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Abstract
Speculative decoding accelerates large lan-
guage model inference using a smaller draft
model. In this paper, we establish a surprising
connection between speculative sampling and
the concept of channel simulation from infor-
mation theory, which aims at simulating a noisy
channel using as few bits as possible. This con-
nection allows us to provide an information-
theoretic analysis of the speed up that can be
achieved by speculative sampling. Leverag-
ing this link, we derive an explicit relation be-
tween generation speed-up and the number of
tokens k generated by the draft model for large
k, which serves as an upper bound for all k.
We also propose a novel speculative sampling
method via exponential races called ERSS that
matches state-of-the-art performance.

1 Introduction

Transformer-based large language models (LLMs)
are at the forefront of the AI revolution, driv-
ing rapid advancements across numerous appli-
cations. However, as their adoption accelerates,
the speed of text generation emerges as a criti-
cal bottleneck, alongside compute and memory
constraints. Standard LLM generation involves
calculating the conditional probability distribution
using the target model P given a partial output
x:n = (x1, x2, ..., xn), which is the concatenation
of the initial context and all previously generated
tokens. The target model P outputs the condi-
tional probability distribution P ( · | x:n), from
which a single token xn+1 is sampled and concate-
nated to x:n to form the updated sequence x:n+1.
These steps are repeated iteratively until a stopping
condition is met, such as reaching a maximum se-
quence length or generating an end-of-sequence to-
ken. This auto-regressive token-by-token approach
inherently leads to slow generation speeds.

Speculative decoding accelerates this process
by generating multiple draft tokens for each target

model evaluation using a more efficient draft model.
These draft tokens are then verified by the target
model, and some of them are chosen and appended
to the input token sentence, while guaranteeing
identical output quality; that is, the distribution of
generated text remains the same as standard auto-
regressive decoding. In more detail, speculative
sampling consists of the following three steps:

1. Drafting–a smaller draft model Q is used to
generate one or more possible continuations
of the token sequence x:n; this may involve
multiple sampling calls of the draft model.

2. Evaluation–target model P evaluates all
drafted continuations in parallel.

3. Verification–one or more tokens are accepted,
based on their probabilities under Q and P .

Speculative decoding achieves a 2-3× speed-up
in text generation (Leviathan et al., 2023; Chen
et al., 2023), the speed-up increasing with the
alignment of the draft model Q with the target
model P . Following common computational
models, we quantify speed-up as the expected
number of generated tokens per evaluation of the
target model P . For a fair comparison of different
speculative decoding strategies, we fix the number
of drafted tokens k and analyze the speed-up
achieved. While ‘speculative decoding’ describes
the overall acceleration strategy for LLMs, the
specific methods implementing these steps via
probabilistic acceptance mechanisms are known as
speculative sampling.

Channel simulation is a compression problem
focused on efficiently generating samples from a
target probability distribution P at a decoder (Li,
2024). While only the encoder knows the target
distribution P , both the encoder and decoder can
access to samples from common reference distri-
bution Q. Unlike standard source coding, the goal
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Figure 1: Speculative sampling trees: a black draft tree overlaid with a green/red GSS decision tree. Black vertices
and arrows represent the draft tree; each vertex is a drafted token, and paths from the gray root are potential text
continuations. Green/red arrows show GSS acceptance/rejection decisions. Blue leaf vertices signify sampling from
a distribution. (Note: ERSS does not follow the same decision tree.)

is not to communicate a specific sample, but rather
to ensure that the decoder can generate any sam-
ple distributed according to P . Common methods
rely on generating a shared codebook (list) of sam-
ples at the encoder and decoder. Based on the target
distribution P , the encoder communicates to the de-
coder an index from this list, guaranteed to follow
the target distribution P . A good introduction is
provided by Theis and Yosri (2022), and Li (2024)
compiles a comprehensive literature review.

Intuitively, both speculative sampling and chan-
nel simulation aim to generate samples from some
target distribution P by generating samples from
a draft/reference distribution Q. In channel simu-
lation, the goal is to minimize the entropy of the
chosen index. In speculative sampling, the goal is
to maximize the probability of one of the drafted
tokens being accepted. Although these objectives
seem different, the most common speculative sam-
pling method (Leviathan et al., 2023; Chen et al.,
2023), which we refer to as greedy speculative sam-
pling (GSS), (explained in the next section), and
a channel simulation method called greedy rejec-
tion sampling (Harsha et al., 2010; Flamich and
Theis, 2023) are essentially the same procedures!
To explain this surprising connection, we develop
a theory that explicitly links the entropy of the
accepted token with the speed-up of speculative
sampling by considering the generation of multiple
tokens. Additionally, we propose a novel specula-
tive sampling strategy, exponential race speculative
sampling (ERSS), based on another channel simu-
lation method called Poisson functional representa-
tion (Li and El Gamal, 2018). We demonstrate that

its performance matches that of GSS.
Our contributions in this paper are:

• Establish a surprising connection between
speculative sampling and channel simulation.

• Propose a new speculative sampling method
using Poisson functional representation.

• Derive an explicit relation between the num-
ber of drafted tokens and the expected number
of accepted tokens, i.e., the speed-up of re-
sponse generation.

Throughout this paper, Ω denotes the finite set
of tokens, where each token is represented by an
integer corresponding to a textual element. Sets are
enclosed in braces {}, sequences in parentheses ( ).
Concatenation of sequences a and b is written as
a||b. When clear from context, we write a||e as a
shorthand for a||(e), where (e) is a sequence with
a single element e.

