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Abstract

Question answering over mixed sources, like
text and tables, has been advanced by verbaliz-
ing all contents and encoding it with a language
model. A prominent case of such heteroge-
neous data is personal information: user de-
vices log vast amounts of data every day, such
as calendar entries, workout statistics, shop-
ping records, streaming history, and more. In-
formation needs range from simple look-ups
to queries of analytical nature. The challenge
is to provide humans with convenient access
with small footprint, so that all personal data
stays on the user devices. We present REQAP,
a novel method that creates an executable op-
erator tree for a given question, via recursive
decomposition. Operators are designed to en-
able seamless integration of structured and un-
structured sources, and the execution of the
operator tree yields a traceable answer. We
further release the PERQA benchmark, with
persona-based data and questions, covering a
diverse spectrum of realistic user needs.

1 Introduction

1.1 Motivation and Problem Statement

Question answering (QA) over combinations of
structured and textual data has been substantially
advanced by verbalizing all contents and encoding
it with a large language model (LLM) (Yin et al.,
2020; Thorne et al., 2021; Oğuz et al., 2022).

A prominent case of such heterogeneous con-
tent, of growing importance, is personal informa-
tion management (Halevy et al., 2024). User de-
vices collect vast amounts of personal data on a
daily basis. Each interaction with digital services,
such as Amazon Marketplace, Netflix or Spotify,
is stored for the specific user, and services running
on smartphones or smart watches track data with-
out explicit user actions, such as travel routes or
workouts. Users want convenient tools to query
their data, as easy as with an LLM-powered AI

18:00, 3 October 2024

Football practice

Pizzaaa time!!
20:30, 11 October 2024

Dinner with friends
21:00, 3 October 2024

Ristorante Napoli📍

09:47, 12 October 2024 

Had an incredible time with my family yesterday 
evening. Finally inaugurated the pizza oven! 🍕

17:02, 20 October 2024

Kept the three points at home today! 😍⚽

19:31, 15 October 2024
 

Hey Tom,
how is it going? I was wondering if you and Anna would 
like to come over on Sunday evening?
We finally got the new pizza oven up and running – 
would be great to fire it up together!
Felix and Lisa are coming too, so it should be fun.
Regards, Oliver

Dinner on Sunday? To: Tom

Calendar

Mails

Social media

19:02 – 20:43
11 October 2024

Workout: football
Duration: 1:40:46
Calories: 1,145 kcal
∅-Heart rate: 146 bpm

Workouts

„How o&en did I eat Italian food a&er playing football?“Question 𝑞!

Figure 1: Excerpt of relevant user data for the question
q3, stored in structured (workouts), semi-structured (cal-
endar) and unstructured (social media, mails) sources.

co-pilot. At the same time, data protection is a
crucial requirement, as full control over sensitive
content is a top priority for users (Mansour et al.,
2016; Kalokyri et al., 2018). Ideally, all data and its
processing resides locally on the owner’s devices
(mobile, tablet or PC), tightly limiting the available
computational resources. Reconciling these goals
is a challenge (Halevy et al., 2024).

Users’ needs range from look-ups of events to
queries of analytical nature (Tan et al., 2023):

q1: Which books did I buy for my friends last Christmas?
q2: When did I last have pizza with both my parents?
q3: How often did I eat Italian food after playing football?
q4: Daily kilometers I ran during business trips?

Such questions require fine-grained understand-
ing of the user intent, and entail complex operations
like grouping, aggregations, joins or matching tem-
poral conditions, often with hundreds of relevant
information pieces from different sources.

The goal of this work is to devise a QA system
for personal data that (i) supports such complex
information needs, (ii) is user-friendly and intuitive
for lay people, and (iii) has low footprint regard-
ing computation, memory and energy, suitable for
running directly on user devices.
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1.2 State of the Art and its Limitations

Verbalization: State-of-the-art methods for QA
over such heterogeneous data would mostly fol-
low the verbalization theme. Relevant data is re-
trieved, linearized into textual form and cast into
token sequences (Oğuz et al., 2022; Christmann
et al., 2022). These are fed into an LLM (Minaee
et al., 2024) for generating answers, in the spirit of
retrieval-augmented generation (RAG) (Thorne
et al., 2021; Liu et al., 2022; Badaro et al., 2023).

Verbalization has been successfully applied for
heterogeneous QA when few evidence pieces are
sufficient for answering. However, verbalization
falls short as relevant user data often exceeds the
context window of LLMs, going well beyond 100K
tokens (e.g., for q3 and q4). Even if their context
size was unlimited, LLMs struggle with more com-
plex operations over hundreds of events, such as
aggregation or grouping. This limitation is ampli-
fied for numerical data, which is encoded as simple
tokens, hindering precise aggregation.

Translation: The predominant theme for such
complex questions, with large-scale aggregation
and joins, is translation. An LLM is provided
with the natural language question and the data
schema (i.e., headers of tables), in order to gener-
ate code in the form of a logical query, typically
for languages like SQL or SPARQL (e.g., Fan et al.
(2024); Li et al. (2024); Liu et al. (2024b)), which
is then directly executed. This code generation
(CODEGEN) is often referred to as NL2SQL or
Text2SQL (Li et al., 2024; Liu et al., 2024b).

Translation works well when all data appears
in a structured manner, with a well-designed data
schema, such that a single query can access all
relevant information jointly. In our setting, this is
not the case, as exemplified in Figure 1. Relevant
user data naturally appears in text, which is not
easily accessible by queries. Processing such un-
structured text is a key requirement in the context
of QA over personal data (e.g., for q2, q3, and q4).

Consider question q3 as our running example,
for which Figure 1 shows a small excerpt of rele-
vant user data. Relevant information, such as play-
ing football, could be stored in different forms,
including structured sources like workout tables,
semi-structured sources such as calendar entries,
or unstructured sources such as social media posts.
Moreover, the very same event is often captured by
multiple sources (e.g., calendar entry on 11 October
and social media post on 12 October), which could

lead to double-counting. Finally, cues are often
subtle (e.g., the football icon in the second social
media post), which means that simple matching of
surface text is not sufficient.

1.3 Approach and Contributions

To overcome these limitations, the key idea of this
work is to bridge the gap between verbalization
and translation, and combine the strengths of both
paradigms. Our approach creates an operator tree,
similar to a query in the translation paradigm, for
which we propose judiciously designed operators
that enable access to unstructured text, based on
ideas of the verbalization paradigm.

Specifically, we present a novel methodology
for the task of QA over personal data, REQAP
(Recursive Question Understanding for Complex
Question Answering over Personal Data). All per-
sonal data sources are treated as lists of events
described by key-value pairs. For a given user
question, REQAP derives a database-style opera-
tor tree. Notably, in order to generate these operator
trees, we propose a new mechanism for recursively
decomposing the complexity of questions, via in-
context learning and model distillation of small-
scale LMs. This enables deployment of the entire
QA system on end user devices. Apart from stan-
dard SQL-like operators, we introduce two novel
operators, RETRIEVE and EXTRACT, that enable ef-
ficient retrieval from both structured and unstruc-
tured data sources, and enhancing unstructured text
with question-related key-value pairs, via on-the-
fly information extraction. These operator trees are
executed for deriving the traceable answer.

For evaluation, we construct a new benchmark,
PERQA, which synthesizes realistic user data and
questions based on personas, and has 3,500 com-
plex questions and more than 40,000 events per
persona. Experiments on PERQA demonstrate sub-
stantial improvements of REQAP compared to ver-
balization or translation baselines.

Salient contributions of this work are1:
• a novel approach, REQAP, for QA over het-

erogeneous personal data, based on a recursive
question understanding mechanism;

• a complete QA system that can run on end user
devices, trained via LLMs and their in-context
learning capabilities;

• a new large-scale benchmark for personal QA,
PERQA, with realistic data and questions.

1Code and data available at https://reqap.mpi-inf.mpg.de.
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117 events

“cuisine”: “Italian ”

…

QUD(“How often did I eat Italian food after playing football?”) 0

APPLY
ListOfEvents = QUD(“I ate Italian food after playing football?”) ,
Function = len

1

JOIN
ListOfEvents1 = QUD(“I played football with end date and end time”) ,
ListOfEvents2 = QUD(“I ate Italian food with start date and start time”) ,
JoinCondition = “i1.end_date == i2.start_date and i2.start_time >= i1.end_time”

2

EXTRACT
ListOfEvents = QUD(“I played football”) ,
Keys = [”end_date”, “end_time”]

3.1

RETRIEVE
Query = “I ate something”

6.2

RETRIEVE
Query = “I played football”

4.1

EXTRACT
ListOfEvents = QUD(“I ate Italian food”) ,
Keys = [”start_date”, “start_time”]

3.2

FILTER
ListOfEvents = QUD(“I ate something with cuisine”) ,
FilterCondition = lambda e: e[“cuisine”] == “Italian”

4.2

Stage 1: Question Understanding and Decomposition (QUD)

EXTRACT
ListOfEvents = QUD(“I ate something”) ,
Keys = [”cuisine”]

5.2
“source”: “social media ”,
“timestamp”: “12-10-2024 09:47” ,
“text”: “Had an incredible time with 
my family yesterday evening. Finally 
inaugurated the pizza oven! 

