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Abstract

For document-level event argument extraction,
existing role-based span selection strategies suf-
fer from several limitations: (1) ignoring in-
terrelations among arguments within an event
instance; (2) relying on pre-trained language
models to capture role semantics at either the
event pattern or document, without leveraging
pattern-instance associations. To address these
limitations, this paper proposes a multi-round
role representation learning strategy. First,
we construct an event pattern-instance graph
(EPIG) to comprehensively capture the role se-
mantics embedded in various direct and indi-
rect associations, including those among roles
within event patterns, arguments within event
instances, and the alignments between patterns
and instances. Second, to enhance the learning
of role node representation in the graph, we
optimize the update mechanisms for both node
and edge representations in the EPIG graph.
By leveraging the graph attention network, we
iteratively update the representations of role
nodes and role edges. The role representations
learned from the EPIG are then integrated into
the original role representations, further enrich-
ing their semantic information. Finally, a role
representation memory module and a multi-
round learning strategy is proposed to retain
and refine role representations learned from
previously analyzed documents. This mem-
ory mechanism enhances the prediction perfor-
mance in subsequent rounds of span selection.
Extensive experiments on three datasets verify
the effectiveness of the model.

1 Introduction

Document-level event argument extraction (EAE)
aims to identify event-related arguments and their
roles within a document (Wan et al., 2024a; Hu
et al., 2025). In recent years, scholars leverage
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pre-trained language models (PLMs) and prompt
tuning to predict span boundaries directly. A key
challenge is to capture semantic dependencies be-
tween sentences or events to accurately identify
arguments. For instance, Ma et al. (2022) enhanced
argument extraction performance by constructing
event-type-specific joint prompts and leveraging
PLMs’ cross-attention to dynamically fuse con-
text with structured prompts, generating context-
sensitive role representations while capturing im-
plicit role semantics within the same event type.

Subsequent works enriched role semantics
through diverse strategies. Nguyen et al. (2023)
fused document-contextualized representations via
event type-document graphs and soft prompts. Li
et al. (2023) established dual dependency graphs
(internal role interactions and external correlations
with similar events) to strengthen relational reason-
ing. For multi-event scenarios, He et al. (2023) em-
ployed correlation-aware decoder inputs to capture
cross-event associations implicitly, and Liu et al.
(2024) concatenated full event-type prompts with
documents, using attention weights to inject event
context into role representations. Contrastingly,
Zhang et al. (2024) adopted hyper-spherical pro-
totypes, optimizing span selection through proto-
type matching and distance-based loss computation.
These approaches collectively advance argument
extraction by systematically modeling semantic de-
pendencies across roles, events, and an document.

Despite the impressive results achieved, at the
pattern level, they do not fully utilize information
such as event types and roles and learn role rep-
resentation based on graph mechanism. At the
instance level, only capturing semantics from the
document directly or indirectly updates the role
representation, or uses the prediction span to opti-
mize the loss function, which indirectly affects the
span selection and does not directly affect the span
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selection by updating the role representation.

To address these limitations, this paper con-
structs an event pattern-instance graph (EPIG) that
comprehensively captures the role semantics em-
bedded in various direct and indirect associations,
including those among roles within event patterns,
arguments within event instances, and the align-
ments between patterns and instances. For better
understanding, Figure 1 illustrates an example of
the EPIG in this paper.

Given a specific document segment at the top of
Figure 1, the event type conflict.attack.bombing is
known. This allows for the explicit identification
of all associated roles, including attacker, target,
instrument, and place. Consequently, edges can
be established between the event type and its cor-
responding roles, forming the event pattern level
association graph shown in the bottom right part
of Figure 1. Additionally, by constructing edges
between trigger and predicted span nodes, where
the edge type corresponds to the role played by the
span, we obtain the event instance level association
graph shown in the top right part of Figure 1.

At the initial stage of graph construction, all
edges and nodes have well-defined content, ex-
cept for the span nodes, which remain temporarily
empty. Once the predicted spans are obtained, we
populate the span nodes with the predicted infor-
mation. Finally, we connect the span nodes in the
event instance graph to their corresponding role
nodes in the event pattern graph, while also linking
the trigger to the event type, thereby forming a com-
plete event pattern-instance graph. This dual-layer
structure not only captures the structural semantics
among spans within an event but also fully lever-
ages the associations between event types, triggers,
and roles, enabling a richer representation of role
semantics.