2 Speculative sampling

During inference, LLMs predict the distributions
of tokens conditioned on the preceding sequence.
We can consider an LLM as a black box that takes
a sequence of tokens x:n as input, and outputs a
set of distributions {P ( · | x:i)}i≤n. In standard
auto-regressive decoding, we typically utilize only
the last distribution P ( · | x:n) to sample the next
token. In contrast, speculative decoding leverages
distributions conditioned on different subsequences
to accelerate generation.
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Algorithm 1 Simple GSS (k = 1)

1: Input: partial output x:n, draft model Q, target
model P

2: EVALUATE(Q, x:n)
3: x̃ ∼ Q( · | x:n)
4: EVALUATE(P, x:n||x̃)
5: U ∼ Uniform(0, 1)

6: if P (x̃|x:n)
Q(x̃|x:n)

> U then
7: xnext2 ∼ P ( · | x:n||x̃))
8: Return (x̃, xnext2 )
9: end if

10: Presidual ← max (P ( · | x:n)−Q( · | x:n), 0)
11: Presidual ← Presidual/SUM(Presidual)
12: xresidual ∼ Presidual

13: Return (xresidual)

Algorithm 2 Simple ERSS (k = 1)

1: Input: partial output x:n, draft model Q, target
model P

2: EVALUATE(Q, x:n)
3: for all i ∈ Ω do
4: ei ∼ Exp(1)
5: end for
6: x̃← argmini∈Ω

ei
Q(i|x:n)

7: EVALUATE(P, x:n||x̃)
8: xnext1 ← argmini∈Ω

ei
P (i|x:n)

9: if x̃ = xnext1 then
10: xnext2 ∼ P ( · | x:n||x̃)
11: Return (xnext1 , xnext2 )
12: end if
13: Return (xnext1 )

The simplest case of GSS is outlined in Algo-
rithm 1. In the drafting stage (lines 2-3), a sin-
gle token x̃ is generated using the draft model Q,
we dub this the simple drafting strategy. Subse-
quently, in the evaluation stage (line 4), the target
model processes the sequence x:n||x̃ and produces,
among others, two distributions: P ( · | x:n) and
P ( · | x:n||x̃). The verification stage then deter-
mines whether to accept x̃ based on probabilities
of both P ( · | x:n) and Q( · | x:n). If x̃ is accepted,
the algorithm effectively generates two tokens per
target model evaluation, as P ( · | x:n||x̃) is already
computed and can be sampled from. Otherwise,
if x̃ is rejected, the algorithm performs a standard
auto-regressive step, but samples from a residual
distribution Presidual derived from P ( · | x:n) and
Q( · | x:n). This residual distribution focuses on
sampling from tokens to which the target model P
assigns proportionally higher probability than the
draft model Q.

A straightforward extension to the simple draft-
ing strategy is to speculate a sequence of k to-
kens instead of just one. During the draft-
ing stage, the draft model Q is run auto-
regressively k times to generate a draft sequence
of length k, (x̃(1), x̃(1,1), . . . , x̃(1)ki=1

). The no-
tation x̃j describes that the token at position
j = (j1, . . . , jm−1, jm) comes after token x̃j′

where j′ = (j1, . . . , jm−1). This choice of
notation is made to ensure consistency across
all strategies introduced later. The evaluation
step then processes the entire drafted sequence
x:n||(x̃(1), x̃(1,1), . . . , x̃(1)ki=1

) in parallel using the

target model P . The drafted tokens are verified
and accepted sequentially, starting from the first,
until a rejection occurs, or all k drafted tokens are
accepted. Consequently, the sequence strategy can
generate from 1 to k + 1 tokens per evaluation of
the target model P .

An alternative to sequence drafting is batch
drafting (Sun et al., 2024b), where multiple can-
didate continuations are explored. Specifically, Q
is evaluated once to sample multiple draft token
alternatives, which are then evaluated in parallel
by the target model P . While naively computa-
tionally intensive, Miao et al. (2024) showed that
it can be done at the same computational cost
as sequence drafting.1 This yields distributions(
P ( · | x:n||x̃(i))

)
i≤k

. The verification stage then
sequentially considers each drafted token x̃(i) until
the first acceptance. This strategy generates two
tokens if any drafted token is accepted, or one if
all get rejected. To avoid redundancy, candidates
should be sampled without replacement (Jeon et al.,
2024). To recall the connection highlighted in Sec-
tion 1, the acceptance criterion in greedy rejection
sampling (Harsha et al., 2010; Flamich and Theis,
2023) and batch GSS when k = |Ω| is exactly the
same.

The tree drafting strategy, which subsumes sim-
ple, sequence, and batch methods, operates on any

1A straightforward implementation of batch drafting would
require evaluation of k sequences of length (n+ 1), but this
can be reduced to a single sequence of length (n+ k) by ma-
nipulating attention masks and token embeddings – resulting
in the same cost as sequence drafting. Please refer to Miao
et al. (2024) for details.
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ordered tree topology. Each vertex represents a
token drawn from Q. Each path from the root to a
leaf constitutes a possible sequence drafted auto-
regressively. The general tree GSS algorithm, de-
tailed in Appendix A and Algorithm 4, recursively
applies batch selection at each vertex of the tree to
generate the accepted sequence. All the strategies
are illustrated in Figure 1.