🍕

”

117 events

34 events

…

“cuisine”: “Italian ”

…

“start_date”: “11-10-2024 ”, 
“start_time”: “20:00 ”

…

“source”: “workout ”,
“time”: “11-10-2024 18:02-19:43 ”,
“workout_type”: “football ”,
“calories”: ”1,145 kcal ”,
“avg_heart_rate”: “146 bpm ”

67 events

67 events

Stage 2: Operator Tree Execution (OTX)

“end_date”: “11-10-2024 ”,
“end_time”: “19:43 ”

…

“source”: “workout ”,

“end_time”: “19:43 ”

“source”: “social media ”,

“start_time”: “20:00 ”

… …
6 merged events

4.1

3.1

2

4.2

5.2

6.2

3.2

Answer: 6
1

34 events

OPERATOR
Parameter = Value

Legend

Operator node

Decomposition step

Legend

Event

Execution step

OPERATOR
Parameter = Value

Legend

Operator node

Decomposition step

“key”: “value ”,

Figure 2: Example inference of REQAP. The left side illustrates the output of the QUD stage, an operator tree, for
the example question q3. The right side shows how this tree is executed within the OTX stage to derive the answer.

2 The REQAP Data Model

We treat all data sources as temporally ordered
lists of events, where each event is a dictio-
nary with a set of key-value pairs. For exam-
ple, each mail is an event with keys date, time,
sender, recipients, subject and body; for mu-
sic streams, each event would have keys like date,
start_time, end_time, title, artists. Exam-
ple events are shown in the bottom right of Figure 2
(workout in light green and social media in yellow).

Our current implementation covers the follow-
ing event types, accessed via data exports: calen-
dar entries, notes, mails and social media posts
with semi-structured and unstructured data, and
workouts, streams (movies, TV series, music), and
online purchases with structured data. Note that
event types can be added easily with this agile data
model, which treats all contents as key-value pairs.

3 The REQAP Methodology
REQAP processes questions in two stages:
(i) the question understanding and decomposi-
tion (QUD) for constructing the operator tree, and
(ii) the operator tree execution (OTX) stage for
deriving the answer with the corresponding events.
Figure 2 shows a characteristic example that illus-
trates the two stages of REQAP.

3.1 Question Understanding&Decomposition
Inference via ICL. Due to the absence of appropri-
ate training data, we leverage in-context learning
(ICL) (Brown et al., 2020) to generate our operator
trees. We construct handcrafted operator trees for

a diverse set of 40 questions, and then dynamically
retrieve 8 ICL examples at each step via BM25.

In principle, we could prompt the LLM to gen-
erate a complete operator tree in a single shot, fol-
lowing the code generation line of works (Li et al.,
2024). However, this approach is often too com-
plex, even for an LLM, with many output trees
being incomplete or wrong. Instead, we devise a
novel method for recursive decomposition, where
we call the LLM repeatedly to generate partial
operator trees that have the freedom to resolve
sub-questions of the user’s input in recursive QUD
calls. These sub-questions are then the input to
subsequent LLM calls, in order to refine the partial
operator tree. The recursion stops when all leaf
nodes are properly mapped to operators without
any open QUD calls.

Example: Consider the operator tree in Figure 2.
(i) The first LLM call generates node 1, with an ag-
gregate function (list length, i.e., counting) applied
to the question results.
(ii) This is refined into node 2, with the join over
two sub-questions: “I played football” and “I ate
Italian food”.
(iii) Each of two sub-questions is translated into an
EXTRACT operator, 3.1 and 3.2, and the left branch
invokes the leaf-node RETRIEVE operator 4.1.
(iv) The right branch 3.2 is further refined, leading
to a cascade of FILTER (4.2), EXTRACT (5.2) and
RETRIEVE (6.2) operators.
(v) This operator tree is then executed bottom-up,
as visualized on the right side of Figure 2.
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RETRIEVE (Query, Optional: ListOfEvents)
EXTRACT (ListOfEvents, Keys)

JOIN (ListOfEvents1, ListOfEvents2, JoinCondition)
GROUP_BY (ListOfEvents, ListOfKeys)

FILTER (ListOfEvents, FilterCondition)
MAP (ListOfEvents, Function)
APPLY (ListOfEvents, Function)
UNNEST (ListOfEvents, KeyToUnnest)

ARGMIN, ARGMAX, MIN, MAX, SUM, AVG

Table 1: The REQAP operators with their input types.

To facilitate this method, our ICL examples for
the LLM follow the same approach, showing how a
complex question can be split into an operator part
and a simpler sub-question. Thus, each few-shot
sample is a sequence of decomposition steps.
Training. Recall that we aim to deploy REQAP
on the users’ personal devices directly, including
mobiles. This would be impossible with the large
models (≥70B parameters) used above for ICL.

The solution is to harness the (question, operator-
tree) pairs obtained via ICL to distill (Hsieh et al.,
2023) the LLM into a smaller model (e.g., LLaMA
with 1B parameters). To ensure high-quality train-
ing samples, we generate multiple operator trees for
each training question, evaluate them on the data,
and keep only those that return correct results.
Inference via SFT. These supervised fine-tuned
(SFT) models are deployed for generating opera-
tor trees from user questions, and follow the same
decomposition procedure as with ICL. In our exper-
iments, we report on different QUD model sizes.

3.2 Operator Tree Execution
The OTX stage executes the operator tree obtained
in the QUD stage to derive the answer. Table 1
provides the full list of operators. The following
describes the two most important ones: RETRIEVE
and EXTRACT. Other operators and support func-
tions (e.g., APPLY for invoking arbitrary Python
functions, or UNNEST for enumerating elements in
a list), are defined in Appendix A.2.

3.2.1 RETRIEVE Operator
Functionality. The RETRIEVE operator takes as
input a query generated by the QUD stage. The
output consists of all events from the personal data
sources that soft-match the query, via matching
against all verbalized key-value pairs.
Challenges. Unlike standard RAG settings, the
RETRIEVE operator faces specific challenges for
analytic queries. Many of these aggregate over

hundreds of relevant events, and missing a frac-
tion of these would already distort the final answer.
Therefore, we need to ensure that this operator
has high recall, ideally near 100%, without adding
too many false positives. Moreover, the qualify-
ing events identified by RETRIEVE may have redun-
dancy, as the same event can be mentioned in cal-
endar, workout, social media, email etc. Therefore,
de-duplication of redundant entries is crucial.

Execution. The RETRIEVE operator conceptu-
ally scans all personal data sources and can find
matches among all their key-value pairs. How-
ever, our method aims to reduce the computational
costs by early pruning of entire sources that do not
contribute. This goal is achieved by executing the
operator in a pipeline with five steps:

Step 1: We use the efficient sparse retriever
SPLADE (Formal et al., 2022) to obtain an initial
pool of candidate events, aiming at high recall (i.e.,
minimizing the risk of missing a good result). All
events with a non-zero score >0.1 are retained.

Step 2: The resulting pool of events is ana-
lyzed to identify patterns: key-value pairs that
occur frequently (i.e., above a specified fre-
quency threshold) in the candidate pool; for ex-
ample, subject=“Team meeting” in calendar or
type=“movie”. In addition, for each source with
matching events, we add a specific pattern (e.g.,
source=“mail”), to score the entire source at once.

Step 3: Finally, the patterns, each representing a
set of events, are classified into three categories:
(a) relevant (all events are kept), or (b) completely
irrelevant (all events are dropped), or (c) partially
relevant (events further filtered by key-value pairs).

Step 4: A second classifier runs on all remaining
events in (c). It labels key-value pairs into two bins:
(a) keep (for downstream operators) or (b) drop.

Step 5: Finally, to tame the potential redundancy of
qualifying events (e.g., a calendar entry and a mail
on the same meeting), we perform de-duplication.
Whenever two events have overlapping time inter-
vals, we combine them into a single event with all
key-value pairs and the union of the timespans.

The pruning of entire sources in step 3 (e.g., mu-
sic streams for queries on food or friends) yields a
massive speed-up, and early elimination of frequent
key-value pairs also contributes to the efficiency
of REQAP (e.g., disregarding all workouts with
type=“gym” for queries on football). At the same
time, to ensure high recall, our pipeline is designed
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to avoid unduly dismissing relevant events.

Training. For steps 3 and 4, the two classifiers
are implemented as cross-encoders (CE) (Déjean
et al., 2024; Lin et al., 2021) for high precision.
Our experiments use a standard CE2, fine-tuned
with examples for pattern and event classification.

We derive training data from our dataset: for
each question, we identify relevant events as the
ones used by the ground-truth query (as present in
the PERQA dataset). For each RETRIEVE call in the
operator tree, we would then add these events as
positive training instances, and uniformly sample
hard negatives from events retrieved by SPLADE.
Patterns are labeled based on all matching events,
as either (a) fully relevant, (b) fully irrelevant, or
(c) partially relevant.

3.2.2 EXTRACT Operator
Functionality. The EXTRACT operator takes as in-
put a set of keys, like attributes/field names, and
a list of events, typically returned by an upstream
RETRIEVE operator (i.e., child node in the oper-
ator tree). The operator generates values for all
combinations of events and keys in the input, and
augments events with these new key-value pairs.

Challenges. The EXTRACT operator faces some
very difficult cases when the input key does not
semantically match any of the data keys (beyond
simple cases such as matching “day” to date in
calendar or workout data). The challenges arise
when the operator’s input key requires extracting
information from a longer text field, such as the
body of a mail or the content of a social media post.
Example keys would be “participants”, “trip des-
tination”, or “cuisine” – none of which equals any
existing data key. Note that the number of input
events can often be in the order of hundreds or thou-
sands, necessitating an efficient implementation.