In summary, the EPIG is a heterogeneous graph
centered around roles, with the aim of updating
role node representations and role edge represen-
tations. To better encode the EPIG, we refine the
node and edge update strategies in the graph neu-
ral network, drawing inspiration from the graph
update mechanisms proposed by Cui et al. (2020)
and Wan et al. (2024c). By leveraging multiple
iterative interactions between nodes and edges, our
approach enables a deeper integration of structural
information within the graph.

Given that spans in the EPIG are obtained
through prediction, we introduce a multi-round it-
erative prediction strategy to improve the accuracy

of predicted spans. This strategy allows the model
to incorporate more relevant information, contin-
uously updating and refining span predictions to
progressively approach the correct results.

Furthermore, we design a memory unit for each
role representation. During training, the memory
unit is continuously updated with role represen-
tation knowledge learned from previous training
samples. This mechanism enhances the model’s
generalization ability, enabling it to better handle
new and unseen event instances.

To model the above ideas, this paper proposes
a Document-level Event Extraction (EPIG-EAE)
model based on the Event Pattern-Instance Graph,
which aims to learn role representations through
multiple interactions from role associations of
event patterns, span associations of event instances,
and pattern-instance matching associations. The
main contributions of this paper are as follows.

* We design a dual-layer Event Pattern-Instance
Graph (EPIG) to capture role semantics via
pattern-level role associations, instance-level
span connections, and cross-level role-span
mappings, enabling the extraction of latent
role semantics from the graph.

* We enhance the update mechanism for node
and edge representations in the graph with
Graph Attention Networks (GAT), effectively
captures structural semantics among nodes
and enabling iterative semantic fusion be-
tween node and edge representations.

* We design a role representation memory unit
to store and integrate role representations
learned from each document. In addition, we
propose a multi-round iterative span predic-
tion strategy, where role representations are
continuously optimized in each iteration, lead-
ing to progressively improved span selection.

* We validate model effectiveness on three
datasets and analyze the impacts of graph
structures, update mechanisms, and iteration
rounds on extraction performance. The ex-
perimental code can be accessed at https:
//github.com/jc-noss/EPIGEAE.

2 Event Pattern-Instance Graph

This section details the motivation and procedure
for constructing the event pattern-instance graph .
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Figure 1: Example of the event pattern-instance graph. The top is a gold document, where red indicates the trigger
and the other colors with underlines indicate the gold arguments corresponding to different roles. The purple box on
the left denotes the event instance information, containing the trigger and the prediction span. In this case, the black
underlined content indicates that the prediction span does not match the gold span. The red box is the event pattern
information. On the right side is the event pattern-instance graph constructed based on event patterns and event
instances. The dotted dashed boxes are span nodes (filled using predicted spans), the other boxes are nodes of other
elements related to the event, and role edges and role nodes match their corresponding predicted span colors.

Event Instance Graph. Traditional methods
treat arguments as independent units, ignoring the
interrelationships among arguments within event
instances. In this paper, an event instance refers
to a predicted event triggered by a given trigger,
consisting of the trigger and predicted spans for
each role. By linking trigger node to predicted
span nodes, we construct event instance level con-
nections with edge types corresponding to the roles
assigned to the spans.

This approach effectively captures the state char-
acteristics of the event triggered by the trigger,
while also encoding both the direct semantic asso-
ciations between the trigger and its corresponding
event arguments (spans) and the indirect seman-
tic associations among arguments (spans) within
the same event. Considering that initial predicted
spans may contain errors, directly establishing con-
nections between spans could introduce semantic
interference. Thus, we only establish edges be-
tween trigger and spans, simplifying the structure
and enhancing robustness.

Event Pattern Graph. Traditional methods at
the pattern level do not fully utilize event types and
roles to model relationships among roles. Thus,
we construct a pattern graph to capture both direct
semantic associations (between event type and their
roles) and indirect associations (among roles within
the same event type).

By establishing edges between event type nodes

and corresponding role nodes, it characterizes the
role features of the event types, helping the model
understand how specific events conform to general
event patterns. Additionally, considering semantic
differences among roles under the same event type,
not directly linking role nodes can reduce direct
semantic interference between different roles while
still conveying indirect associations through the
event types.

Matching Associations Between Subgraphs.
Given that existing work does not combine pat-
tern level and instance level information to enrich
role representations semantically, this paper links
these two levels to capture matching associations
between patterns and instances. First, we estab-
lish edges between event type nodes and trigger
nodes; then, we connect role nodes to their cor-
responding span nodes. Given the bidirectional
flow of information and lack of clear directionality
among nodes, undirected edges are used within the
graph. Detailed construction procedure of EPIG is
provided in Appendix A.

