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Abstract

Knowledge distillation (KD) is a key technique
for compressing large language models into
smaller ones while preserving performance.
Despite the recent traction of KD research,
its effectiveness for smaller language models
(LMs) and the mechanisms driving knowledge
transfer remain underexplored. In this work, we
present the first large-scale empirical and sta-
tistical analysis of KD across models ranging
from 0.5B to 7B parameters on 19 complex rea-
soning and instruction following tasks in a zero-
shot setting. Our findings reveal that KD can
improve the average performance of smaller
models by up to 10%, with a peak task specific
gain of 22%, while providing only marginal
benefits (~ 1.3%) for larger models. Surpris-
ingly, teacher performance has a minimal im-
pact on student outcomes, while teacher task ex-
pertise impacts KD effectiveness. A correlation
study indicates that smaller LMs benefit more
from KD, whereas larger LMs show diminished
gains. Additionally, we uncover a misalign-
ment between improvements in student perfor-
mance and reasoning fidelity, suggesting that
while KD enhances accuracy, it does not always
maintain the structured decision-making pro-
cesses of the teacher. Our ablation study further
highlights the importance of teacher signals and
logit smoothing in influencing students’ perfor-
mance after distillation. Overall, our study of-
fers a comprehensive empirical and statistical
assessment of KD, highlighting both its bene-
fits and trade-offs when distilling knowledge
from larger to smaller LMs.

1 Introduction

The rapid advancement of pre-trained language
models (LMs) has led to the development of large-
scale language models that achieve state-of-the-
art performance across various NLP tasks (Dubey
et al., 2024; Yang et al., 2024; DeepSeek-Al et al.,
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2024). However, deploying these large models
presents significant challenges due to their high
computational and memory requirements (Zhu
et al., 2023). Model compression has emerged as
a crucial technique to mitigate these challenges
by reducing model size while preserving perfor-
mance. Among various compression techniques,
knowledge distillation (KD) has gained significant
attention as it enables a smaller student model to
learn from a larger teacher model, maintaining
strong performance with reduced resource demands
(Deng et al., 2020). KD plays a pivotal role in
making large language models (LLMs) more ac-
cessible, facilitating their deployment in resource-
constrained environments.

Several knowledge distillation approaches have
been proposed to improve the training of student
model and enhance generalization. Hinton et al.
(2015) introduced the concept of soft target distil-
lation, where the student learns from the softened
output probabilities of the teacher model. Subse-
quent studies extended this idea to sequence-level
KD for language models, such as SeqKD (Kim and
Rush, 2016), which aligns the student model with
the teacher’s output distributions. More recent vari-
ants, including MiniLLM (Gu et al., 2024), lever-
age reverse Kullback-Leibler (KL) divergence to
improve the learning of student model for genera-
tive language models. Despite these advancements,
a comprehensive understanding of KD techniques
for LLMs remains unexplored. Current research
primarily focuses on task-specific distillation se-
tups, often overlooking broader implications across
diverse tasks. Moreover, the distribution mismatch
between training and inference remains a persistent
challenge, particularly in autoregressive language
models (Agarwal et al., 2024), necessitating further
exploration of large-scale KD strategies.

In this paper, we conduct a large-scale empirical
and statistical analysis to evaluate the effectiveness
of knowledge distillation for small LMs ranging
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Figure 1: Performance of different Qwen-2.5 student models across various (a) mathematical and (b) commonsense
reasoning (c) instruction following tasks without and with distillation from larger Qwen models. We highlight the
zero-shot accuracy for the supervised fine-tuned (SFT) model and the models distilled with different KD methods.
The results are elaborated in Tables 7, 8 and 9 in Appendix B. Similar results for LLaMA student models are

highlighted in Figure 7 of Appendix B.

from 0.5B to 7B parameters across 19 complex

reasoning and instruction following tasks in a zero-

shot setting. We investigate the impact of KD on

the generalizability of small LMs to explore differ-

ent aspects of knowledge distillation. We summa-

rize the key findings from our study as follows':

* KD significantly improves model generaliza-
tion. Zero-shot performance of smaller LMs

(< 1B size) can be improved by up to 10%, *

with peak gains reaching 22% (c.f. Figure 1)
post-distillation from larger LMs (7B — 14B).