Execution. Hence, we utilize a small-scale
sequence-to-sequence model, which is given (i) the
input key, (ii) the verbalized key-value pairs, and
(iii) notable user information (e.g., a list of friends)
as input, and generates a short phrase as output. For
the running example about Italian food after foot-
ball (question q3 in Figure 1), the input key is “cui-
sine” and the value “Italian” is generated based on
the phrase “...pizza oven...” in the mail body. For
efficiency, EXTRACT creates a frozen mapping for
simpler input keys (e.g., “date”→start_date),
covering cases where at least 70% of the first 50 in-

2cross-encoder/ms-marco-MiniLM-L-12-v2

“source”: “social media ”,
“timestamp”: “02-07-2024 22:03 ”,
“text”: “La Bella Napoli never disappoints! Had 
a fantastic dinner with Julian tonight. The pasta 
was to die for 🍝👌  #GoodFood #LaBellaNapoli ”

“event”: “meeting ”,
“participants”: [”Julian Groß ”]
“location”: “restaurant ”,
“cuisine”: “Italian ”,
“restaurant”: “La Bella Napoli ”

Canonicalized event LLM-verbalized event

Figure 3: Example canonicalized event (not accessible
at inference), with the corresponding verbalized version.

puts lead to the very same event-key (start_date).
For the remaining input events, this mapping is then
applied directly, avoiding further generation.

Training. To enable this rich behavior, we fine-
tune a small LM, like BART (Lewis et al., 2020).

We derive high-quality training data from our
dataset, which provides parallel data of canonical-
ized events and their verbalized counter-parts. Fig-
ure 3 shows an example of a canonicalized entry
representing a meeting, and a corresponding social
media post that is generated via an LLM.

4 The PERQA Dataset

4.1 Prior Benchmarks
There is a wealth of established benchmarks for all
kinds of QA (Rogers et al., 2023). However, almost
all of these are centered on objective contents about
real-world facts, and thus unsuitable for our setting.
QA over personal data needs to consider subjective
events including personally sensitive details. Such
data is subject to privacy laws, and this explains
the lack of an appropriate benchmark.

To the best of our knowledge, the only existing
data source that is suitable for our task is Time-
lineQA (Tan et al., 2023), which provides code for
generating persona-based contents and questions.
It allows generating personal data at large scale.
However, the specified attributes for synthetic per-
sonas are basic, and user content is generated based
on a limited number of simple templates. Further,
complex questions are derived from solely 42 tem-
plates (vs. ≈2,000 in PERQA). Thus, TimelineQA
exhibits very limited diversity, not suitable to cap-
ture real-world challenges in personal QA.

4.2 Benchmark Creation
To bridge this gap in the existing literature, we de-
vise a principled mechanism to create the PERQA
dataset. The construction proceeds in three steps:
(i) persona collection, in which we let humans (co-
workers at our research group) craft realistic and
detailed biographical information on fictional per-
sons, (ii) user data creation, which makes use of
the persona information (such as their music or
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Category ↓ / Split → Train Dev Test
Personas 12 2 6
Question templates 1,200 170 600
Unique questions 2,571 170 826

Movie streams 1,257 424 1,245
TV series streams 238 148 230
Music streams 33,754 31,616 38,257
Workouts 635 622 822
Online purchases 531 1,074 850

Calendar entries 1,552 1,367 2,106
Mails 506 490 636
Social media posts 670 579 819

Total events (per persona) 39,142 36,322 44,965

Table 2: Statistics for the PERQA dataset.

travel preferences) and creates large amounts of
realistic user data, and (iii) question generation,
that generates complex questions, and their ground-
truth answers, for the personas and their user data.

Persona collection. The personas are created by
having humans (from our research group) complete
questionnaires with 30 fields about age, gender,
family, education, work history, traveling, hobbies,
fitness activities, interests in music and movies,
food tastes and other preferences. We collect 20
such human-crafted personas.

Canonicalized events. The next step is to create
large-scale event repositories for each persona. In
this stage, events are canonicalized: for each event
type, events have a specific set of key-value pairs.
This allows us to derive ground-truth answers later.

For streaming data (movies, TV series, mu-
sic), we utilize Wikidata (Vrandečić and Krötzsch,
2014) to derive real-life entities matching the
persona preferences (e.g., the favorite genre and
songs). Similarly, for online shopping, we utilize
a public data dump (Ni et al., 2019a). For realistic
travel itineraries in-line with the persona informa-
tion, we prompt GPT4o. For workouts, we utilize
public data from Endomondo (Ni et al., 2019b).

We further add special events, like personal mile-
stones (marriage, birth of a child, new job,. . . )
based on the personas. Finally, we add regular
events like doctor appointments, meetings with
friends, or New Year’s parties. This is done based
on pre-defined probability values, inspired by the
procedure in Tan et al. (2023).

On average, for each persona, we create 40K
such canonicalized events. The left side of Figure 3
provides an example canonicalized event. A list of
all event types is provided in Appendix B.

Observable events. In reality, events such as
restaurant visits, birthday parties, or a child birth,
are usually not captured in a canonicalized form,

but in unstructured text as in calendar entries, mails
and social media posts. We utilize LLaMA3.13

to verbalize such events, and create realistic and
diverse user data. Figure 3 illustrates the connec-
tion between canonicalized and verbalized events.
Streams, workouts and online purchases are kept in
a canonicalized form with high probability, but are
also verbalized with a relatively small probability.

Generation of complex questions. For generating
questions, we handcraft a diverse set of 40 complex
questions to start with – the same questions that
are used for ICL in the QUD stage. We then itera-
tively sample up to 20 questions from this set, and
prompt an LLM (with a temperature of 0.6) to gen-
erate 25 new questions. In addition to the questions,
the ICL examples (and the model outputs) also
contain SQL queries, run on a database with the
canonicalized events, to derive the ground-truth an-
swers. Figure 5 shows the instruction used for cre-
ating these question-query pairs. We utilize GPT4o
and LLaMA3.13 to construct 1,000 questions each,
for enhanced diversity. Generated question-query
pairs are de-duplicated, and checked for correct-
ness semi-automatically.

Deriving PERQA. We release PERQA with 20 per-
sonas, 40K events per persona, and 3,567 unique
questions. This data is split along two dimensions,
personas and question templates, to derive the train
(12 personas, 1,200 templates), dev (2 personas,
170 templates), and test (6 personas, 600 templates)
sets. Question templates are initiated based on the
personas, to ensure natural and meaningful ques-
tions. Table 2 shows statistics of PERQA, and fur-
ther details are provided in Appendix B, including
example questions and data in Tables 8 and 13.

5 Experimental Setup

Configurations. We experiment with three differ-
ent options for QUD: using GPT4o (“gpt-4o”) or
LLaMA3.34 with 8 ICL examples, or a 1B model5

fine-tuned as described in Section 3.1 (SFT). To ini-
tialize the EXTRACT operator, we use BART-base6,
and the RETRIEVE operator uses SPLADE7 and a
cross-encoder pre-trained on MSMARCO8. Fur-
ther details for model training are in Appendix C.

3meta-llama/Llama-3.1-70B-Instruct
4meta-llama/Llama-3.3-70B-Instruct
5meta-llama/Llama-3.2-1B-Instruct
6facebook/bart-base
7naver/splade-cocondenser-ensembledistil
8cross-encoder/ms-marco-MiniLM-L-12-v2
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Baselines. We compare REQAP against RAG and
CODEGEN:
• RAG: This retrieval-augmented generation fol-

lows the verbalization paradigm. For retrieving
relevant events, a two-stage technique is em-
ployed, with SPLADE retrieval followed by a
fine-tuned cross-encoder (similar as in 3.2.1).

• CODEGEN: We also compare against a code
generation baseline following the translation
paradigm. The input is the user question and
the SQL schema of the personal data, and the
output is a SQL query. For fine-tuning, we uti-
lize SQL queries that lead to the correct answer
(similar as in 3.1).

For fair comparison, these baselines use the same
model variants as the QUD stage of REQAP: ICL
with 8 examples using GPT4o or LLaMA3.3, or a
fine-tuned decoder-only LM.

Metrics. We measure Hit@1 as our main metric
for personal QA, where users expect a single con-
cise answer. As some questions aggregate over
hundreds of events, we also measure a relaxed met-
ric Rlx-Hit@1 which allows a ±10% slack for
numeric answers. Both metrics are micro-averaged
over all questions in the test set. Statistical signif-
icance of improvements by REQAP compared to
the best baseline (for each model) is measured via
McNemar’s test with p<0.05, and is indicated by
an asterisk(*).

6 Experimental Results

6.1 Key Findings

REQAP clearly wins over baselines. Table 3
shows the main results on PERQA. First of all, RE-
QAP substantially outperforms baselines for each
variant. The difference is most pronounced with
LLaMA3.3, where REQAP improves Hit@1 by
8.3 percentage points compared to CODEGEN, the
best baseline. The same observation holds for Rlx-
Hit@1, with similar improvements over baselines.

RAG fails on PERQA. While the baselines based
on CODEGEN remain competitive, RAG performs
poorly. It cannot cope with questions that need to
aggregate (sum, avg, ordering, etc.) over hundreds
of events. In some cases, the input data exceeds the
maximum context size of the LM (128K tokens).