3 Methodology

This section introduces the framework of our EPIG-
EAE model, as illustrated in Figure 2. Follow-
ing previous studies (Ma et al., 2022; Zhang et al.,
2024), this work adopts a role-based span predic-
tion strategy, where the task is to predict the start
and end positions of spans for each role associ-
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Figure 2: Overall architecture of EPIG-EAE. The middle dashed line highlights the interaction and update between
nodes and edges. Thick blue arrows represent the update process, including node and edge revisions; bold arg;,
role;, and trigger denote updated nodes and edges. For clarity, only the update of the arg; node is illustrated.

ated with a given event. The EPIG-EAE comprises
six component: Embedding layers, initializing
embeddings for documents and roles in prompts;
Preliminary Span Selection, generating prelimi-
nary predicted spans for each role to fill the content
for the span nodes in the EPIG; Event Pattern-
Instance Graph, constructing the EPIG graph and
integrating the preliminary predicted spans into cor-
responding span nodes; Node-Edge Interaction-
based Multi-round Learning Network, imple-
menting a multi-round learning strategy for iter-
atively interactively updating representations of
nodes and edges in the EPIG; Historical Role
Memory, designing a memory unit for each role to
store fused representations learned across all docu-
ments; Argument Extraction, obtaining the spans
of roles according to the learned role representa-
tions.

3.1 Embedding Layers

Given a document d, we utilize the pretrained lan-
guage model BART to obtain the document rep-
resentation H,;. For role representation, the docu-
ment representation Hg“ output by the BART en-
coder is jointly fed into the BART decoder with the
prompt, yielding the prompt representation Hp:

(1
2

H,; = Encoder-Decoder(d),

Hp = Decoder(P, H"),

where P denotes the prompt corresponding to the
given event type.

3.2 Preliminary Span Selection

Based on Hp, we first obtain the representation
h,, of the k-th role 7. Then, preliminary pre-
dicted spans are derived from h,,. To enhance
span prediction performance, a multi-round role
representation learning strategy is employed to iter-
atively optimize role representations. The updated
role representation h;! - after the u-th learning round
is used to generate new predicted spans.

(I)start = hffk Wart, (I)de = h Wend 3)
p:tgrt = softmax ( gt]z]rtHd) 4
puky = softmax ( ende) 5)

W and Weyg are learnable parameters, e,
and p_F, represent the probability distributions of
the start and end positions for the predicted span of
role ;. across the entire context, and u € U denotes
the number of learning rounds. When u = 1, h;/,
ishy,;u > 1, hy is computed via Equation (11).

3.3 Event Pattern-Instance Graph

Following the strategy described in Section 2, we
construct the structure of the event pattern-instance
graph. This module populates the corresponding
span nodes with the predicted spans. In addition
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to the span nodes, other nodes and edges in the
graph are initialized with the BERT to obtain their
embeddings. The representation of the span node
for role r, at the u-th prediction round is:

endi

u u

h;, = Mean g hj |, 6)
j:stanrk

where Mean(-) denotes the average operation,
start,, and end,, represent the start and end po-
sitions of the predicted span for role g, and hy is
the representation of the j-th token within the span.

3.4 Node-Edge Interactive Multi-round
Learning Network

Inspired by the graph update strategies proposed
by Cui et al. (2020) and Wan et al. (2024c), this
paper optimizes the mechanisms for node and edge
updates within the graph. Cui et al. (2020) ag-
gregating node representations via graph convolu-
tional networks while updating edge representa-
tions through learnable weight matrices. However,
their approach neglects graph-based edge represen-
tation updates. In contrast, Wan et al. (2024c) trans-
forms dependency edges into nodes and updates
cross-graph node interactions using graph neural
networks, explicitly learning edge representations.

Our EPIG diverges by uniquely integrating role
nodes and edges to enhance semantic role repre-
sentations (see Figure 2). For node updates via
Graph Attention Networks, edges are treated as
virtual nodes during propagation (e.g., the arg; up-
date in Figure 2). Specifically, edge representations
are concatenated with neighboring node represen-
tations. The attention coefficient between the i-th
and j-th nodes and the updated representation of
the i-th node are formalized in Equations (7)~(9):

o} = LeakyReLU (VI [Wh; || Why [ b)), (7)

Oﬁ)>, ®)

OwmOp(=1), - (9)

exp(a;’})
2 keni €XP(

Z Do

m 1jec;
where V is the attention vector, LeakyReLU(-) de-
notes the activation function, h, represents the edge
embedding between the i-th and j-th nodes, The
computation involves Softmax normalization over
the neighborhood N; to obtain probabilistic atten-
tion weights «;;, followed by dropout regulariza-
tion to prevent overfitting, M is the number of

a;j = dropout <

attention heads, C; is the neighbor set of the i-th
node, and [ € L indexes the GAT layer.