!The source code of our study is made available at https:
//github.com/LCS2-IIITD/KD_generalization.
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Larger models see diminishing returns. 7B
models exhibit only ~~1.3% improvement after
distillation, indicating that KD is most effective
for smaller LMs.

Choice of KD method has a marginal impact.
Despite varying improvement patterns, statistical
analysis shows that different KD methods yield
similar post-distillation performance.

Teacher performance has minimal impact.
A Spearman rank test reveals that a stronger
teacher does not necessarily lead to a better stu-
dent. However, the teacher’s task expertise is
crucial — distilling from a task-unaware teacher


https://github.com/LCS2-IIITD/KD_generalization
https://github.com/LCS2-IIITD/KD_generalization

can degrade student performance by up to 40%.

* Smaller models benefit more from KD. A
high negative correlation exists between student
model size and KD effectiveness, confirming
that smaller LMs gain significantly more from
distillation than larger ones.

« KD does not guarantee higher teacher-
student agreement. In mathematical reason-
ing tasks, the correlation between student perfor-
mance and agreement with the teacher is statisti-
cally insignificant.

» High-performing students do not always ex-
hibit reasoning fidelity. Even when student
models perform well, they do not necessarily
replicate the teacher’s reasoning steps, high-
lighting a potential loss of structured decision-
making.

» KD transfers task effectiveness but not always
reasoning strategies. The mismatch between
student accuracy and poor fidelity suggests that
while KD improves performance, it may fail
to preserve the teacher’s structured decision-
making process, raising concerns about inter-
pretability and reliability in critical applications.

These insights offer significant practical benefit to
assess the benefits and trade-offs of knowledge dis-
tillation, encouraging researchers and practitioners
in developing adaptive KD frameworks that bal-
ance knowledge transfer, reasoning integrity, and
real-world applicability.

2 Related Work

KD for LLMs. KD has been widely used to
compress LLMs while preserving performance
(Hinton et al., 2015). Traditional KD relies on
soft labels to transfer knowledge, with extensions
such as feature-based (Romero et al., 2014), self-
distillation (Furlanello et al., 2018), multi-teacher
distillation (You et al., 2017) and collaborative dis-
tillation (Sengupta et al., 2023). However, these
approaches struggle with autoregressive sequence
generation due to exposure bias and knowledge
loss in smaller models. To address this, General-
ized Knowledge Distillation trains students on self-
generated sequences, mitigating distribution mis-
match (Agarwal et al., 2024). Instruction-tuning-
CoT enables smaller models to inherit reasoning ca-
pabilities via instruction-based fine-tuning (Ranaldi
and Freitas, 2024). Multi-teacher KD aggregates
strategies from multiple models, improving gen-
eralization (Tian et al., 2024), while MiniLLM

prioritizes high-probability teacher outputs via re-
verse KL divergence, reducing overfitting (Gu et al.,
2024). Adaptive Teaching KD (ATKD) adjusts
knowledge transfer dynamically based on token
difficulty, preventing degradation in large teacher-
student setups (Zhong et al., 2024). Despite ad-
vancements, most KD methods prioritize perfor-
mance gains over understanding why certain strate-
gies succeed or fail. Gaining deeper insights into
KD effectiveness is crucial for developing more
reliable, generalizable models.

Understanding effectiveness of KD. While KD
enhances model compression and transfer learning,
its inner workings remain underexplored. Conven-
tional KD methods often fail to preserve explain-
ability, reducing trust in distilled models (Alharbi
et al., 2021). Studies challenge the assumption that
high student-teacher fidelity ensures better gener-
alization, revealing that students often struggle to
mimic teachers due to optimization and dataset con-
straints (Stanton et al., 2021). KD can also trans-
fer biases and adversarial vulnerabilities alongside
useful knowledge (Ojha et al., 2023). Attention
and fidelity mechanisms are crucial, with research
showing that diverse teacher attention maps en-
hance student generalization more effectively than
rigid mimicry (Guo et al., 2025). However, these
studies primarily focus on vision tasks. Similar in-
vestigations are needed for language-based tasks to
understand how KD influences reasoning, linguis-
tic structures, and emergent capabilities of LLMs.