The work most closely resembling ours is Chen
et al. (2025), which investigates optimal tree topolo-
gies for GSS under specific assumptions. Our
analysis is more general and encompasses their
problem setting as a special case. Moreover, by
establishing connections to information theory –
specifically channel simulation (Li, 2024) and Tun-
stall coding (Tunstall, 1968) – we derive an upper
bound on the expected speed-up, which is asymp-
totically exact as number of drafted tokens k in-
creases. Our algorithm for generating sampling
trees achieves O(k log k) complexity, outperform-
ing the O(k2|Ω|) complexity of Chen et al. (2025).
Additionally, we consider token-by-token gener-
ation, unlike global generation (Hu and Huang,
2024), which operates on trees natively.

An alternative approach to speculative decoding
leverages optimal transport (OT) principles (Sun
et al., 2023; Ahn et al., 2023; Sun et al., 2024a).
These methods frame the selection of accepted to-
kens as a linear programming problem. However,
the dimensionality of this problem scales aa |Ω|k,
rendering it computationally intractable even for
small values of k. Consequently, approximations
are employed to make OT-based methods practical.
While these methods aim to maximize the imme-
diate probability of accepting any single drafted
token, this prioritization increases the entropy of
accepted tokens. As we show in Section 4, en-
tropy of the acceptance distribution is inversely
proportional to long-term speed-up (as k grows).
In contrast, through the established connection to
channel simulation, we show that both GSS and our
proposed ERSS implicitly aim at minimizing this
acceptance entropy, thereby maximizing long-term
generation speed-up.

3 Exponential Races

This section introduces the concept of exponential
races. We first explain their use as a method for
sampling from a distribution P . We then show
their use for speculative sampling, leveraging a
distribution Q to ‘predict’ a sample from P .

An exponential race (Maddison, 2017) is a Pois-
son process with time-ordered points, each corre-
sponding to a sample from a distribution P . We are
interested in the winner (first point) of this race. In
the discrete case, we can simulate relevant points,
i.e., potential winners, by associating each element
i of the sample space Ω with an exponential ran-
dom variable ei ∼ Exp(1), e = {ei}i∈Ω. The win-
ner of the race, i∗ = argmini∈Ω

ei
pi

, is distributed
according to i∗ ∼ P . This is also known as the
Gumbel-max trick (Jang et al., 2017), where ar-
rival times are obtained via the monotonic trans-
formation − log(·). Thus, given a distribution P ,
exponential races allow us to sample from it us-
ing independent exponential random variables. For
completeness, the proof of correctness of this result
is provided in Appendix B.

Let P and Q be distributions with the same sup-
port Ω. Using the same realization of e for expo-
nential races yields i∗P = argmini∈Ω

ei
pi
∼ P and

i∗Q = argmini∈Ω
ei
qi
∼ Q, both following their

respective distributions. If P and Q are similar
(i.e., the ratio pi

qi
is close to 1), then it is likely

that i∗P = i∗Q. An example is illustrated in Figure
2, where Q and P are distributions generated by
LLMs.

The simplest version of ERSS is presented in Al-
gorithm 2, where only a single token is generated
from the draft model in the drafting stage: a win-
ner of an exponential race under Q( · | x:n). As in
GSS, the target model P is then evaluated on the
sequence x:n||x̃. During verification, if the winner
of the exponential race under P ( · | x:n) is also
x̃, one more token is drafted. It is straightforward
to extend this approach to a sequence strategy, by
generating an exponential race for every node in
the draft sequence. For the batch strategy with k
alternatives, the drafted tokens are selected as the
first k arrivals of the exponential race under the
draft model Q, as those are the most likely winners
of the race under law P . Like the traditional GSS,
the batch case can be generalized to the full tree
by continuing different trajectories. The general
procedure for this tree approach is presented in
Appendix A as Algorithm 5.

We now highlight key distinctions between
ERSS and GSS. First, during verification, the fun-
damental operation of ERSS is finding the min-
imum of a vector, which is efficiently paralleliz-
able. This contrasts with GSS, which involves
an entirely sequential chain of accept/reject steps
(see Figure 1e). Second, ERSS verification can
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Figure 2: Illustration of exponential races for speculative sampling. Each bar represents a potential next token, with
height corresponding to arrival time. The first arrival under the draft model distribution Q (left) predicts the first
arrival under the target model distribution P (right).

be implemented entirely in the unnormalized logit
space. GSS, however, requires the calculation of
residual probability distributions and associated
normalization constants at each step along its ver-
ification path. Simplified computations due to its
logit-only nature make ERSS applicable to continu-
ous data, including images, video or audio, for use
in variational autoencoders (Kingma and Welling,
2014) and diffusion models (Sohl-Dickstein et al.,
2015). Third, the parallel minimum-finding mech-
anism lends ERSS greater conceptual simplicity
compared to the stateful sequential logic of GSS,
potentially easing implementation and debugging.
Finally, regarding theoretical guarantees, Section 4
presents analyses showing how ERSS’s speed-up
bounds (Equation 8) compare favorably to those de-
rived for GSS (Equation 7), implying tighter worst-
case performance bounds for ERSS.

4 Markov Chain Simulation

This section focuses on determining the optimal
drafting strategy for speculative decoding. We de-
rive this strategy by modeling the underlying distri-
butions as Markov chains. We then establish a con-
nection to Tunstall codes (Tunstall, 1968), which
facilitates rigorous performance upper bounds for
all speculative sampling methods and exact asymp-
totics for optimal speculative sampling.