After updating node representations, we fuse
edge representations by integrating information
from role nodes, trigger node, updated span nodes,
and the edges themselves. This ensures comprehen-
sive consideration of semantic relationships. The
updated representation of the k-th role edge at the

u-th round and [-th layer, hg(l)

. 1s defined as:

b0 = Mean (h0D i) b wi®) W,
(10)

where W, denotes the edge weight matrix, h:fr(gfz

and hff,gl) represent the span and role node repre-

sentation of the k-th role at the [-th layer of the
u(l)

u-th round, respectively. hm refers to the trigger
node representation at the /-th layer of the u-th
round. Through average fusion, all relevant se-
mantic features are integrated into the new edge
representations. In contrast, Cui et al. (2020) used
a fixed transformation matrix and connected node
representations, which cannot fully capture context-
specific information.

During the updating process from layer 1 to layer
L, node representations and edge representations
influence each other, continuously generating the
latest role node representations and role edge rep-
resentations. At the U-th round and the L-th layer,
we fuse the role node representation with the role
edge representation to obtain the final role repre-
sentation h output by the multi-round learning
network, as shown in Equation (11).

U(L U(L
b, = Mean (B, 0)H) (1)

3.5 Historical Role Memory

To retain the learning content of each role across
the corpus, we designed a memory unit for each
role that integrates and updates during training, re-
flecting the latest learning outcomes. The model
fuses the current historical role representation, the
role representation from the multi-round learning
network, and the role representation in the prompt
to form a richer role representation. This aids in
generalizing to unseen roles or event types by pro-
viding additional contextual information.

For role 7, assuming the representation in the
memory unit is initially empty (h;}), this paper
fuses the current (at the u-th round) historical role
representation h?,lc(u), the role representation out-
put by the multi-round learning network at the u-

th round h%,ﬁ“), and the role representation in the
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prompt h,, to obtain the fused role representation.
The fused role representation at the u-th round is:

h," = Mean(h™") h&™) W,h,,),

Y Tk

(12)
where W,. is the historical role learning matrix.

3.6 Argument Extraction

After U rounds of learning, we obtain the final role
representation h;’ enriched with semantic informa-
tion. Using the span selection strategy described in
Section 3.2, we predict the start and end positions
of argument spans. Following Ma et al. (2022), we
adopt the bipartite matching loss for training, de-
tailed formula in our model is formalized as shown
in Equation (13):

D
L= Z Z (logp:{glrtsrk + logpglgkerk) , (13)
i=1 (se)

where D denotes the number of training documents,
(s, e) represents the start-end position pairs for the
golden argument span distribution set of the i-th
document. s,, and e,, are the golden start and end
positions of the k-th role.

4 Experiments and Results

4.1 Experimental Setup

This paper evaluated the model on three used
widely datasets, including RAMS (Ebner et al.,
2020), WikiEvents (Li et al., 2021) and OEE-CFC
(Wan et al., 2024b). Detailed statistics are listed
in Appendix B.1. Evaluation metrics refer to Ap-
pendix B.2 for details of implementation. To com-
prehensively evaluate our model, we compared it
with many recent advanced baselines, and the de-
tails are reported in Appendix B.3.

4.2 Overall Performance

As shown in Table 1, our model achieves superior
Arg-C scores on the RAMS and WIKIEVENTS
using both Base and Large scale PLMs. Addition-
ally, results in Table 2 demonstrate that our model
surpasses baselines in Span and Head metrics on
the Chinese OEE-CFC dataset, validating its effec-
tiveness. The primary reasons for this are analyzed
as follows:

Construction of EPIG. Building EPIG allows
the model to capture structural semantics between
event types and roles at the pattern level, trigger and

arguments at the instance level. This structure inte-
grates matching relationships between concrete in-
stances and abstract patterns, helping identify sub-
tle differences in complex events. This approach
provides a more comprehensive understanding of
events by combining multiple levels of information.
Experimental investigations on the graph structure
in Table 3 validate the effectiveness of EPIG.

Interactive Update Mechanism. Dynamically
adjusting node and edge representations can better
reflects event semantic changes, The model opti-
mizes its understanding of role relationships during
each update, capturing complex interactions more
precisely and enhancing role correlation modeling.
Experimental results on different update mecha-
nisms of graphs in Table 4 prove its effectiveness.