How our work is different? Unlike prior works
that primarily focus on task-specific knowledge dis-
tillation or performance benchmarking on a limited
set of tasks, this study provides a large-scale em-
pirical and statistical analysis of KD across diverse
reasoning benchmarks with small LMs of varying
sizes and capabilities. While most existing studies
overlook explainability of KD, our work system-
atically examines the key factors influencing its
effectiveness, providing valuable practical insights
into the process.

3 Methodology

Here, we briefly describe three state-of-the-art
knowledge distillation methods used in our study:
Sequence-level knowledge distillation (SeqKD),
Reverse KL knowledge distillation (RevKD), and
Generalized Knowledge Distillation (GKD). Each
method varies in its approach to training the student
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model and its associated loss objectives.

Sequence-level knowledge distillation. SeqKD
(Kim and Rush, 2016) extends traditional KD (Hin-
ton et al., 2015) by aligning the student’s output
sequences with those of the teacher. Unlike stan-
dard KD, which operates at the token level, Se-
gKD forces the student model to generate entire
sequences that match the teacher’s outputs. This is
particularly useful for sequence generation tasks,
such as machine translation and text summarization.
The loss function for SeqKD is defined as:

Lseqkp = Ezp [—log Ps(yr|x)], (1)

where Pg(yr|z) represents the probability of the
teacher’s sequence output yr under the student
model’s distribution. By training on full sequences,
it improves the fluency and coherence of student-
generated text compared to token-level distillation.

Reverse KL knowledge distillation. Gu et al.
(2024) proposed a novel KD strategy by minimiz-
ing the reverse KL divergence, instead of the stan-
dard forward KL divergence used in traditional
KD. The motivation is to avoid overestimating low-
probability regions of the teacher’s distribution,
which is crucial for generative language models.
The student model is trained using the following
reverse KL loss:

Lrevkp = Exp [DxL(Ps(y|z) || Pr(ylz))],
2
where Pg(y|z) and Pr(y|z) denote the logit distri-
bution of student and teacher, respectively.

Generalized knowledge distillation.
GKD (Agarwal et al, 2024) addresses the
distribution mismatch issue in traditional KD for
auto-regressive sequence models. Standard KD
methods train the student using a fixed dataset
of teacher-generated or ground-truth sequences,
leading to discrepancies between training and
inference distributions. GKD mitigates this
problem by incorporating an on-policy learning
approach, where the student model is trained on
its self-generated sequences with feedback from
the teacher. Given an input sequence z, both
the student Pg and teacher Pr generate output
sequences. GKD mixes two data sources: (i) a
fixed dataset containing ground-truth or teacher-
generated sequences, and (ii) student-generated
sequences, ensuring that the model learns from its

own mistakes. The objective function of GKD is
defined as:

Lexp(0) =(1 — ME(g y)~(x,v) [D(Pr||Ps(y|z)]
+ )‘EaCNXEprS(-\x) [D(PTHPS)(Z/"%')] s
(3)

where D(Pr||Ps)(y|z) is a divergence measure
between the teacher and student probability dis-
tributions, and A € [0, 1] determines the fraction
of on-policy student-generated data. GKD lever-
ages the Jensen-Shannon Divergence (JSD), which
interpolates between forward and reverse KL diver-
gences using a mixing coefficient 3, given by:

Disp(gy(Pr||Ps) =8Dkw(Pr||M)
+ (1 = B)Dk(Ps||M),
“4)

where M = BPr + (1 — ) Ps is the mixture dis-
tribution. When (3 approaches 0 or 1, JSD behaves
like forward or reverse KL, respectively. By de-
fault, we use A = 0.5 and 8 = 0.5. This ap-
proach enables dynamic tuning of the divergence
measure, optimizing the trade-off between general-
ization and generation diversity.