SFT is a viable solution for on-device inference.
The variants based on GPT4o and LLaMA3.3 are
useful for comparison purposes, but cannot be run
directly on user devices. Remarkably, our SFT

Model → GPT4o LLaMA3.3 SFT
Method ↓ (≫100B) (70B) (1B)

RAG
0.149 0.123 0.029
(0.20) (0.18) (0.06)

CODEGEN
0.319 0.239 0.315
(0.44) (0.33) (0.47)

REQAP (ours) 0.386* 0.322* 0.380*
(0.52)* (0.46)* (0.53)*

Table 3: Main results on PERQA test set. Metric is
Hit@1, and Rlx-Hit@1 in parentheses.

Complexity No. of RAG CODEGEN REQAP
questions (GPT4o) (GPT4o) (GPT4o)

Ordering 1,236 0.167 0.440 0.529
Grouping 931 0.172 0.444 0.537
Temporal 1,945 0.129 0.290 0.417
Aggregation 1,790 0.130 0.228 0.296
Join 369 0.073 0.176 0.236
Multi-source 1,710 0.196 0.237 0.365

Table 4: Performance by complexity types of questions.

variant, which is suitable for on-device inference,
exhibits competitive performance even with a 100x
smaller model size. Its Hit@1 of 0.380 is almost
as good as the best observed score of 0.386 (by
REQAP with GPT-4o), and its relaxed Hit@1 of
0.53 is the best across the board.
Approximate answers are good. The questions in
PERQA are difficult for all methods, with Hit@1
being below 40%. Nevertheless, REQAP often
yields decent order-of-magnitude answers. An indi-
cator is the Rlx-Hit@1 metric, for which REQAP
achieves 53% with the small SFT variant. Recall
that this allows ±10% slack, which is on the con-
servative side. Even more relaxed approximations
could still be tolerable by users.

6.2 Analysis
REQAP performs well across question types.
We categorized questions in PERQA into differ-
ent complexity types: ordering (e.g., “Which song

did I listen to the most during my last trip?”), grouping
(“which four restaurants do I go to the most?”), temporal
(“How many times did I visit the doctor in the last 3 years?”),
aggregation (“What was the total amount spent on online

purchases last year?”), join (“How many times did I watch

a movie after a run?”), and multi-source (“which of my

trips was the shortest?”). Note that each question can
be assigned multiple such complexity types.

Results for this analysis are shown in Table 4.
REQAP consistently outperforms baselines, and
performs especially well on questions requiring
ordering or grouping. Join questions are the most
challenging for all methods.
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Method ↓ / Metrics → Hit@1 Rlx-Hit@1

REQAP (SFT) 0.396 0.54

w/ QUD – one-shot 0.356 0.50
w/ RETRIEVE – SPLADE-only 0.269 0.36
w/ EXTRACT – keys-only 0.138 0.23

Table 5: Ablation studies on the PERQA dev set.

QUD → XS S M L
Operators ↓ (135M) (360M) (1B) (3B)

XS RETRIEVE (4M) 0.167 0.185 0.193 0.193
& EXTRACT (16M) (0.28) (0.28) (0.31) (0.30)

S RETRIEVE (16M) 0.240 0.287 0.302 0.302
& EXTRACT (31M) (0.37) (0.41) (0.42) (0.42)

M RETRIEVE (23M) 0.331 0.353 0.378 0.389
& EXTRACT (70M) (0.48) (0.51) (0.50) (0.52)

L RETRIEVE (33M) 0.356 0.364 0.396 0.400
& EXTRACT (139M) (0.51) (0.52) (0.54) (0.55)

Table 6: Effect of model sizes on performance. Metric
is Hit@1, and Rlx-Hit@1 in parentheses.

RETRIEVE and EXTRACT operators are decisive.
Table 5 shows ablation studies for REQAP, when
(i) the operator tree is generated in one shot, without
recursive decomposition, (ii) all events retrieved
by SPLADE are retained, without cross-encoders,
(iii) values are extracted from events only by exact
matches of keys, without LM generation.

Performance degrades dramatically for each of
these variants. Most notably, the devised imple-
mentation of the RETRIEVE and EXTRACT operators
substantially contribute to REQAP’s performance.
Also, the recursive decomposition of the question
intent strikes as a key asset as generating the opera-
tor trees in a single step is prone to errors.

REQAP adapts to low-resource computation.
Our goal is a method that can run on user devices.
However, there is high variance in the available
compute-power and memory on client hardware,
and QUD alone may use cloud services without
violating data protection. Hence, we trained models
used in REQAP of varying sizes: from 135M-3B
parameters for the QUD model, 4M-33M for the
cross-encoders of RETRIEVE, and 16M-139M for
the EXTRACT model. Table 6 shows the results.

While there is a substantial performance gap be-
tween the smallest variant (QUD: XS, Operators:
XS) and the largest variant (L, L), we observe in-
teresting trade-offs and compromises. When the
memory footprint has to be low, but computational
costs and run-time are secondary, the (XS, L) vari-
ant is a good choice, achieving a Rlx-Hit@1 of
51%. Recall that QUD runs on the question only,
without access to user data. When questions alone
are not sensitive, a larger cloud model can be used.

Model → GPT4o LLaMA3.3 SFT
Method ↓ (≫100B) (70B) (1B)

RAG 0.321 0.369 0.214
(0.36) (0.41) (0.22)

CODEGEN 0.262 0.187 0.135
(0.33) (0.22) (0.17)

REQAP (ours) 0.357 0.286 0.313
(0.39) (0.31) (0.35)

Table 7: Hit@1 and Rlx-Hit@1 on TimelineQA.

Error analysis. We analyzed 50 incorrect answers.
REQAP failed because of (i) an incorrect opera-
tor tree (50%), (ii) errors by the RETRIEVE opera-
tor (28%), or (iii) errors by the EXTRACT operator
(22%). Note that sometimes just a few false neg-
atives or false positives can lead to an incorrect
answer, underlining the difficulty of PERQA.

Additional results, including anecdotal examples
and run-time analysis, are provided in Appendix D.

6.3 Experiment with TimelineQA

Setup. Although TimelineQA is deemed insuffi-
cient for our setting, we obtained insight on how
REQAP performs on these questions. For this pur-
pose, we used their 42 templates for complex ques-
tions, and adapted them to our realistic user data.
We ran the questions for each of the 6 test personas
in PERQA. SFT variants utilize the models trained
on PERQA, as the limited number of questions in
TimelineQA does not allow for training.

Results. Table 7 shows the results on TimelineQA.
RAG shows stronger performance than on the more
challenging questions in PERQA. REQAP substan-
tially outperforms both RAG and CODEGEN, with
the small model (SFT) and with GPT4o.

7 Evaluation via User Study

The PERQA benchmark is designed with synthetic
personas to avoid privacy issues. The goal of this
user study is two-fold: (i) analyze whether the
questions in PERQA are comparable with real user
questions, and (ii) investigate whether a small-scale
variant of REQAP, run on end-user devices, can
deal with such realistic information needs.

7.1 Setup

We conducted our user study with 20 undergraduate
students. First, we instructed participants to export
their personal data from various services like Apple,
Netflix and Spotify. Then, users were provided
with Docker images for running REQAP on their
own laptops and exports, but without giving us
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access to their personal data. The Docker images
had disabled Internet connectivity, to guarantee the
impossibility of data leaks.

We initially instructed each participant to gener-
ate 100 questions, without restricting them to any
question type or sources. Users then selected a sub-
set of 20 questions that are answerable based on
their personal data, assuming a hypothetical perfect
QA system. More details are given in Appendix E.

7.2 Results
User and PERQA questions are similar. We ran
our QUD module on user and benchmark questions,
and compared the structure of the resulting operator
trees, abstracting away the individual constants.
For 376 out of 400 (=20 users×20 questions) user
questions (94%), we were able to map them to an
isomorphic operator tree in PERQA. This indicates
that the questions in PERQA indeed capture the
complexities of real-life information needs.
REQAP performs well in the wild. For each of
their 20 selected questions, users ran REQAP on
their own device and data. We asked them whether
the provided answer is correct, almost correct (with
minor drifts tolerated by the user), or incorrect. By
design, REQAP allows users to identify which
events were used for answering, aiding them to un-
derstand the correctness of answers. Users judged
ca. 28% of the answers for their own questions as
fully correct, and 41% as almost correct.

Users also evaluated 20 PERQA questions
against their personal data, with allowance for mi-
nor adjustments to adapt them to their data. In this
setting, REQAP achieves even better performance:
45% for Hit@1 (and 60% for Rlx-Hit@).

8 Related Work

Personal data management. This theme was ini-
tially motivated by the tasks of desktop search
(Dong and Halevy, 2005) and mail/document
search (Dumais et al., 2003). With the increasing
abundance of personal data on mobile phones and
cloud storage, the topic has been revived (Halevy
et al., 2024). Recent works target simple retrieval
over personal data (Ribeiro et al., 2022; Gurrin
et al., 2023). The closest work to ours is Time-
lineQA (Tan et al., 2023), which conducts ex-
periments with standard RAG and CODEGEN ap-
proaches – we show that REQAP substantially out-
performs these state-of-the-art baselines.