Role Memory Fusion. If similar events or roles
were processed during training, historical role rep-
resentation can help identify anomalies in current
predictions, improving adaptability. By integrat-
ing static role semantics from original prompts,
dynamically updated role semantics from graph
updates, and historical role semantics, the model
enriches each role’s representation, capturing re-
lational structures among roles more effectively.
The role ablation results in Table 5 validate the
importance of various role fusions.

Multi-round Role Learning. This method al-
lows the model to self-correct and optimize based
on previous round results when handling long-text
event argument extraction tasks. This progressive
optimization process facilitates the model gradually
approach accurate span boundaries, using updated
learning outcomes to refine predictions, ultimately
achieving higher accuracy. Figure 5 demonstrates
the effects of different rounds of role learning, veri-
fying the significance of multi-round role learning.

5 Analysis and Discussion

5.1 Ablation of Edges in EPIG

This section aims to investigate the impact of edges
constructed in the event pattern-instance graph
(EPIG) on model performance and identify which
types of edges are most critical for capturing se-
mantic relationships within events. Figure 3 (a)
illustrates four ablation examples targeting EPIG
edges. Specifically, eg;—eg4 correspond to remov-
ing edges between: 1) trigger nodes and predicted
span nodes, 2) event type nodes and role nodes, 3)
trigger nodes and event type nodes, 4) span nodes
and their corresponding role nodes.
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Model PLM RAMS WIKIEVENTS
Arg-l1 Arg-C Arg-l Arg-C
TSAR(2022)*  ROBERTa-1 - 512 711 65.8
BART-b 547 495 689 634
PAIE(2022) BART-l 568 522 705 653
TabEAE(2023) RoBERTa-l 573 527 714 665
. BERTb 539 489 70.1 658
SCPRG(2023) Roberta-l 567 523 713 664
BART-b 560 511 706 662
SPEAE(2023) BARTl 580 533 719  66.1
EACE(2023) BART-b 584 501 71.1 662
DEEIA(2024) RoBERTa-l 580 534 718  67.0
HMPEAE(2024) RoBERTa-1 58.6 537 721 666
BART-b 567 521 720  66.3
EPIG-EAE(Qurs)  pipT1 581 537 722 672

Table 1: Overall results on RAMS and WIKIEVENTS. * indicates the results from Liu et al. (2024), Other results
are taken from the original paper. Bold denotes the highest scores by base-scale PLMs, and underlined indicates the

best results by large-scale PLMs.

Model Span Head
Arg-I Arg-C Arg-1 Arg-C
PAIE(2022)% 63.22 58.88 76.17 69.75
EPIG-EAE(Ours) 63.49 60.34 76.22 71.50

Table 2: Overall results on OEE-CFC using the BART-
base. & indicates that we rerun the code on the dataset.

As shown in Table 3, removing trigger-span
edges (line 2) results in the most significant per-
formance drop (Arg-C: 50.85%), as these edges in-
herently encode role semantics that directly affect
subsequent edge-node interaction updates. Elim-
inating other edges reduces Arg-C by 0.31-1.25
percentage points, demonstrating that all edges in
EPIG contribute to enriching role semantics.

5.2 Other Graph Structure

To further explore the impact of alternative graph
structures on model performance, this study con-
structs four graph variants, see Figure 3 (b). egs
and egg add edges between span nodes and role
nodes, respectively; eg; connects span and role
nodes; egg changes the edge-linking strategy be-
tween span and role nodes by retaining only one
role node linked to multiple span nodes when argu-
ments share the same role under an event type.
Based on these structures, Table 3 (line 6-9)
presents experimental results. Adjusted graph con-

struction methods underperform EPIG, with Arg-C
decreasing by 0.48—1.66 percentage points. The
first three edge-addition variants introduce exces-
sive noise and redundant information, disrupting
the original graph balance and hindering meaning-
ful relationship identification. The edge-pruned
variant (egg) fails to capture semantic differences
between arguments of the same role (similar to
role prototypes in Zhang et al. (2024)), leading to
performance decline.

5.3 Graph Update Mechanism

This section analyzes the effects of different
node/edge representation update mechanisms in
EPIG, as shown in Table 4. When excluding role
nodes during edge updates (line 2), Arg-C drops to
51.70%, indicating that role nodes propagate event-
type-specific knowledge and contextual semantics
during edge updates, which are irreplaceable by
trigger nodes, span nodes, or edges alone. Remov-
ing role edges during node updates (line 3) reduces
Arg-C by 1.19 percentage points, demonstrating
that the node update mechanism captures rich se-
mantic associations and enhances understanding of
complex node interactions through adaptive rela-
tionship weighting. Disabling edge updates entirely
(line 4) causes performance droping, indicating that
edge updates contribute to modeling direct or latent
relationships among trigger, spans, and roles.
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Figure 3: Edge ablation and other graph structures.