Following Hinton et al. (2015), we use a temper-
ature parameter 7 to control the smoothness of the
teacher and student token probabilities for all these
KD methods. Under this assumption, the probabil-
ity distribution of the teacher model is given by a
temperature-scaled softmax function: Pr(y|z) =
%, where 2z represents the logits from
the teacher model. The student model follows a

similar formulation: Ps(y|z) = %.

4 Experimental Setup

In our empirical study, we use Qwen-2.5 (Yang
et al,, 2024) (0.5B, 1.5B, 3B, 7B, 14B) and
LLaMA-3 (Dubey et al., 2024) (3.2-1B, 3.2-3B,
3.1-8B) model series, with all pretrained weights
sourced from Huggingface (Wolf et al., 2020), eval-
uated on mathematical reasoning, commonsense
reasoning and instruction following tasks. For
mathematical reasoning, we fine-tune base mod-
els on Mathl10K (Hu et al., 2023) and evaluate
on GSMS8K (Cobbe et al., 2021), SVAMP (Patel
et al., 2021), MultiArith (Roy and Roth, 2015),
AddSub (Hosseini et al.,, 2014), AQuA (Ling
et al., 2017), and SingleEq (Koncel-Kedziorski
et al., 2015). For commonsense reasoning, we
fine-tune on Commonsensel5K (Hu et al., 2023)
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Test Type AQuA AddSub  GSMS8k MultiArith SVAMP  SingleEq | Average
“iestall methods | 407 0.0) 557 0.0) 887(0.0) 70900 7.390.0) 831 (0.0) | 847(0.0)
t-test GKD 2.16 (0.0) 2.80(0.0) 5.72(0.0) 3.81(0.0) 4.88 (0.0) 5.37 (0.0) | 5.10 (0.0)
t-test RevKD 4.05 (0.0) 3.51(0.0) 10.02(0.0) 4.55(0.0) 7.43 (0.0) 5.18 (0.0) | 6.31 (0.0)
tlestSeKD | 120(0.) 336(0.0) 30400)  412(0.0)  230(0.0) 384(00) | 372(00)
ANOVA all methods | 2.67 (0.1) 0.41(0.7) 5.62(0.0) 0.52(0.6) 4.73 (0.0) 1.18 (0.3) | 2.27 (0.1)
(a) Mathematical reasoning
Test Type ARC-c ARC-e BoolQ Hellaswag OBQA PiQA SiQA Winogrande | Average
t-test all methods 5.43(0.0) 5.30(0.0)0 1.40(0.1) 0.66(0.3) 7.59(0.0) 4.77 (0.0) 7.92(0.0) 7.24(0.0) 3.86 (0.0)
t-test GKD 5.67 (0.0) 4.06 (0.0) 2.25(0.0) 0.24 (0.4) 4.90(0.0) 3.49(0.0) 6.64 (0.0) 4.16 (0.0) 2.96 (0.0)
t-test RevKD 2.04 (0.0) 2.70(0.0) 0.18(0.4) -0.04(0.5) 3.24(0.0) 2.23(0.0) 4.28(0.0) 2.70(0.0) 1.18 (0.1)
t-test SeqgKD 3.25(0.0) 2.48(0.0) 1.96(0.0) 3.13(0.0) 5.74(0.0) 2.90(0.0) 3.37(0.0) 11.34(0.0) 4.33 (0.0)
" ANOVA all methods | 0.49 (0.6) 0.72(0.5) 0.20(0.8) 0.18(0.8) 0.04 (1.0) 0.45(0.6) 1.12(0.3) 0.27(0.8) | 0.30(0.8)
(b) Commonsense reasoning

Test Type Dolly Self SNI UNI Vicuna Average
t-test all methods 6.31 (0.0) 4.85(0.0)0 7.01(0.0) 8.23(0.0) 5.35(0.0) | 7.18 (0.0)
t-test GKD 14.09 (0.0) 10.73 (0.0) 11.25(0.0) 18.2(0.0) 11.74 (0.0) | 25.66 (0.0)
t-test RevKD 16.63 (0.0) 8.21(0.0) 15.69 (0.0) 35.42(0.0) 12.17 (0.0) | 34.02 (0.0)
t-test SeqKD -2.63 (1.0) -1.85(0.9) -0.32(0.6) 1.55(0.1) -3.63 (1.0) | -1.66 (0.9)