Orthogonally, there are concerns about platform
providers “knowing everything” about users, and

the need for humans to stay in full control of their
personal data (Mansour et al., 2016; Kalokyri et al.,
2018). Our approach follows this rationale.
Data verbalization. A popular way of using LLMs
for multi-source QA is to verbalize all data and treat
it uniformly as if were a collection of natural lan-
guage sentences (Oğuz et al., 2022). This approach
has been pursued for the case of text+tables (Yin
et al., 2020; Badaro et al., 2023), and for combining
knowledge graphs with other sources (Christmann
et al., 2022, 2023; Pramanik et al., 2024; Zhang
et al., 2024).
Question-to-query translation. State-of-the-
art methods, often referred to as Text2SQL or
NL2SQL (Katsogiannis-Meimarakis and Koutrika,
2023; Liu et al., 2024b), leverage LLM pre-training
with code repositories (e.g., GitHub) and fine-tune
the model with question-query pairs (Pourreza and
Rafiei, 2023; Fan et al., 2024; Li et al., 2024; Gao
et al., 2024; Gong and Sun, 2024). Importantly,
these methods require schema information about
the tables, column headers and column types of
the underlying sources. For complex schemas or
when only partial information is provided, the per-
formance drops sharply.
Question decomposition. By decomposing a user
question, REQAP aims to understand the user’s
intent and derive a suitable representation. This has
been pursued for a variety of specialized settings,
including Jia et al. (2024) for temporal questions,
and Saeed et al. (2024) and Liu et al. (2024a) for
delegating sub-tasks to an LLM. Also, enhanced
prompting techniques like chain-of-thought (Wei
et al., 2022) and tree-of-thoughts (Yao et al., 2023)
have been proposed. While these approaches en-
able LLMs to decompose tasks of certain kinds,
they exhibit similar drawbacks as RAG, and do not
generalize to QA over heterogeneous data sources.

9 Conclusion

This paper introduced a new approach, REQAP,
for QA over heterogeneous personal data, spanning
structured tables and unstructured text. REQAP
recursively decomposes a user question into an op-
erator tree, which can be efficiently executed on
user devices. In our experiments, REQAP out-
performs methods based on verbalization (RAG)
or translation (CODEGEN), and our small-model
configurations achieve competitive performance,
thus reconciling the goals of expressive QA and
light-weight footprint.
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10 Limitations

Our experimental evaluation is based on two bench-
marks and a small-scale user study. Obviously, it
would be desirable to consider additional datasets
and scale up the user study. Neither of these is
easily feasible. Collecting data and questions from
real users is highly sensitive. Even with anonymiza-
tion techniques, adversaries that have background
knowledge (e.g., co-workers of participating users)
may obtain privacy-critical information. This is
why we did not pursue this approach.

On the technical side, the REQAP system sup-
ports a limited set of data repositories (calendar,
mail, music streaming etc.). Extending this would
be straightforward as long as a service can cast
its data into our data model of events with key-
value pairs. A more important restriction is the
system’s assumption that the data is materialized,
via data exports from the user’s accounts. This
is non-critical with synthetic personas or in a con-
trolled user study, but would be a concern on behalf
of real users. Ideally, REQAP would tap into the
user’s data only through APIs of the underlying
services, giving rise to QA over a federation of au-
tonomous and encapsulated services. While this is
unrealistic with the current setup of mobile phones,
pursuing such a federated architecture would be
important for future research on reconciling user
convenience and data protection.

11 Ethical Considerations

Our benchmark construction intentionally avoided
gathering data from real users, as this would be
extremely difficult to properly anonymize. For ad-
versaries with background knowledge about a user,
even anonymized data would not perfectly prevent
privacy breaches.

The user study that we carried out with a small
cohort had all participants sign an explicit consent
form, and has been approved by the Ethics Re-
view Board. Moreover and most importantly, it
was carried out in a way where the users had full
control over each and every step. All their data
was exported from their service without leaving
their personal devices. The software for running
REQAP was packaged into Docker images, with
Internet connection switched off. Only the user-
created questions and relevance labels for answers
were given to us, and the users had the option of
removing questions, or removing names by place-
holders, if deemed too sensitive.

All code and data of this work is publicly accessible
at https://reqap.mpi-inf.mpg.de for reproducibility
and support of follow-up research.
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Appendices

A Details on the REQAP Methodology

A.1 Question Understanding&Decomposition
Figure 4 shows the instruction used for the LLM-
version of the QUD component. The in-context
learning (ICL) samples are judiciously crafted to
bring out key difficulties that the model has to deal
with, while covering all OTX operators. We hand-
craft a total of 40 such ICL examples, based on a
diverse set of 40 questions. Table 15 shows 5 such
examples. Each ICL example consists of multiple
user and assistant turns, enabling the decomposi-
tion of questions.

During LLM-inference for a given sub-question,
we retain the previous input sub-questions and out-
put operators for context.

A.2 REQAP Operators
This section provides additional detail on the oper-
ators currently in-use within REQAP.
JOIN. The JOIN operator has the following inputs
and outputs:
• Input: The input comprises two lists of events,

computed as intermediate results for two sub-
questions by the upstream operators (descen-
dants in the tree), and a join condition: a com-
parison between key-value pairs of the two in-
put lists.

• Output: The result is a set of combined events
(the two sets of key-value pairs are merged) that
contains all event pairs from the two input lists
that satisfy the join condition.

Unlike joins in mainstream multi-hop QA, where
all joins are equi-joins (often just link traversal in
graphs), our setting requires support for non-equi
joins, most notably, for temporal comparisons with
before/after and overlap of time intervals.

Our method for this general join processing is a
sort-merge algorithm. The two sets of events to be
joined are sorted by the keys that the join predicate
refers to, and the join result is obtained by scanning
and merging the two ordered streams.
GROUP_BY. The GROUP_BY operator has the follow-
ing inputs and outputs:
• Input: a list of events and a list of keys in this

data, by which the events are grouped.
• Output: a partitioning of the events, repre-

sented as a list of lists. Each partition (i.e.,
one of the inner lists) consists of all events that
share the same values for the input keys.

For the implementation, we adopted a hash-based
algorithm that maps events into a hash table by
their values of the grouping keys. The simplest
case is a single key for grouping, but grouping by
multiple keys can often be required as well: an
example is for questions like “in which month did
I run the most?”, which logically require grouping
by month and year.
FILTER. The FILTER operator has the following
inputs and outputs:
• Input: a set of events and a filter con-

dition which is implemented as a func-
tion that can refer to key-value pairs (e.g.,
cuisine=“Italian”).

• Output: all events that satisfy the filter condi-
tion.

The implementation supports arbitrary filter con-
ditions expressed as Python code, including exact
matching, numeric matches, temporal comparisons,
or sub-string matches. Within the FILTER operator,
calls to the QUD module are allowed as well, en-
abling a flexible framework for various situations.

MAP. The MAP operator has the following inputs and
outputs:
• Input: a list of events and a Python function.
• Output: a list of return values of the function

applied to each element in the list (e.g., the
weekday for each event).

This operator is key to plugging in arbitrary func-
tions (similar to user-defined functions (UDFs) in
SQL) into the execution plan. This is frequently
needed, for example, for calendar-centric calcu-
lations, such as the weekday of an event or the
duration of the period between dates. By enabling
such plug-in functions, the REQAP system is eas-
ily extensible.

APPLY. The APPLY operator has the following in-
puts and outputs:
• Input: a list of events and a Python function.
• Output: a scalar value computed over the en-

tire list.
One role of APPLY is to compute aggregation func-
tions, such as the length of a list (for counting),
summing up numeric values, etc.

UNNEST. The SQL-inspired UNNEST operator has
the following inputs and outputs:
• Input: a list of events, and a key pointing to

the nested lists.
• Output: an extended list of events, which holds

an independent event for each item in the nested
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You are given a question and need to generate a plan to infer the answer.
This plan follows Python syntax. You can make use of the following functions:
‘QUD (question: str)‘

Used to make a recursive call to the QUD module.

‘RETRIEVE (query: str) -> QUExecutionResult ‘
Retrieves all events that match the query.

‘EXTRACT(l: QUExecutionResult , attr_names: List[str], attr_types: List) -> QUExecutionResult ‘
Extracts the values for the provided attributes from each event.

‘GROUP_BY(l: QUExecutionResult , attr_names: List[str]) -> QUExecutionResult ‘
Function to group the results by the provided attributes.

‘JOIN(l1: QUExecutionResult , l2: QUExecutionResult , condition: str) -> QUExecutionResult ‘
Function to join two results based on the condition. Condition is a string , and makes use of i1 and i2 to refer
to items in the list.

‘APPLY(l: QUExecutionResult , fct: Callable) -> QUExecutionResult ‘
Apply a callable on the list of events in l.

‘MAP(l: QUExecutionResult , fct: Callable , res_name: Optional[str]=" map_result ") -> QUExecutionResult ‘
Map a callable to each event or group (GROUP_BY result) in l, and store each result in the key ‘res_name ‘.

‘FILTER(l: QUExecutionResult , filter: Callable) -> QUExecutionResult ‘
Filter the events using the provided callable.

‘UNNEST(l: QUExecutionResult , nested_attr_name: str , unnested_attr_name: str) -> QUExecutionResult ‘
Derives a single event for each value in the list in key ‘nested_attr_name ‘, with the value being stored in
‘unnested_attr_name ‘.

‘ARGMIN / ARGMAX (l: QUExecutionResult , arg_attr_name: str , val_attr_name: Optional[str]) -> QUExecutionResult ‘
Computes the argmin/argmax based on the provided attribute (‘arg_attr_name ‘), and returns the corresponding
value (‘val_attr_name ‘).

‘SUM / AVG / MAX / MIN (l: QUExecutionResult , attr_name: str) -> QUExecutionResult ‘
Computes the sum/avg/max/min based on the provided attribute (‘attr_name ‘).

‘QUExecutionResult ‘ is a special class that is used to store the results of functions.