Ablation and Other Graph Arg-1 Arg-C

EPIG 56.75 52.10
w/o egy: tri-arg edge 55.66 50.85
w/o egy: etype-role edge 56.10 51.06
w/o egs: tri-etype edge 56.33 51.79
w/o egy: arg-role edge 5593 51.13
w egs: arg-arg edge 55.76 5091
w egg: role-role edge 56.13  51.31
w egr: egs & egg 55.15 50.44
w/o egg: del the same role 5646 51.62

Table 3: Performance of edge ablation and other graph
structures on RAMS dataset.

5.4 Role Fusion Strategy

Table 5 evaluates the impact of role fusion strate-
gies. Removing historical role fusion (line 2) re-
sults in minor performance decline, suggesting lim-
ited overall influence. Excluding role edge fusion
(line 3) reduces Arg-C to 51.18%, demonstrating
the significance of relational semantics embedded
in role edges for modeling complex interactions.
Similarly, omitting role node fusion (line 4) causes
significant degradation, as role node fusion ensures
comprehensive consideration of role-specific at-
tributes, facilitating precise localization and global
knowledge transfer. Removing both role node and
edge fusion (line 5) leads to large performance col-
lapse, further validating the necessity of integrated
role representation fusion.

5.5 Number of Graph Update Iterations

While Section 5.3 examined whether node-edge in-
teraction updates benefit argument extraction, this
section evaluates the performance of graph update
iteration counts, and the results in Figure 4 and
Table 6 indicate that moderate iterations optimize
semantic representations of nodes and edges. Both
Arg-I and Arg-C achieve their peak performance
(56.75% and 52.1%, respectively) at the 2nd iter-

Graph Update Mechanism  Arg-I Arg-C
EPIG-EAE 56.75 52.10

w/o Role Node in Edge Update 56.49 51.70
w/o Role Edge in Node Updat  55.82  50.91
w/o Edge Update in Graph 5594 51.33

Table 4: Performance of different node and edge update
mechanisms in EPIG.

Role Fusion Strategy Arg-1 Arg-C
EPIG-EAE 56.75 52.10

w/o Historical Role 56.67 51.81
w/o Role Edge 56.09 51.18
w/o Role Node 56.18 51.36
w/o Role Node & Role Edge 54.97 50.22

Table 5: Performance of different role fusion strategies.

ation, and then declines progressively. Detailed
analysis is reported in the Appendix C.1.

5.6 Number of Multi-Round Learning

Figure 5 and Table 7 explore the performance of
the model with different learning rounds. The re-
sults show that the 1st round achieves satisfactory
performance, while the 2nd round slightly improve
accuracy through a reconstruction strategy. How-
ever, performance notably deteriorates after exceed-
ing round 3. For instance, the reconstructed EPIG
strategy yields 51.44% in Arg-C at round 3, with
a slight rebound to 51.88% at round 4, while the
original EPIG-based iteration strategy exhibits a
more pronounced decline, reaching 51.07% in Arg-
C at round 4. Detailed analysis is provided in the
Appendix C.2.

6 Related Work

For event extraction, Wan et al. (2021) modeled
structured semantics based on syntactic and seman-
tic dependency parsing. Recent work (Wan et al.,
2023a, 2024d) has further optimized document-
level event association capture through multi-
channel hierarchical graph attention networks and
Token-Event-Role multi-channel structures, while
(Wan et al., 2023b) proposed graph structure
connects tokens via eT'ype-rolei-roles edges to
jointly model event types and argument roles within
a unified framework.

For event argument extraction, traditional classi-
fication (Zhang et al., 2020; Yang et al., 2023; Ren
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Figure 4: Performance with different update iterations
counts of event pattern-instance graph.

Iter Arg-1 Arg-C
1 5582 50.76
2 5675 5210
3 5660 51.87
4 5586 50.96
5 5559 51.02
10 5547 50.76

Table 6: The specific data performance with different
update iterations counts of event pattern-instance graph.
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Figure 5: Performance under two strategies with differ-
ent rounds of role learning.

et al., 2023; Liu et al., 2023b; Shuang et al., 2024)
and machine reading strategies (Li et al., 2020; Liu
et al., 2021; Wei et al., 2021) struggle with large
candidate span spaces or neglect semantic relation-
ships between roles. In contrast, span selection
strategies (Ma et al., 2022; He et al., 2023; Zhang
et al., 2024; Liu et al., 2024; Zhou et al., 2024b;
Wang et al., 2025), which utilize specific prompts
based on PLMs to obtain role representations, have
shown superior performance in argument extrac-
tion (Zhou et al., 2024a; Zhang et al., 2023; Liu
et al., 2023a).