The central task is to identify the optimal draft-
ing strategy, represented by a drafting tree τ . In
such a tree, each vertex, except the root, is associ-
ated with a drafted token. Specifically, for a vertex
indexed by j = (j1, . . . , jl), the associated token
x̃j is sampled from Q( · | x:n||(x̃j:1 , . . . , x̃j:l−1

)),
where j:m = (j1, . . . , jm). Let R( j | x:n) denote
the probability that vertex j, and thus the drafted
token x̃j, is accepted during verification, given con-
text x:n and a chosen speculative sampling algo-

rithm. R( j | x:n) is defined as the probability of
acceptance, marginalized over all possible draft
token sequences from Q:

R( j |x:n) = E
x̃∼Q(·|x:n)

Pr
{
x̃j accepted | x:n, x̃

}

(1)

For the rest of the section, we assume the target and
draft model distributions, P and Q, be m-th order
Markov sources. Then, the acceptance probability
R( j | x:n) is an m-th order Markov chain. The
expected number of accepted tokens is the sum
of acceptance probabilities for each vertex in the
drafting tree. Therefore, the optimal drafting tree
τ∗ with k + 1 vertices (for speculating k tokens) is
the solution to:

τ∗ = argmax
tree τ,|τ |=k+1

∑

j∈τ
R( j | x:n). (2)

Crucially, for any vertex j and its descendant j′ in a
drafting tree, the acceptance probability is decreas-
ing: R( j | x:n) ≥ R( j′ | x:n). This is because j′

can only be accepted if its ancestor j is accepted.
Consequently, the top k vertices with the highest
acceptance probabilities form a valid tree. Any
node j in this top-k list will have all its ancestors
j:m (where m < |j|) also present in the list due to
their higher acceptance probabilities. This obser-
vation leads to a greedy algorithm (Algorithm 3)
for constructing an optimal tree with k+1 vertices.
Algorithm 3 iteratively builds the tree by greedily
adding the next most likely token to be accepted.
This is achieved efficiently using a priority queue to
maintain candidate vertices, ordered by their accep-
tance probabilities. The algorithm’s computational
complexity is O(k log k) because the loop iterates
k times, and each iteration involves priority queue
operations (push and pop) with a maximum queue
size of 2k, each taking O(log k) time.
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Algorithm 3 Optimal tree construction

1: Input: # drafted tokens k, partial output x:n
2: tree← {()} ▷ initialize tree with root only
3: C ← PRIORITYQUEUE( )
4: ADD(C, (R((0) | x:n), (0)))
5: for all i ∈ (1, . . . , k) do
6: _, j← POPMAX(C)
7: tree← tree ∪ {j}
8: jchild ← j||(0)
9: C.ADD((R(jchild | x:n), jchild))

10: if j|j| < |Ω| then
11: jsibling ← j:(|j|−1)||(j|j| + 1)
12: C.ADD((R(jsibling | x:n), jsibling))
13: end if
14: end for
15: Return tree

Our analysis relies on the acceptance probability
function R, which is typically unknown in practice.
If we approximate R using an empirical acceptance
distribution – effectively treating it as a 0-th order
Markov source – the resulting algorithm becomes
equivalent to that proposed by Chen et al. (2025).
We employ this empirical approximation in our ex-
periments. However, as Section 5 will demonstrate,
this 0-th order approximation proves to be inaccu-
rate, leading to an underestimation of the speed-up
we can achieve with speculative decoding. Devel-
oping more refined approximations of R presents a
promising avenue for future investigation.

In another connection to information theory, the
process of generating optimal drafting trees (Al-
gorithm 3) closely resembles the construction of
Tunstall codes (Tunstall, 1968). Due to their simi-
larity, quantities in speculative sampling, such as
the number of drafted tokens, speed-up, and en-
tropy of the acceptance distribution, have direct
counterparts in Tunstall codes: the number of ex-
panded nodes in the Tunstall tree, the expected
length of the consumed source symbols, and the
source entropy, respectively. This connection al-
lows us to express the expected speed-up of specu-
lative sampling (both GSS and ERSS) in terms of
these quantities.

Tunstall code is a type of variable-to-fixed length
source code used in the compression of discrete
sources. In source coding, the goal is to represent
sequences of symbols from a source alphabet (like
tokens in our case) using the fewest number of bits
(in the case of a binary alphabet). Variable-to-fixed
length codes, such as Tunstall codes, achieve this

by mapping variable-length sequences of source
symbols to fixed-length codewords from the code
alphabet. Specifically, a Tunstall code takes a
variable-length prefix of the source symbol se-
quence and encodes it into a fixed-length output
sequence. This encoding step is repeated until
the entire source sequence is processed. Tunstall
codes are known to be optimal in the sense that for
sufficiently long codewords, the average number
of output alphabet symbols per source symbol ap-
proaches the entropy of the source – this also holds
true for sources with memory (Savari and Gallager,
1997).

Let the entropy of the acceptance probability
distribution be defined as:

H [R] = E
x:n∼P

H [R( · | x:n)] . (3)

Definition 4.1. Let S : P×Q×Ω∗×T → Ω∗ be a
speculative sampling procedure that takes a target
model P , draft model Q, context x:n, and drafting
strategy τ , and outputs a sequence of generated
tokens. The expected number of tokens generated
by S under strategy τ is defined as

Gτ = E
x:n∼P

[|S(P,Q, x:n, τ)|] (4)

where the expectation is taken over contexts x:n
distributed according to the target model P .