Whenever accessing an attribute in a function call , make sure that this attribute is derived in a subsequent call via an
appropriate call (e.g., EXTRACT or MAP). For example , when val_attr_name =" workout_type" is used in a ARGMAX call , there has
to be a EXTRACT call with attr_names =[" workout_type ",...] in the following.

Please provide only the next step , including the recursive QUD call to take (if needed).
Learn from the examples below.

Figure 4: LLM instruction for generating operator trees. This is followed by 8 in-context learning examples, which
are dynamically chosen per step. Sample ICL examples are shown in Table 15.

lists, flattening this key-value pair.
An example use-case of UNNEST is a user ques-

tion like “Artist I listened to the most?”, that re-
quires grouping by individual artist names, while
the events themselves have a key artists holding
multiple names. UNNEST creates an independent
event for each artist name in the list, enabling to
answer such questions correctly.

The implementation of APPLY, MAP and UNNEST
is straightforward. The remaining operators
(ARGMIN, ARGMAX, MIN, MAX, SUM, and AVG) are self-
explanatory.

B Details on the PERQA Benchmark

B.1 Details on the PERQA Construction

Persona details. For each fictional persona, the
following information is collected: name, gender,
birth date/city, mother, father, siblings, kids (incl.
birth date), pets (incl. type, start/end date), friends,
education (incl. city, start/end date), career (incl.
company, city, start/end date), residences (incl.
start/end date). Further, we collect user preferences:
favorite music genres, movie genres, TV series gen-
res, shopping categories, travel regions, cuisines,
hobbies and workouts, as well as favorite instances
(e.g., favorite songs) and the average frequency

(e.g., average movies per week).

Canonicalized event types. PERQA integrates
the following canonicalized event types: anniver-
saries (birthday, child’s birthday, partner anniver-
sary, valentines day, halloween, christmas, New
Year’s Eve, pet anniversary), doctor appointments
(dentist, gp, ophthalmologist, dermatologist, pae-
diatrician, veterinarian), personal milestones (new
job, start of new education, new residence, mar-
riage, new kid, new pet), traveling (incl. 2-5 no-
table events), meetings (with friends and family),
streaming (music, TV series, movies), online shop-
ping and workouts.

Natural user behavior. A key criterion when cre-
ating user data is naturalness. Hence, we aim to
derive sequences of events that are as natural as
possible. Consider the music streaming behavior
as an example: it is very unlikely that someone
listens to a single song at 2AM and then to another
song at 5AM. We thus base the sequences of events
on real user behavior patterns. Such user behav-
ior patterns are derived from streaming data of the
authors and colleagues (only the patterns, no crit-
ical data is used). These patterns are then used to
define the sequence of events for streaming data,
workouts and online shopping.

18282



Cleaning of unnatural questions. The genera-
tion process may still yield some questions that are
misinformed for specific personas. For example,
there could be question templates asking for the
birth date of the first-born child, but not all per-
sonas have children. Such empty-answer questions
(no output, or a count of 0 for aggregations), are
unnatural which is why we removed them for the
respective personas.

Quality check. Data quality was essential for this
work. To this end, we performed the user study
(Section 7) for exactly this purpose: comparing the
benchmark data and questions against those from
real users, obtaining additional insights from real
users, and this way re-assessing the significance
of our main results. Section 7.2, first paragraph,
compares the structure of questions from these two
settings: synthetic vs. real users. We observe that
a very large fraction of the user’s questions (94%)
have structurally isomorphic counterparts in the
PERQA dataset. Obviously, the literals between
these cases are not comparable (e.g., real users’
friends would have names different from the ones
in PERQA). But this comparison generally shows
that the real-user questions are structurally very
similar to those in PERQA.

Apart from the results derived from the user
study, we annotated 100 randomly sampled ques-
tions in PERQA. We found that 98% of questions
are relevant. We further annotated the ground-truth
answers for these 100 sample questions. We ob-
served that 97% of the answers are correct, with
minor issues otherwise. Finally, we sampled 100
user events in PERQA, and investigated whether
the events are realistic user events, and whether the
LLM-verbalizations (mails, calendar entries and
social media posts) are semantically equivalent.
We found that 98% of events do indeed express
realistic user events, and LLM-verbalizations are
semantically equivalent in all cases.

Usage of LLaMA-70B. The version originally sub-
mitted to ACL rolling review was using LLaMA-
8B9 for verbalizing the canonicalized events in
PERQA. For enhanced diversity, and even more
realistic data, we utilized LLaMA-70B10 instead
in the revised version of this work. This explains
slight derivations of results from the submitted ver-
sion of the paper – generally, through the more
diverse data, results of REQAP improved.

9meta-llama/Meta-Llama-3-8B-Instruct
10meta-llama/Meta-Llama-3-70B-Instruct

Questions – Workouts

- “What is the total distance I ran in kilometers since I started working
at Shopify?”
- “My maximum heart rate during the most recent workout?”
- “How many km did I run in the first week of 2019?”
- “How many workouts did I do in 2018 with a maximum heart rate of
more than 170?”

Questions – Music

- “Which song did I listen to the most in the last month?”
- “What is the name of the song I listened to the most in the summer of
2022?”
- “Which song did I listen to most after a badminton workout?”
- “which artist did I listen to most?”

Questions – Movies / TV series

- “how many different movies did I watch?”
- “the TV series I watched the most in summer 2022?”
- “What’s the total number of hours spent on TV series?”
- “Which day of the week do I stream TV series the most?”

Questions – Mail / social media

- “Who was the recipient of the first email I sent this year?”
- “Who are my top 3 most contacted people via email?”
- “How many emails did I send after 6 PM?”
- “What was the last social media post I made?”

Questions – Others

- “How many times did I meet with Carla Díaz at a restaurant?”
- “What day of the week do I most frequently schedule doctor appoint-
ments?”
- “What was the total amount spent on online purchases last year?”
- “How many times did I meet at a park in 2022?”

Table 8: Example questions in PERQA.

License. The PERQA dataset is released with a
CC BY 4.0 license to enable others to work with
our data and advance the state-of-the-art.

Data demographics. All data in PERQA is En-
glish. The personas collected are artificial, and do
not represent real human beings.

B.2 PERQA Examples
Example questions. Table 8 shows example ques-
tions from our new PERQA dataset, demonstrating
challenges such as aggregation, temporal condi-
tions, numerical constraints, or joining information
from different sources.

Example user data. Table 13 illustrates exam-
ple events in PERQA. Such events can be of an
unstructured, semi-structured or structured nature,
and form the personal data in PERQA that systems
have to process for answering the questions.

C Details on Configuration

Main results. We fine-tuned the QUD model for 4
epochs. The learning rate was tuned on a with-held
dev set, and was eventually set to 5 ∗ 10−6, with
a linear scheduling. The warm-up ratio was set to
0.05, with a weight decay of 0.01, and a batch size
of 4. Our train set for the QUD model had 17,933
instances, and the dev set 1,135. These were ob-
tained by running the GPT4o version of REQAP

18283

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://creativecommons.org/licenses/by/4.0/


You are an assistant that generates questions , and the corresponding SQL query for deriving the answer , on personal data.

You are provided with the SQL schema of the underlying DB, and a set of example questions and SQL queries.
Your task is to generate 25 questions and their SQL queries.

Make sure that the questions are natural , and the SQL query is compliant with DuckDB -- make use of the provided SQL schema
and examples. Please generate complex but realistic questions and SQL queries -- based on multiple tables and columns , with
joins , group by’s, and variable declarations.

Also try to generate diverse questions: formulations can be ad-hoc or well -formed , and their sentence structure could
differ. Remember that question should be natural: do not spell out the exact table names or columns , but make it realistic.

Your output should be a plain JSON object , with no other text.

Figure 5: LLM instruction for generating complex questions. In addition, we randomly sample 20 questions that are
provided as ICL examples.

Module Size #Parameters Model

QUD

XS 135M HuggingFaceTB/SmolLM2-135M-Instruct
S 360M HuggingFaceTB/SmolLM2-360M-Instruct
M 1B meta-llama/Llama-3.2-1B-Instruct
L 3B meta-llama/Llama-3.2-3B-Instruct

RETRIEVE

XS 4M cross-encoder/ms-marco-TinyBERT-L-2-v2
S 16M cross-encoder/ms-marco-MiniLM-L-2-v2
M 23M cross-encoder/ms-marco-MiniLM-L-6-v2
L 33M cross-encoder/ms-marco-MiniLM-L-12-v2

EXTRACT

XS 16M google/t5-efficient-tiny
S 31M google/t5-efficient-mini
M 70M lucadiliello/bart-small
L 139M facebook/bart-base

Table 9: Models used for the model-size analysis in Table 6.

on the train and dev sets, sampling n=3 generations
per input with a temperature of 0.1. This results
in multiple candidate operator trees per training in-
stance – we retain only the ones leading to a correct
answer, and a maximum of 3 per instance.

The RETRIEVE models (size L) were fine-tuned
for 10 epochs with a learning rate of 5 ∗ 10−5,
a batch size of 64, and a weight decay of 0.001.
The EXTRACT model (size L) was fine-tuned for
3 epochs with a learning rate of 1 ∗ 10−4, with
a batch size of 16, and a weight decay of 0.01.
All our models were trained using an epoch-wise
evaluation strategy, and with AdamW as optimizer.

REQAP is implemented in Python, and the gen-
erated operators thus follow Python syntax as well.

Baselines. Baselines generally follow the same
training scheme. For the RAG baseline, we tuned
the number of events in the input on the dev set,
and found the performance to be best with 100
events (with GPT4o and LLaMA3.3) and 10 events
(with the SFT variant). Note that including >500
events exceeded the context window of GPT4o and
LLaMA3.3.