Based on this, Nguyen et al. (2023) constructed
an event type-document graph to capture context
semantics in a document. Li et al. (2023) modeled
intra-event and inter-event role dependencies, pro-
viding internal role dependencies and clues with

Round Reconstruct graph Iter update graph
Arg-1 Arg-C Arg-1 Arg-C
1 56.75 52.10 56.75 52.10
2 57.07 51.91 56.01 52.01
3 56.34 51.44 56.19 51.25
4 56.93 51.88 56.18 51.07
5 56.08 51.58 55.46 50.69

Table 7: The specific data performance under two strate-
gies with different rounds of role learning.

similar event types. He et al. (2023) designed
prompts by creating multi-event correlation lists
and used these as inputs of decoders, implicitly cap-
turing semantic associations between roles across
multiple event types by PLMs. On this basis, Liu
et al. (2024) devised prompts to implicitly capture
semantic associations across multiple event types
or explicitly use document information for role se-
mantics. Zhang et al. (2024) interpreted roles as
multiple prototypes, matching spans with the best
prototype and updating prototype representations.

7 Conclusion

This paper proposes a multi-round role represen-
tation learning strategy for document-level event
argument extraction. The goal is to merge abstract
event pattern with concrete event instance to better
understand internal event structures. First, an event
pattern-instance graph is constructed to capture se-
mantics between event types and roles at the pattern
level, as well as between trigger and arguments at
the instance level. Then, to update the role rep-
resentations in the graph, we design a node-edge
interactive multi-round learning network, including
the interaction update mechanisms of nodes and
edges, along with a historical role memory strat-
egy and a multi-round learning strategy. Extensive
experiments are constructed on three datasets, and
the results verify the effectiveness of the model.
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Limitations

For datasets with a single event type and a large
number of roles (e.g., OEE-CFC), the "event type"
node inherently lacks pattern level relevance. In-
cluding all role nodes in the EPIG introduces struc-
tural redundancy, which may propagate noise dur-
ing updates, thereby disrupting the model’s focus
on critical roles. Furthermore, the model’s perfor-
mance across different datasets is sensitive to hy-
perparameter settings such as the number of graph
update iterations and multi-round learning cycles.
While these iterative updates enhance semantic re-
finement for complex datasets, they can lead to
over-smoothing or error accumulation in simpler
scenarios. Consequently, fine-tuning hyperparame-
ters for each dataset is necessary.
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Appendix
A Steps for Constructing EPIG

According to the construction strategy outlined in
Section 2, the construction of the event pattern-
instance graph for a given document d includes the
following three steps:

Step 1: Construction of the Event Pattern
Subgraph. First, generate corresponding nodes for
the event type involved in the current event con-
tained in document d, with node content revealing
the event type, as shown in the bottom right of
Figure 1. At the same time, generate correspond-
ing nodes for each role under that event type, with
node content describing the role. Then, establish
undirected edges between the event type node and
its corresponding role nodes, with the edge type
labeled as "attribute".

Step 2: Construction of the Event Instance
Subgraph. First, based on the given event trigger,
generate a trigger node. Simultaneously, according
to the given event ontology, generate correspond-
ing span nodes with empty content, to be filled
after predicting spans. Then, establish edges be-
tween the trigger node and corresponding event
span nodes, with the edge type being the corre-
sponding role, represented by the words describing
the role.

Step 3: Construction of Matching Associa-
tions Between Subgraphs. Establish "instance"-
type edges between event type nodes and trigger
nodes, and "value"-type edges between role nodes
and their corresponding span nodes.

B Experiments Setup

B.1 Datasets

We evaluated the model on three datasets, includ-
ing RAMS (Ebner et al., 2020), WikiEvents (Li
et al., 2021) and OEE-CFC (Wan et al., 2024b).
The detailed dataset description and statistical data
are shown in Table 8. RAMS includes 139 event
types and 65 argument roles; It contains 9,124 doc-
uments, and a document contains only one event,
totaling 9,124 events. WIKIEVENTS is also an
event extraction dataset derived from Wikipedia
English articles, including 50 event types and 59 ar-
gument roles; There are 246 documents and 3,951
events in total. OEE-CFC is an open document-
level event extraction dataset derived from Chinese
financial reviews, including 1 event type and 21

argument roles. The dataset has 4,253 documents
and 17,469 events.

