a sufficient, not a necessary condition. It doesn’t
mean the dataset is free of spurious patterns but if
it fails, then it likely means trouble.

But do LMs have ToM? This is a tricky question.
If the question is simply “Can they infer mental
states?”, as described in (Premack and Woodruff,
1978), the answer is plainly, yes. However, this
has never been the problem. The trouble has al-
ways been making sense of the inconsistencies in
their performance across seemingly similar con-
texts. Evaluation tools should not be aimed at mea-
suring the presence of ToM but the robustness of
ToM (Shapira et al., 2024; Chen et al., 2024). With
few common goalposts to situate the difficulty of
so many ToM datasets, it’s hard to say if models
are improving, but it seems clear that performance
is not yet robust.
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Limitations

We acknowledge that the study of ToM in LMs is
progressing rapidly and, while we did our best to
include as much work as possible, that our survey
may not be comprehensive. We understand that
our case study presented in Section 5 could be
improved by including additional baselines (e.g.,
logistic regression on word embedding features) for
more datasets and that this lends some uncertainty
to our conclusions.
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A Survey Details
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Table 1 with additional columns.
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(2024) which reports Mistral-7B-Instruct zero-
shot results and Mistral-7B fine-tuning results.
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• FANToM - See Table 9 from Kim et al. (2023).
We take the best results from the “All Question
Types” column which includes GPT-4-0613
(June) with CoT for zero-shot performance
and Flan-T5-XL for fine-tuning performance.

• OpenToM - See Table 2 from Xu et al. (2024)
which reports macro-averaged F1 scores. We
average over all rows for GPT-4-turbo for
zero-shot and Llama2-13B for fine-tuning.

• ToMBench - See Table 2 from Chen et al.
(2024). We use GPT-4-1106 zero-shot results
averaged over English and Chinese perfor-
mance.

• Social IQa - For zero-shot, few-shot, and hu-
man performance see Figure 7 from Sap et al.
(2022). We use their results for PALM-535B.
For fine-tuning performance see Table 8 from
Lourie et al. (2021). As the result comes
from another paper we note this with an aster-
isk. The dataset is originally from Sap et al.
(2019).

• MindCraft - See Figure 5 from Bara et al.
(2021) which reports F1. We average V. Tran.
performance over all three prediction tasks for
fine-tuning performance.

• FauxPas-EAI - See Table 1 from Shapira et al.
(2023). We take the final accuracy (requiring
correct answers on all four questions) of Flan-
T5-xxl for zero-shot performance. Human
performance cites a study of children aged
9-11 (Baron-Cohen et al., 1999).

• Hi-ToM - See Table 5 from Wu et al. (2023).
We use the overall performance of GPT-4-32k
for the zero-shot results.

• Adv-CSFB - See Table 2 from Shapira et al.
(2024). We average the zero-shot accuracy of
text-davinci-003 over the question and story
levels.

• ExploreToM - See Table 2 from Sclar et al.
(2024). For zero-shot performance we use
the accuracy report for GPT-4o when Mixtral
7x8B Inst. was used for question generation.
This was computed over a sample of 1000
question pairs and this is what we report in
the size column, however note that the “size”
of this dataset is ambiguous since the tool can
be used for generation. The authors release a
set of 13,300 questions to demonstrate this.

• EPITOME - See Table 1 from Jones et al.
(2024). We use the average zero-shot perfor-
mance of text-davinci-002 over all tasks.

• BigToM - See Table 2 from Gandhi et al.

(2024) for model results. We use GPT-4 accu-
racy without initial beliefs and average over
all conditions. We take their 0-shot-CoT re-
sults for zero-shot performance and 1-shot-
CoT for few-shot. Human performance is
taken from Figure 3 and averaged over the
same conditions.

• MoToMQA - See Table 7 from Street et al.
(2024). We average over task types and use
results reported with GPT-4 for zero-shot per-
formance.

• SimpleToM - See Table 5 from Gu et al.
(2024). For zero-shot performance, we use
accuracy averaged over belief, behavior and
judgment prediction tasks reported for Claude-
Sonnet-3.5 with their CoT* prompt. For few-
shot performance we take the same informa-
tion from their MS-remind prompt-chaining
experiments. We denote this value with an
asterisk to acknowledge that few-shot ap-
proaches and prompt-chaining are similar but
not equivalent.

• MMToM-QA - See Table 1 from Jin et al.
(2024). We use multimodal accuracy across
all question types. We categorized the BIP-
ALM models as fine-tuned and the remaining
models as zero-shot, though the distinction is
somewhat complicated in this case.

B Experimental Details

All experiments were performed on Tesla V100 or
A100 GPUs. We fine-tune bert-base-uncased,
gpt2, and google/flan-t5-base for classifica-
tion for a fixed 10 epochs and record the accuracy at
the last epoch. All experiments use cross-entropy
loss, the AdamW optimizer with a learning rate
of 2e-5 and linear schedule, and a batch size of 1
(GPT-2 and Flan-T5) or 16 (BERT). We pad input
text to the maximum sequence length of 512 and
manually inspect training loss curves to ensure that
models were converging.

We report average accuracy over three seeds (42,
0, 1) for Common-ToM using the provided splits.
For corpora without established splits (FANToM,
SimpleToM, and BigToM), we perform five-fold
cross-validation and report the average over all five
folds. Training times typically ranged from 4 to 6
hours for all runs on a given dataset.

SimpleToM asks multiple questions regarding
specific scenarios. When splitting we ensure that
no scenario appears in both the train and test data.
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Task Subset BERT GPT-2 Flan-T5

FANToM g

Kim et al. (2023)
Y/N 64.9 ± 1.66 66.1 ± 1.63 66.4 ± 1.52
MC 48.8 ± 1.74 49.7 ± 2.41 49.5 ± 2.50

Common-ToM à

Soubki et al. (2024) All 58.2 ± 2.15 58.1 ± 1.68 67.5 ± 2.67

SimpleToM g

Gu et al. (2024)

State 100 ± 0.00 100 ± 0.00 100 ± 0.00
Judgment 100 ± 0.00 100 ± 0.00 100 ± 0.00
Behavior 96.0 ± 5.95 96.8 ± 4.51 97.1 ± 5.76

BigToM g

Gandhi et al. (2024)
Without Belief 94.9 ± 1.42 97.8 ± 0.73 97.5 ± 0.50
With Belief 83.3 ± 11.8 97.1 ± 0.52 97.9 ± 0.59

Table 3: Accuracy of BERT (~110M params), GPT-2 (~137M params), and Flan-T5-base (~248M params) when
fine-tuned on various ToM benchmarks. Results (mean and standard deviation) are calculated over five folds (g) or
three seeds (à).

For FANToM we use only the “multiple-choice”
and “binary” answer types, as the free response
questions are not amenable to classification models.
When generating input sequences for BigToM, we
shuffle the order of answer choices.

C Expanded Case Study Results

Table 3 shows the results of our case study ex-
periments aggregated per model. As discussed in
Section 5, performance across the three models is
fairly consistent with one exception. BERT did not
train consistently across the folds for the version of
BigToM that included initial beliefs in the context,
resulting in a lower mean accuracy with higher
standard deviation. This could instability could be
addressed with additional hyperparameter tuning,
but maximizing performance was not the purpose
of this study.
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