Theorem 4.2. (Upper bound Tunstall) For spec-
ulative sampling employing the optimal drafting
strategy τ∗, the expected number of generated to-
kens is bounded as follows:

Gτ∗ ≤
log |Ω|+ log(k + 1)

H [R]
. (5)

The proof of Theorem 4.2 is provided in Ap-
pendix D. Since this bound applies to the optimal
strategy τ∗, it holds for any strategy τ . As the
theorem suggests, for a large number of drafted
tokens k, the generation speed-up (Gτ∗) is funda-
mentally governed by the entropy of the acceptance
distribution, H [R]. Channel simulation algorithms,
such as greedy rejection sampling and Poisson func-
tional representation, are explicitly designed to min-
imize this entropy. Consequently, these methods,
which underpin both GSS and ERSS, inherently
aim to maximize generation speed-up by reducing
H [R]. From a channel simulation perspective, the
KL divergence DKL [P∥Q] between the target dis-
tribution P and the draft distribution Q provides a
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Figure 3: Expected number of accepted tokens as a function of the number of drafted tokens for sequence, batch,
τ∗ tree (optimal), and SpecInfer tree drafting strategies, for GSS and ERSS. Results shown for draft model Q
Llama-3.2-1B, and target model P Llama-3.1-70B-Instruct. For optimal drafting strategy both GSS and ERSS
converge in performance as k increases.

lower bound on this crucial entropy (Li, 2024):

DKL [P∥Q] ≤ H [R] . (6)

Furthermore, channel simulation theory provides
upper bounds on H [R] in terms of DKL [P∥Q]
for greedy rejection coding (Harsha et al., 2010)
(relevant to GSS):

H [R] ≤DKL [P∥Q] + (7)

(1 + ϵ) log(DKL [P∥Q] + 1) +O(1),

for any ϵ > 0, and for Poisson functional represen-
tation (Li and El Gamal, 2018) (relevant to ERSS):

H [R] ≤DKL [P∥Q] + (8)

log(DKL [P∥Q] + 1) + 4 .

These bounds show the connection of speed-
up in speculative sampling to KL divergence
DKL [P∥Q] between the models.

While asymptotically accurate for large k, the
bound from Theorem 4.2 is dominated by the full
token alphabet size |Ω| when the number of drafted
tokens k is small. For such values of k, we observe
that the optimal drafting tree typically explores
only a limited number of drafting positions. In-
deed, multiple acceptance distributions can yield

identical optimal drafting trees and the same ac-
ceptance probabilities for all nodes within those
trees. Thus, evaluating the bound from Theorem
4.2 for any such distribution provides a valid upper
bound for all of them. To simplify the notation
and exposition, we focus on the 0-th order accep-
tance distribution R, noting that our findings can
be generalized to higher-order Markov sources.

For a given number of drafted tokens k, let
d be the maximum index explored in the opti-
mal drafting tree τ∗k with k + 1 vertices, i.e.,
d = maxj∈τ∗k maxi{i | i ∈ j}. We define an
equivalent acceptance distribution R̂ such that for
indices i ≤ d, R̂(i) = R(i), and for i > d,
R̂(i) ≤ mini′≤dR(i′). In short, R̂ matches R
on tree nodes for the first d indices and is upper-
bounded by mini′≤dR(i′) thereafter.

Our objective is to minimize the upper bound
on the expected number of accepted tokens. Upon
inspection of Theorem 4.2, we see that a tighter
bound is achieved by maximizing the entropy of
R̂ and minimizing the alphabet size. Minimizing
the bound requires strategically distributing the re-
maining probability mass, pres = 1−∑d

i=1R(i),
associated with indices beyond d. For any choice
to incorporate m additional indices, entropy max-
imization is achieved by distributing the residual
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Figure 4: Marginal probability of acceptance as a function of the number of drafted tokens for sequence , batch , τ∗

tree (optimal) drafting strategies, for GSS and ERSS. Results shown for draft model Q Llama-3.2-1B, and target
model P Llama-3.1-70B-Instruct.

mass equally across them.

Lemma 4.3. (Upper bound m) For a fixed num-
ber of drafted tokens k and initial index range d,
consider a 0-th order acceptance probability dis-
tribution R. Let pres = 1 −∑d

i=1R(i) be the
residual probability mass. Define Rres such that
Rres(i) = R(i) for i ≤ d, and Rres(d+1) = pres.
Then, for any integer m ≥ pres

mini≤d R(i) , the expected
number of generated tokens is upper-bounded by:

Gτ∗ ≤
log(d+m) + log(k + 1)

H [Rres] + pres logm
.

Note: Rres defined in above lemma is not R̂.

5 Experiments

To validate our theoretical analysis, we conducted
numerical experiments comparing GSS and ERSS
across different drafting strategies. We performed
open-ended text generation up to 200 tokens, accu-
mulating 100k generated tokens per strategy. The
experiments were performed on 8 Nvidia RTX
A6000 GPUs, with experiments running for 140
hours of wall-clock time. We estimated the ac-
ceptance probability function R using empirical
acceptance probabilities for different indices (from
sequence and batch ), approximating it as a 0-th
order Markov chain. Based on this estimated R,

we computed the optimal drafting tree τ∗ for both
GSS and ERSS using Algorithm 3.

Figure 3 illustrates the expected number of ac-
cepted tokens as a function of drafted tokens for the
target model Llama-3.1 70B and the draft model
Llama-3.2 1B (Grattafiori et al., 2024), used under
the Meta Llama 3.1 and 3.2 Licenses. Figure 4
shows the marginal change in acceptance probabil-
ity with each additional drafted token. We compare
four drafting strategies: batch, sequence, optimal
tree (τ∗), and the SpecInfer tree (Miao et al., 2024),
which drafts 3-sequences with the first two drafted
tokens being common. For each strategy and spec-
ulative sampling method (GSS, ERSS), we present
both theoretical and empirical performance. The
theoretical plots show the expected number of gen-
erated tokens based on the estimated R, while the
empirical plots display the actual value observed in
our experiments.