B.2 Evaluation Metrics

In the implementation process, this experiment
is based on the open source code of Ma et al.
(2022), and uses two indicators to evaluate the per-
formance: (1) Argument identification F'1 (Arg-I).
If the boundary of the prediction span matches
the boundary of any gold argument, it is consid-
ered correct. (2) The prediction span of argument
classification F'1 (Arg-C) is correct only when its
boundary matches the boundary of a gold argument
and its role is also the role of the gold argument.To
comprehensively evaluate our model, we compared
it with many recent advanced baselines, and details
are reported in Appendix B.3.

B.3 Baselines

In order to comprehensively evaluate our model,
we compared it with more advanced baselines.

(1) TSAR (Xu et al., 2022) combined Abstract
Meaning Representation (AMR) information to per-
form document-level event argument extraction.

(2) PAIE (Ma et al., 2022) proposes a role-based
span selection strategy, which captures the role
representation for each event type by designing a
specific prompt for that event type.

(3) SPEAE (Nguyen et al., 2023) enrich the se-
mantics of roles by capturing semantics from the
document through soft prompts.

(4) SCPRG (Liu et al., 2023b) utilize the atten-
tion weights in PLM to aggregate context informa-
tion relevant to the candidate spans, and capture the
semantics between roles through role interaction
encoding, thereby enriching the representation of
candidate spans.

(5) TabEAE (He et al., 2023) propose a non-
autoregressive generation framework to extract ar-
guments for multiple events in a document in par-
allel, and use PLM to implicitly capture the asso-
ciative semantics between multiple events within
the document, thereby enriching the semantics of
role representations.

(6) EACE (Zhou et al., 2024b) constructs a role
dependency tree that predefines hierarchical de-
pendency relationships among roles for each event
type.

(7) DEEIA (Liu et al., 2024) use PLM to capture
the attention weight matrix between each token in
the input text, then explicitly integrate the contex-
tual semantics of events into role representations
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Dataset RAMS WIKIEVENTS OEE-CFC
Event types 139 50 1

Role types 65 69 21

Spilt Train Dev  Test Train Dev Test Train Dev  Test
Events 7,329 924 871 3,241 345 365 12,024 3,621 1,824
Arguments 17,026 2,188 2,023 4,542 428 566 30,497 9,389 4,828

Table 8: Data statistics of RAMS, WIKIEVENT, and OEE-CFC

through this weight matrix.

(8) HMPEAE (Zhang et al., 2024) leverage a
hyperspherical prototype mechanism (where each
role has multiple prototypes), match spans with
the best prototype, and allow spans to update their
matched prototype representations. Calculate the
loss based on the distance between spans and their
matched prototypes, achieving optimization of the
role-based span selection model’s performance
by capturing semantic information from predicted
spans.

C Detailed Ablation Study

C.1 Number of Graph Update Iterations

While Section 5.3 examined whether node-edge in-
teraction updates benefit argument extraction, this
section investigates the impact of varying graph
iteration counts, As shown in Figure 4 and Table
6, the model’s performance first improves and then
declines as the number of graph update iterations
increases. Both Arg-I and Arg-C achieve their peak
performance (56.75% and 52.1%, respectively) at
the 2nd iteration, then declines. Within an appropri-
ate iteration range, multi-round updates effectively
refine node and edge representations, enhancing
the model’s understanding of intra-event semantics.
However, insufficient iterations fail to fully model
role dependencies, while excessive iterations in-
duce over-smoothing, eroding node distinctiveness
and weakening the model’s ability to resolve com-
plex role relationships.

C.2 Number of Rounds for Mutil-Round Role
Learning

This section evaluates model performance with dif-
ferent learning rounds, including EPIG reconstruc-
tion and updates based on the original EPIG, as il-
lustrated in Figure 5 and Table 7. The results reveal
that the model achieves strong performance with 1
learning round. When increasing to 2 rounds, the

reconstruction strategy improves Arg-1. However,
both strategies exhibit performance degradation at
3 or more rounds. For instance, reconstructed EPIG
yields 51.44% in Arg-C at round 3, with a slight
rebound to 51.88% at round 4, yet the overall trend
remains downward. The original EPIG-based strat-
egy shows a more pronounced decline, reaching
51.07% in Arg-C at round 4.

In summary, increasing learning rounds intro-
duces overfitting risks, where the model captures
noise or specific patterns in training data rather
than generalizable rules, thereby weakening gen-
eralization on unseen data. Additionally, exces-
sive iterations with original EPIG updates lead to
over-smoothing and diminished node representa-
tion distinctiveness, reducing the model’s ability to
discriminate between nodes and capture complex
relationships. Furthermore, errors from initial it-
erations accumulate progressively with additional
rounds, ultimately degrading prediction accuracy.
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