Resources. We trained all our models on a sin-
gle NVIDIA Tesla H100NVL GPU. Training of
the QUD model took up to 2.5 hours (for the

3B LLaMA model), for the RETRIEVE models
up to 1.5 hours (for the 33M parameter model),
and for the EXTRACT model up to 1.5 hours as
well (for the 139M model). For inference of the
70B LLaMA models, we used 4 NVIDIA Tesla
H100NVL GPUs.
Model-size analysis. Table 9 lists the details on
the models used in the experiment in Table 6, that
compares REQAP with models of varying sizes.
Licenses. Our REQAP code is released with an
MIT license to enable others to re-use components
and further advance the state-of-the-art. Time-
lineQA was used in experiments under a CC BY-
NC 4.0 license.

D Details on Experimental Results

Results per-persona. Table 10 and Table 11 pro-
vide results on the test set of PERQA for each
persona individually. All of the methods show
variance across the different personas. Notably,
REQAP performs better than baselines across all
personas and models.
Run-time analysis. We conducted a run-time anal-
ysis for REQAP, and measured an average run-
time of 0.56 s per question for the QUD stage (size
M), and an average run-time of 11.53 s for the
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Model / Persona → Persona 1 (489 questions) Persona 2 (495 questions) Persona 3 (530 questions)
Method ↓ GPT4o LLaMA3.3 SFT GPT4o LLaMA3.3 SFT GPT4o LLaMA3.3 SFT

RAG
0.180 0.174 0.037 0.154 0.125 0.038 0.147 0.117 0.032
(0.26) (0.25) (0.06) (0.21) (0.19) (0.06) (0.21) (0.17) (0.06)

CODEGEN
0.344 0.254 0.358 0.349 0.269 0.337 0.326 0.240 0.319
(0.45) (0.33) (0.48) (0.47) (0.35) (0.48) (0.46) (0.33) (0.48)

REQAP (ours) 0.421 0.348 0.427 0.402 0.331 0.394 0.425 0.353 0.404
(0.54) (0.46) (0.56) (0.54) (0.47) (0.53) (0.56) (0.49) (0.55)

Table 10: In-depth results for PERQA test personas 1-3. Metric is Hit@1, and Rlx-Hit@1 in parentheses.

Model / Persona → Persona 4 (460 questions) Persona 5 (524 questions) Persona 6 (546 questions)
Method ↓ GPT4o LLaMA3.3 SFT GPT4o LLaMA3.3 SFT GPT4o LLaMA3.3 SFT

RAG
0.133 0.089 0.015 0.166 0.130 0.029 0.119 0.103 0.024
(0.17) (0.15) (0.08) (0.22) (0.17) (0.06) (0.17) (0.16) (0.04)

CODEGEN
0.272 0.209 0.285 0.307 0.227 0.292 0.315 0.234 0.299
(0.41) (0.31) (0.46) (0.44) (0.32) (0.45) (0.45) (0.33) (0.46)

REQAP (ours) 0.341 0.300 0.357 0.385 0.313 0.368 0.342 0.286 0.335
(0.49) (0.45) (0.52) (0.53) (0.45) (0.52) (0.49) (0.43) (0.50)

Table 11: In-depth results for PERQA test personas 4-6. Metric is Hit@1, and Rlx-Hit@1 in parentheses.

Operator Avg. runtime

RETRIEVE 2.61 s
EXTRACT 5.93 s

JOIN 2.29 s
GROUP_BY 4.82× 10−3 s

FILTER 1.65× 10−2 s
MAP 3.44× 10−1 s
APPLY 4.82× 10−3 s
UNNEST 3.36× 10−1 s

ARGMIN 3.36× 10−1 s
ARGMAX 8.61× 10−5 s
MIN 1.74× 10−4 s
MAX 1.33× 10−4 s
SUM 1.20× 10−4 s
AVG 1.13× 10−4 s

Table 12: Average operator run-times.

OTX stage (size L), leading to an average run-time
of 12.09 s. The median run-time is much lower
with 3.57 s. Table 12 shows the average run-time
per operator. Unsurprisingly, the RETRIEVE and
EXTRACT operators, that are based on LMs and run
on thousands of inputs for each question, are the
most computationally expensive.

Anecdotal examples. Table 14 shows anecdotal
examples for operator trees generated by QUD.

Anecdotal failure cases. QA over heterogeneous
personal data often requires aggregating or ordering
information from hundreds of events. For such
questions, even minor errors in one of the operators
can lead to an incorrect answer – as observed in
PERQA and in the user study – making the task a
real challenge even with recent advances in NLP.

We report one such anecdote from the user study
(we asked the respective user for consent on report-
ing this anecdote): for the user query “most expen-
sive purchase”, REQAP derived the correct answer
among the top few results (based on the available
user data). However, a mail from a mailing list,
mentioning that an apartment was available for a
rent of 730C, was incorrectly classified as relevant
by RETRIEVE. The corresponding value, 730C was
then found to be the highest, leading to an incorrect
answer. Note that such a case would yield a Hit@1
and Rlx-Hit@1 of 0 on PERQA.

E Details on User Study

Data exports. Our current implementation sup-
ports data exports from Amazon Marketplace, Spo-
tify, Netflix, Apple, Google, as well as mails in the

“.mbox” format and calendar data in the “.ics” for-
mat. Note that it is trivial to extend our implemen-
tation with additional services, such as streaming
data from Amazon Prime. This simply requires pro-
viding the data in the format expected by REQAP,
i.e., as sets of key-value pairs.

Question creation. Each participant of our user
study created 100 questions, that capture their real
information needs on their personal data, first. We
provided as little instructions as possible, to avoid
biasing them towards a specific type of questions.
For the evaluation, the participants then chose 20
questions that are answerable with their personal
data, the sources we support, and the data in current
exports. For example, the Spotify exports for music
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Unstructured sources

{“source”: “mail”, “subject”: “Halloween was a blast!”, “timestamp”: “2016-11-01T10:44:21Z”, “sender”: “Isabella
Ruiz”, “recipient”: “Lucia Hernández”, “text”: “Hey Lucia, hope you’re doing well! I just wanted to share with you that I
had a fantastic time celebrating Halloween with Carla last night. We stayed in and had a movie marathon, but it was still super
fun. I loved the decorations and the costumes - Carla’s was amazing! I’ll have to show you the pictures soon. How about we
plan something for this weekend? Maybe we can go for a hike or something? Let me know what you think. Take care, Isabella”}

{“source”: “social_media”, “text”: “Pumped up after a grueling 117-minute weight training session. My heart rate reached
a max of 182, but I managed to keep it steady throughout. Feeling strong and energized now! #weightlifting #fitnessmotivation”}

Semi-structured sources

{“source”: “calendar”, “start_date”: “2024-08-19”, “start_time”: “12:00:00”, “end_date”: “2024-08-19”,
“end_time”: “13:00:00”, “summary”: “Lunch with Mum and Dad”, “location”: “The Parthenon”, “description”: “Greek
food”}

Structured sources

{“source”: “online_purchase”, . . . , “order”: “1 x Cosmic Funk”, “product_quantity”: “1”, “product”: “Cosmic Funk”,
“category”: “CDs & Vinyl”, “price”: “5.99 EUR”}

{“source”: “tvseries_stream”, . . . , “duration”: “2460”, “stream_end_time”: “00:24:17”, “stream_style”: “tv_series”,
“tvseries_title”: “Scrubs”, “season_name”: “Scrubs, season 1”, “episode_name”: “My Nickname”, “episode_number”:
“10”, “tvseries_season”: “1”, “duration_unit”: “seconds”}

{“source”: “movie_stream”, . . . , “duration”: “6660”, “stream_end_time”: “01:10:41”, “stream_style”: “movie”,
“movie_title”: “Beverly Hills Cop III”, “stream_full_title”: “Beverly Hills Cop III”, “duration_unit”: “seconds”}

{“source”: “workout”, . . . , “workout_type”: “soccer”, “duration”: “126”, “duration_unit”: “min”,
“minimum_heart_rate”: “120”, “maximum_heart_rate”: “188”, “average_heart_rate”: “156.87”}

Table 13: Example user data for a fictional persona in PERQA.

streams would not include the genre or album of
the songs, which appeared in many user questions.
Similarly, we observed questions about watchlists
on Netflix, like “What is the name of the movies or series

that has been in the user Emma’s lists for the longest time?”,
that are not covered in current data exports. All
2,005 questions collected in our user study, includ-
ing the ones not used for evaluation, are available
at https://reqap.mpi-inf.mpg.de.
QUD model. When conducting the user study,
we were using a preliminary version of the QUD
model. Specifically, we used CodeT5-large (Wang
et al., 2021) with 738M parameters, fine-tuned as
outlined in Section 3.111. We later found variants
based on LLaMA-1B to perform substantially bet-
ter (on PERQA), while demonstrating comparable
or faster runtime. Notably, compared to sequence-
to-sequence models, decoder-only models can be
run in a quantized manner much more easily. We
hypothesize that the usage of LLaMA-1B might
have further improved the results of the user study
reported in Section 7. For the RETRIEVE operator,
we used the model of size S (16M), and for the
EXTRACT operator we used XS (16M).
Payment. We hired local students. Participants
were paid $15 per hour for the user study, which is
well above the local minimum wage.

11Salesforce/codet5-large
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Anecdotal example 1 – “How much money did I spend on online purchases in March 2022?”