Figure 3 reveals that for batch drafting with
k = 1, GSS outperforms ERSS–it has a higher
chance of accepting the first proposed sample. This
can be explained by the ’greediness’ of GSS, which
maximizes the acceptance probability of each sam-
ple sequentially, a strategy that is suboptimal when
considering multiple samples. This also explains
the performance gap between strategies for small
values of drafted samples k. Further discussion
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regarding the probability of acceptance of the first
sample for GSS and ERSS is presented in Appendix
C. However, with k = 2, both methods exhibit com-
parable performance. For k ≥ 3, ERSS achieves
a higher expected number of accepted tokens, and
hence speed-up. The acceptance probabilities for
each index ((0), (1), (2), . . . ) are shown in Figure
4. For sequence drafting, GSS demonstrates su-
perior performance compared to ERSS, since this
strategy comprises a series of batch drafting steps
with k = 1, considering only a single possible
continuation at each step. Intriguingly, our empiri-
cal results also challenge the 0-th order acceptance
assumption (Chen et al., 2025). The empirical per-
formance plateaus at a higher level than predicted
by the measured R, indicating higher-order Markov
dependencies. This can be explained by regions of
language where the target model P and draft model
Q exhibit greater alignment, leading to extended
sequences of accepted tokens. The SpecInfer tree
achieves slightly improved performance over se-
quence drafting but still plateaus.

As predicted, the optimal τ∗ tree strategy yields
the best performance for both GSS and ERSS, ex-
hibiting a logarithmic relationship between drafted
tokens k and expected generated tokens (Figure 3).
At low k, the optimal tree τ∗ and sequence strate-
gies show similar performance, with GSS slightly
outperforming ERSS. However, as k increases, the
performance gap diminishes, and they converge.

Figure 3 presents the minimal upper bound de-
rived from Lemma 4.3 by optimizing the parameter
m for each number of drafted tokens k. We also de-
pict the upper bound from Lemma 4.3, calculated
with a fixed m for k = 384 to show the behavior
of the bound. While the marginal changes in the
minimal upper bound are omitted for visual clarity–
due to their step-like transitions–, we observe that
the marginal changes of the fixed-m upper bound
closely follow the trends of the optimal τ∗ tree .

6 Future Directions

Our channel simulation perspective on speculative
sampling suggests several avenues for future re-
search. First, beyond exact sampling which guar-
antees output identical to the target model P , one
could explore approximate speculative sampling.
Drawing from work on approximate channel simu-
lation (Havasi et al., 2019; Theis and Yosri, 2022),
which relates approximation quality to communi-
cation cost (analogous to draft sample count), this

could illuminate the trade-offs between speed-up
and distribution shifts, potentially leading to new
algorithms. Second, further application of the Pois-
son Matching Lemma (Li and Anantharam, 2021),
utilized for our Lemma C.1 upper bound, could
yield lower bounds on acceptance probability or
index entropy for ERSS, complementing our anal-
ysis with worst-case performance guarantees for
speed-up. Third, the channel simulation frame-
work links speed-up to the accepted index entropy.
This motivates comparing different draft model Q
optimization strategies: directly minimizing this
index entropy versus minimizing DKL(P ||Q), or
using reinforcement learning objectives targeting
empirical speed-up. Finally, while prior work has
connected speculative decoding to OT, our chan-
nel simulation framework suggests investigating
minimal entropy couplings as a more direct theoret-
ical foundation for maximizing long-term speed-up,
distinct from standard OT objectives.

7 Conclusion

This work establishes a connection between specu-
lative decoding – a technique for accelerating au-
toregressive LLM generation – and channel sim-
ulation. This connection enabled us to propose
ERSS, a novel speculative sampling method. By
linking the optimal drafting strategy to Tunstall
codes, we derived a theoretical upper bound and
the asymptotic relationship between the number
of speculated tokens and the expected speed-up,
for GSS and ERSS. These findings offer a deeper
understanding of, and potential improvements to,
the efficiency of speculative decoding.

8 Limitations

Speculative decoding’s speed gains are most signifi-
cant when drafting only a few tokens, k. Therefore,
for small values k, GSS is often the most practical
choice. While token-by-token generation was the
focus of this work, joint sequence generation in
speculative sampling or channel simulation could
lead to further improvements, but its computational
practicality is uncertain. Furthermore, our current
stateless approximation of the acceptance probabil-
ity function R oversimplifies the contextual nature
of language. Developing more context-aware ap-
proximations could yield improvements in future
work.
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A Algorithms

Algorithm 4 Greedy speculative sampling

1: Input: partial output x:n, draft model Q, target model P , # draft tokens k, draft strategy τ
2: for all j ∈ τ do ▷ Assumes lexicographical ordering of indexes j
3: if j|j| = 1 then ▷ If j is the first child evaluate Q

4: EVALUATE(Q, x:n||(x̃j:i)
|j|−1
i=1 )

5: end if
6: Qdraft ← Q

(
· | x:n||(x̃j:i)

|j|−1
i=1

)

7: janc ← j:|j|−1

8: for all i ∈ N+, i < j|j| do ▷ Ensure sampling without replacement
9: Qdraft(x̃janc||(i))← 0

10: end for
11: Qdraft ← Qdraft/SUM(Qdraft)
12: x̃j ∼ Qdraft

13: end for
14: EVALUATE(P, x:n, {x̃j}j∈τ ) ▷ Evaluate all draft tokens in parallel
15: acc← True
16: y ← ( )
17: j← ( )
18: while acc do
19: acc← False
20: Ptarget ← P ( · | x:n||y)
21: Qdraft ← Q( · | x:n||y)
22: i← 1 ▷ Current considered child
23: while j||(i) ∈ τ do
24: if Ptarget(x̃j)