" ANOVA all methods | 117.82 (0.0)  40.05 (0.0) 67.28 (0.0) 196.88 (0.0) 85.16 (0.0) | 329.47 (0.0)

(c) Instruction following

Table 1: Statistical t-test for understanding the statistical significance of KD on student models’ performance. We
calculate the t-statistics and p-value for all KD methods and for individually for each method. We further measure
the ANOVA F-statistics to underscore the differences between different KD methods on the student performance.
Bold indicates that the results are statistically significant (p-value < 0.05).

and evaluate on Hellaswag (Zellers et al., 2019),
Winogrande (Sakaguchi et al., 2021), ARC (Clark
et al., 2018), OBQA (Mihaylov et al., 2018),
BoolQ (Clark et al., 2019), PiQA (Bisk et al., 2020),
and SiQA (Sap et al., 2019). For instruction fol-
lowing, we fine-tune using Dolly-15K (Gu et al.,
2024) and evaluate on Dolly, SelfInst (Wang et al.,
2022a) (denoted by ‘self’ throughout the paper),
Vicuna (Chiang et al., 2023), SNI (Wang et al.,
2022b) and UNI (Honovich et al., 2023). Detailed
dataset descriptions and splits are provided in Ap-
pendix A and Table 6. We use LoRA (Hu et al.,
2021) adapters with r = 8 and o« = 16 for su-
pervised fine-tuning and KD fine-tuning of all the
models. All the experiments were conducted on a
single Nvidia-A100 GPU.

We use a batch-size of 16, learning rate of
3 x 10~* and max-length of 256 across all mod-
els and methods. We fine-tune the models for 3
and 4 epochs for Commonsense15K and Math10K
datasets, respectively. Following Gu et al. (2024),
for zero-shot evaluation we set 7 = 1 (default, for
temperature ablation experiments highlighted in
Figure 6 we use 7 € {1,2,5}), top-p = 1, top-
k = 0 and num_beams = 1.

Measures for quantifying teacher-student agree-
ment and fidelity. In this paper, along with the
performance measurement of student models, we

use teacher-student agreement and reasoning fi-
delity scores to understand alignment between
teacher and student post-KD. Agreement quantifies
how often student replicates the teacher’s outputs
and is measured using top-1 agreement (fraction of
matching predictions). However, this metric only
relies on the final answer and does not measure the
quality of the intermediate reasoning steps. Rea-
soning fidelity, on the other hand, captures how
well the student mirrors the teacher’s reasoning
process rather than just final predictions. We use
BLEU (Papineni et al., 2002) score between teacher
and student reasoning outputs to compute fidelity.

5 Experimental Results

In this section, we elaborate the empirical and sta-
tistical results obtained in our study.

Effectiveness of KD. Figure 1 shows that KD
consistently outperforms SFT in all three bench-
marks - mathematical reasoning, commonsense rea-
soning and instruction following , particularly ben-
efiting smaller models. For Qwen-0.5B, KD im-
proves performance by 10.4% and 7.8% for math
and commonsense reasoning respectively and 0.08
absolute points for instruction following, but this
effect diminishes as student size increases (7.5%,
5.8%, 0.09 for Qwen-1.5B, 5.4%, 3.5%, 0.07 for
Qwen-3B and 0.2%, 1.9%, 0.08 for Qwen-7B).
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Test Type AQuA AddSub GSMS8k  MultiArith SVAMP SingleEq | Average
Spearman rank | -0.10 (0.6) 0.30(0.1) 0.09 (0.6) 0.21 (0.2) -0.09 (0.6) 0.35(0.0) | -0.01 (1.0)
(a) Mathematical reasoning
Test Type ARC-c ARC-e BoolQ Hellaswag OBQA PiQA SiQA Winogrande | Average
Spearman rank | -0.41 (0.0) -0.36 (0.0) 0.1 (0.6) -0.32(0.1) -0.41(0.0) -0.27(0.1) -0.31(0.1) -0.02(0.9) -0.3(0.1)
(b) Commonsense reasoning
Test Type Dolly Self SNI UNI Vicuna Average
Spearman rank | 0.16 (0.4) 0.04 (0.8) 0.16(0.4) 0.03(0.9) -0.0(1.0) | 0.14(0.4)