(0) QUD("How much money did I spend on online purchases in March 2022?")
(1) SUM(l=QUD("my online purchases in March 2022 with amounts"), attr_name="amount_spent")
(2) EXTRACT(l=QUD("my online purchases in March 2022"), attr_names=["amount_spent"], attr_types=[float])
(3) FILTER(l=QUD("my online purchases with date"),

filter=lambda attr: attr["purchase_date"].year == 2022 and attr["purchase_date"].month == 3)
(4) EXTRACT(l=QUD("my online purchases"), attr_names=["purchase_date"], attr_types=[date.fromisoformat])
(5) RETRIEVE(query="my online purchases")

Anecdotal example 2 – “First football training after I started as Engineer – when was it?”

(0) QUD("First football training after I started as Engineer – when was it?")
(1) MIN(l=QUD("football training sessions after I started as Engineer"), attr_name="start_datetime")
(2) FILTER(l=QUD("my football training sessions with datetime"),

filter=lambda attr: attr["start_datetime"] >=QUD("first start datetime as Engineer").result)
(3.1) EXTRACT(l=QUD("my football training sessions"), attr_names=["start_datetime"],

attr_types=[datetime.fromtimestamp])
(4.1) RETRIEVE(query="I played football")
(3.2) MIN(l=QUD("start datetime as Engineer"), attr_name="start_datetime")
(4.2) EXTRACT(l=QUD("I started as Engineer"), attr_names=["start_datetime"],

attr_types=[datetime.fromtimestamp])
(5.2) RETRIEVE(query="I started as Engineer")

Anecdotal example 3 – “which restaurants did we visit when in Bali, Indonesia”

(0) QUD("Which doctor’s appointment was the earliest in the day?")
(1) EXTRACT(l=QUD("restaurants we visited in Bali, Indonesia"), attr_names=["restaurant_name"],

attr_types=[str])
(2) JOIN(l1=QUD("restaurants we visited with date"),

l2=QUD("we were in Bali, Indonesia with start and end date"),
condition="i1.visit_date >= i2.start_date and i1.visit_date <= i2.end_date")

(3.1) EXTRACT(l=QUD("restaurants I visited"), attr_names=["visit_date", "restaurant_name"],
attr_types=[date.fromisoformat, str])

(4.1) RETRIEVE(query="restaurants I visited")
(3.2) EXTRACT(l=QUD("I was in Bali, Indonesia"), attr_names=["start_date", "end_date"],

attr_types=[date.fromisoformat, date.fromisoformat])
(4.2) RETRIEVE(query="I was in Bali, Indonesia")

Anecdotal example 4 – “Which doctor’s appointment was the earliest in the day?”

(0) QUD("Which doctor’s appointment was the earliest in the day?")
(1) ARGMIN(l=QUD("my doctor’s appointments with start time"), arg_attr_name="start_time",

val_attr_name="appointment_details")
(2) EXTRACT(l=QUD("my doctor’s appointments"), attr_names=["start_time", "appointment_details"],

attr_types=[time.fromisoformat, str])
(3) RETRIEVE(query="my doctor’s appointments")

Anecdotal example 5 – “how many products did I buy online in the last 6 months?”

(0) QUD("how many products did I buy online in the last 6 months?")
(1) SUM(l=QUD("products bought online in the last 6 months"), attr_name="quantity")
(2) FILTER(l=QUD("products bought online with purchase date"),

filter=lambda attr: attr["purchase_date"] >= (date.today() - relativedelta(months=6)))
(3) EXTRACT(l=QUD("products bought online"), attr_names=["purchase_date", "quantity"],

attr_types=[date.fromisoformat, int])
(4) RETRIEVE(query="I bought a product online")

Table 14: Anecdotal examples of operator trees generated by REQAP.
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ICL example 1 – “On which day did I listen to music the most?”

User: Starting with new question. Input: QUD("On which day did I listen to music the most?")
Assistant: ARGMAX(l= QUD("number of songs I listened per day?") , arg_attr_name="num_songs", val_attr_name="start_date")
User: Input: QUD("number of songs I listened per day?")
Assistant: MAP(l= QUD("my songs I listened to grouped by day") , fct=len, res_name="num_songs")
User: Input: QUD("my songs I listened to grouped by day")
Assistant: GROUP_BY(l= QUD("instances I listened to music with date") , attr_names=["start_date"])
User: Input: QUD("instances I listened to music with date")
Assistant: EXTRACT(l= QUD("I listened to music") , attr_names=["start_date"], attr_types=[date.fromisoformat])
User: Input: QUD("I listened to music")
Assistant: RETRIEVE(query="I listened to music")

ICL example 2 – “how often did I meet with both my parents in the evening?”

User: Starting with new question.
Input: QUD("how often did I meet with both my parents in the evening?")
Assistant: APPLY(l= QUD("I met with both my parents in the evening") , fct=len)
User: Input: QUD("I met with both my parents in the evening")
Assistant: FILTER(l= QUD("instances I met with both my parents") , filter=lambda attr: attr["start_time"].hour >= 18 and attr["start_time"].hour < 24)
User: Input: QUD("instances I met with both my parents")
Assistant: JOIN(l1= QUD("instances I met with my mum") , l2= QUD("instances I met with my dad") , condition="i1.start_datetime <= i2.end_datetime and
i2.start_datetime <= i1.end_datetime")
User: Input: QUD("instances I met with my mum")
Assistant: RETRIEVE(query="I met with my mum")
User: Input: QUD("instances I met with my dad")
Assistant: RETRIEVE(query="I met with my dad")

ICL example 3 – “how much money did I spend online the last three years?”

User: Starting with new question.
Input: QUD("how much money did I spend online the last three years?")
Assistant: SUM(l= QUD("my online purchases in the last three years with amounts") , attr_name="amount_spent")
User: Input: QUD("my online purchases in the last three years with amounts")
Assistant: EXTRACT(l= QUD("my online purchases in the last three years") , attr_names=["amount_spent"], attr_types=[float])
User: Input: QUD("my online purchases in the last three years")
Assistant: FILTER(l= QUD("my online purchases with date") , filter=lambda attr: attr["purchase_date"] >= (date.today() - relativedelta(years=3)))
User: Input: QUD("my online purchases with date")
Assistant: EXTRACT(l= QUD("my online purchases") , attr_names=["purchase_date"], attr_types=[date.fromisoformat])
User: Input: QUD("my online purchases")
Assistant: RETRIEVE(query="my online purchases")

ICL example 4 – “which artist did I listen to most when running?”

User: Starting with new question.
Input: QUD("which artist did I listen to most when running?")
Assistant: ARGMAX(l= QUD("number of songs grouped by artist while running") , arg_attr_name="count", val_attr_name="artist")
User: Input: QUD("number of songs grouped by artist while running")
Assistant: MAP(l= QUD("songs grouped by artist while running") , fct=len, res_name="count")
User: Input: QUD("songs grouped by artist while running")
Assistant: GROUP_BY(l= QUD("songs listened to while running with artist") , attr_names=["artist"])
User: Input: QUD("songs listened to while running with artist")
Assistant: UNNEST(l= QUD("songs listened to while running with artist names") , nested_attr_name="artist_names", unnested_attr_name="artist")
User: Input: QUD("songs listened to while running with artist names")
Assistant: EXTRACT(l= QUD("songs listened to while running") , attr_names=["artist_names"], attr_types=[list])
User: Input: QUD("songs listened to while running")
Assistant: JOIN(l1= QUD("songs I listened to with start and end datetime") , l2= QUD("I went running with start and end datetime") , condition="i1.start_datetime
>= i2.start_datetime and i1.end_datetime <= i2.end_datetime")
User: Input: QUD("songs I listened to with start and end datetime")
Assistant: EXTRACT(l= QUD("songs I listened to") , attr_names=["start_datetime", "end_datetime"], attr_types=[datetime.fromtimestamp, date-
time.fromtimestamp])
User: Input: QUD("songs I listened to")
Assistant: RETRIEVE(query="I listened to a song")
User: Input: QUD("I went running with start and end datetime")
Assistant: EXTRACT(l= QUD("I went running") , attr_names=["start_datetime", "end_datetime"], attr_types=[datetime.fromtimestamp, date-
time.fromtimestamp])
User: Input: QUD("I went running")
Assistant: RETRIEVE(query="I went running")

ICL example 5 – “how often did I meet with Robert in the park?”

User: Starting with new question.
Input: QUD("how often did I meet with Robert in the park?")
Assistant: APPLY(l= QUD("I met with Robert in the park") , fct=len)
User: Input: QUD("I met with Robert in the park")
Assistant: FILTER(l= QUD("I met with Robert with location") , filter=lambda attr: "park" in attr["location"].lower())
User: Input: QUD("I met with Robert with location")
Assistant: EXTRACT(l= QUD("I met with Robert") , attr_names=["location"], attr_types=[str])
User: Input: QUD("I met with Robert")
Assistant: FILTER(l= QUD("I met with someone with participants") , filter=lambda attr: any("robert" in p.lower() for p in attr["participants"]))
User: Input: QUD("I met with someone with participants")
Assistant: EXTRACT(l= QUD("I met with someone") , attr_names=["participants"], attr_types=[list])
User: Input: QUD("I met with someone")
Assistant: RETRIEVE(query="I met with someone")

Table 15: Subset of ICL examples used for the LLM-based version of our QUD stage. We handcrafted 40 such
examples, and retrieve 8 of them dynamically, per step, during inference (via BM25).
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