Qdraft(x̃j)
> Uniform(0, 1) then ▷ Accept token and continue

25: y ← y ∪ {x̃j}
26: acc← True
27: break
28: end if
29: Ptarget ← max(Ptarget −Qdraft, 0)
30: Ptarget ← Ptarget/SUM(Ptarget) ▷ On rejection calculate residual distribution
31: Qdraft(token)← 0
32: Qdraft ← Qdraft/SUM(Qdraft)
33: e ▷ Update target distribution for sampling w.o. replacement
34: i← i+ 1
35: end while
36: end while
37: token← SAMPLE(Ptarget) ▷ Accept token from residual distribution
38: y ← y ∪ {token}
39: return y

The draft token selection step–sampling without replacement–in the general GSS Algorithm 4 can be
implemented using exponential races just as in Algorithm 5, or equivalently the Gumbel-max trick.
Furthermore, the verification step in ERSS Algorithm 5 is a significanly simpler compared to GSS.
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Algorithm 5 Exponential Race Speculative Sampling

1: Input: partial output x:n, draft model Q, target model P , # draft tokens k, draft strategy τ
2: for all j ∈ τ do ▷ Assumes lexicographical ordering of indexes j
3: janc = j:|j|−1

4: if j|j| = 1 then ▷ If j is the first child evaluate Q and generate the race
5: for all i ∈ Ω do
6: ejanc||(i) ← Exp(1)
7: end for
8: EVALUATE(Q, x:n||(x̃j:i)

|j|−1
i=1 )

9: end if
10: x̃j ← j|j|-th argmini∈Ω

ejanc||(i)

Q
(
i|x:n||(x̃j:i

)
|j|−1
i=1

) ▷ Find j|j|-th race arrival under Q

11: end for
12: EVALUATE(P, x:n, {x̃j}j∈τ ) ▷ Evaluate all draft tokens in parallel
13: y ← ( )
14: j← ( )
15: while true do
16: xnext ← argmini∈Ω

ejanc||(i)

Q
(
i|x:n||(x̃j:i

)
|j|−1
i=1

) ▷ Winner of race under P

17: y ← y||(xnext)
18: if xnext /∈ {x̃j||(i) | i ∈ Ω, j||(i) ∈ τ} then
19: break
20: end if
21: end while
22: return y
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B Proof of Correctness for Exponential Races

This appendix provides a proof for the statement in Section 3 that the winner i∗ = argmini∈Ω
ei
pi

of an
exponential race, where ei ∼ Exp(1) are independent and pi are probabilities from a distribution P over
Ω, follows the distribution P . That is, we aim to show that Pr(i∗ = y) = py for any y ∈ Ω.

The probability density function (PDF) of each ei is f(t) = e−t for t ≥ 0. The cumulative density
function is Pr(ei < t) = 1− e−t. We compute the probability that a specific element y ∈ Ω is the winner
of the race. The element y wins if its associated ‘arrival time’ ey/py is smaller than all other arrival times
ex/px for x ̸= y.

Pr(i∗ = y) = Pr

(
ey
py

<
ex
px

,∀x ∈ Ω \ {y}
)

= Eey

[
Pr

(
ex >

px
py

ey, ∀x ∈ Ω \ {y} | ey
)]

= Eey


 ∏

x∈Ω\{y}
Pr

(
ex >

px
py

ey | ey
)


= Eey


 ∏

x∈Ω\{y}
exp

(
−px
py

ey

)


= Eey

[
exp

(
−ey

∑
x∈Ω\{y} px

py

)]

= Eey

[
exp

(
−ey

1− py
py

)]

=

∫ ∞

0
exp

(
−t1− py

py

)
e−tdt

=

∫ ∞

0
exp

(
− t

py

)
dt

= py

This confirms that the probability of selecting element y is exactly py, and thus the winner i∗ is distributed
according to P , i.e., i∗ ∼ P .

C First token acceptance rate

Standard GSS prioritizes maximizing the probability of accepting the initially proposed draft token.
Indeed, for the simple (and thus, sequence) drafting strategy, greedy sampling achieves optimality within
token-based speculation (Sun et al., 2023), with the acceptance probability given by 1 − DTV [P ( · |
x:n), Q( · | x:n)], where DTV [P,Q] = 1

2

∑
i∈Ω |P (i)−Q(i)| is the total variation distance (Csiszár and

Körner, 2011). However, this method is not optimal when considering multiple possible tokens. We can
establish a corresponding bound for the acceptance probability of the first drafted token in ERSS using
the Poisson matching lemma (Li and Anantharam, 2021).

Lemma C.1. For ERSS with target distribution P = P ( · | x:n) and draft distribution Q = Q( · | x:n),
the probability of accepting the first drafted token, P (1)

accept, satisfies:

1−DTV [P,Q] ≥ P
(1)
accept ≥ DHM [P,Q], (9)

where DHM denotes the harmonic mean distance, defined as:

DHM [P,Q]
def
=
∑

i∈Ω

P (i)Q(i)

P (i) +Q(i)
. (10)
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Despite a lower first-token acceptance probability, exponential races are not inferior to GSS. As shown
in section 4, the overall performance for both methods hinges on the entropy of the acceptance distribution.
From a channel simulation perspective, this entropy is linked to the Kullback-Leibler (KL) divergence
between P and Q.

To show the lemma, we begin by recalling the Poisson matching lemma (Li and Anantharam, 2021),
adapted to our notation for discrete alphabets:

Lemma C.2. (Poisson matching lemma) Let P and Q be two probability distributions over the alphabet
Ω. Let Ei ∼ Exp(1) for each symbol i ∈ Ω be independent exponential random variables. Define
I∗P = argmini∈Ω

Ei
pi

and I∗Q = argmini∈Ω
Ei
qi

. The probability that I∗P is different than I∗Q, given I∗Q, is
bounded by:

Pr
{
I∗P ̸= I∗Q | I∗Q

}
≤ 1−

(
1 +

qI∗Q
pI∗Q

)−1

. (11)

In essence, this lemma bounds the probability that two races, driven by the same underlying exponential
random variables but with different distributions P and Q, will have different winners.

Proof. (Lemma C.1) To obtain the average probability of differing first arrivals, we marginalize the
Poisson matching lemma over all possible values of I∗Q. Let P (1)

accept be the probability that the first drafted
token in ERSS is accepted. This occurs when the winner of the race under P is the same as the winner
under Q, i.e., I∗P = I∗Q. Thus:

P
(1)
accept = Pr

{
I∗P = I∗Q

}
(12)

= 1−Pr
{
I∗P ̸= I∗Q

}
(13)

= 1− E
I∗Q

[
Pr
{
I∗P ̸= I∗Q|I∗Q

}]
(14)

≥ 1− E
I∗Q


1−

(
1 +

qI∗Q
pI∗Q

)−1

 (by Lemma C.2) (15)

= E
I∗Q



(
1 +

qI∗Q
pI∗Q

)−1

 (16)

=
∑

i∈Ω
qi

1

1 + qi
pi

(since I∗Q ∼ Q) (17)

=
∑

i∈Ω

piqi
pi + qi

(18)

= DHM [P,Q], (19)

where the last step follows from the definition of the harmonic mean distance DHM [P,Q].
Furthermore, it is known that P (1)

accept is upper-bounded by 1−DTV [P,Q] (Sun et al., 2023), and in
general those bounds do not coincide as:

1−DTV [P,Q] = 1− 1

2

∑

i∈Ω
|pi − qi| (20)

=
1

2

∑

i∈Ω
pi +

1

2

∑

i∈Ω
qi −

1

2

∑

i∈Ω
|pi − qi| (21)

=
1

2

∑

i∈Ω

(pi + qi)
2 − |pi − qi|(pi + qi)

pi + qi
(22)

(23)
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=
1

2

∑

i∈Ω

p2i + 2piqi + q2i − |p2i − q2i |
pi + qi

(24)

≥ 1

2

∑

i∈Ω

p2i + 2piqi + q2i − (p2i + q2i )

pi + qi
(25)

=
∑

i∈Ω

piqi
pi + qi

(26)

= DHM [P,Q]. (27)

D Tunstall Codes

This section provides a concise overview of Tunstall coding. Source coding is a fundamental technique
for representing sequences of source symbols, like text or tokens, as sequences of bits (or symbols from
another alphabet). The goal is efficient representation for storage or transmission. Tunstall coding is a
variable-to-fixed length source coding method. This means it parses the source sequence into variable-
length subsequences, and maps each of these subsequences to a fixed-length codeword. Let V denote the
expected length of the encoded source subsequences.

Tunstall codes are constructed using trees. The construction process begins with a root node. Assuming
a source alphabet Ω, the root is expanded to have |Ω| children. Subsequently, in each step, the leaf node
representing the most probable source sequence is expanded by adding |Ω| children to it. This expansion
process is repeated until a desired number of codewords is reached. The structure and construction of this
Tunstall tree, specifically its inner nodes, are identical to the optimal draft tree employed in speculative
sampling as described in Algorithm 3; conversely, the leafs of the Tunstall tree correspond to sampling of
an additional token once no more drafted tokens are considered (i.e., sampling from residual in GSS or
last token in ERSS) . If the construction process expands k nodes, the resulting Tunstall tree will have
|Ω|+ k(|Ω| − 1) leaves. Each path from the root to a leaf represents a variable-length sequence of source
symbols. Tunstall code assigns a unique codeword of fixed length ⌈log (k(|Ω| − 1) + |Ω|)⌉ bits to each
leaf node.

Considering the fundamental limit of compression given by the source entropy, we can establish an
inequality for compressing a source sequence of length L with a Tunstall code:

LH [R] ≤ L

V
log (k(|Ω| − 1) + |Ω|) (28)

Here, the left-hand side of Equation (28) represents the lower bound on the average number of bits needed
to encode a sequence of length L, and the right-hand side represents the expected number of bits used
by the Tunstall code. The term L

V represents the expected number of codewords needed to encode a
source sequence of length L, and log (k(|Ω| − 1) + |Ω|) is the fixed length of each codeword. As both
the Tunstall tree construction and the optimal drafting tree in Algorithm 3 describe the same mathematical
structure in different contexts, the ’length of the encoded source sequence’ in Tunstall coding corresponds
precisely to the ’number of generated tokens’ in speculative sampling. Rearranging the equation, we
obtain:

Gτ∗ = V ≤ log (k(|Ω| − 1) + |Ω|)
H [R]

≤ log |Ω|+ log(k + 1)

H [R]
. (29)

Tunstall codes are known to be asymptotically optimal, even for sources with memory (Savari and
Gallager, 1997), when a different code for each state, which would translate to different draft trees
depending on the context. This asymptotic optimality means that the gap to the theoretical compression
limit becomes constant as k increases. Therefore, this upper bound also characterizes the asymptotic
behavior of speculative sampling.
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