(c) Instruction following

Table 2: Spearman rank correlation and p-value between student and teacher performance.

mmm KD with Task-Aware Teacher ~ W KD with Task-Unaware Teacher mmm KD with Task-Aware Teacher ~ B KD with Task-Unaware Teacher

[
Z20

3B->0.5B  3B->1.5B

7B->0.5B
Student Model

7B->1.5B 7B->3B

3B->0.5B

3B->1.5B  7B->0.5B

Student Model

7B->1.5B 7B->3B

(a) Mathematical reasoning (b) Commonsense reasoning

Figure 2: Impact of teacher task adaptation on distillation effectiveness. We evaluate the student performance
post-distillation with teacher without/with fine-tuning on mathematical and commonsense reasoning tasks.

Test Type AQuA AddSub GSMS8k MultiArith SVAMP SingleEq | Average
Spearman rank | -0.23 (0.2) -0.64 (0.0) -0.51(0.0) -0.83(0.0) -0.43(0.0) -0.59 (0.0) | -0.66 (0.0)
(a) Mathematical reasoning
Test Type ARC-c ARC-e BoolQ Hellaswag OBQA PiQA SiQA Winogrande | Average
Spearman rank | -0.63 (0.0) -0.78 (0.0) -0.15(0.4) -0.4(0.0) -0.55 (0.0) -0.67 (0.0) -0.49 (0.0) -0.34 (0.0) -0.54 (0.0)
(b) Commonsense reasoning
Test Type Dolly Self SNI UNI Vicuna Average
Spearman rank | 0.08 (0.7) 0.3(0.1) -0.32(0.1) -0.02(0.9) 0.12(0.5) | -0.03 (0.9)

(c) Instruction following

Table 3: Spearman rank correlation and p-value between student performance and student model size.

Test Type AQuA AddSub GSM8k MultiArith SVAMP SingleEq
Spearman rank | -0.18 (0.3) -0.09 (0.6) -0.33(0.1) -0.63(0.0) -0.37(0.0) -0.12(0.5)
(a) Mathematical reasoning
Test Type ARC-c ARC-e BoolQ Hellaswag OBQA PiQA SiQA Winogrande
Spearman rank | -0.12 (0.5) -0.19 (0.3) 0.21(0.2) 0.08(0.7) -0.32(0.1) -0.02(0.9) -0.21(0.2) 0.12(0.5)

(b) Commonsense reasoning

Table 4: Spearman rank correlation and p-value between student performance and teacher-student agreement.

Similar performance improvements are observed
with LLaMA student models — 12.0%, 12.7% and
0.06 for LLaMA-1B and 3.7%, 4.9% and 0.07 for
LLaMA-3B model. Among KD methods, RevKD
is the most consistent, yielding an average gain of
6.3% across all student sizes. The statistical t-test
results (Table 1) confirm these improvements as sig-

nificant (p-value < 0.05). While one-way ANOVA
test reveals a difference between KD methods on
instruction-following tasks, it shows no significant
differences on mathematical and commonsense rea-
soning tasks—suggesting that all KD methods per-
form similarly on these two benchmarks.
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Does KD depend on teacher performance? Ta-
ble 2 reports the Spearman rank correlation be-
tween student improvement after KD and teacher
performance. In mathematical reasoning, struc-
tured tasks like AddSub (0.30, p-value=0.1) and
SingleEq (0.35, p-value=0.0) show positive correla-
tions, suggesting stronger teachers enhance student
performance. However, complex reasoning tasks
such as GSMS8k (0.09, p-value=0.6) and AQuA
(—0.10, p-value=0.6) exhibit weak or negative cor-
relations, indicating that teacher quality alone does
not dictate KD success. In commonsense reason-
ing and instruction following tasks, correlations
are generally weak or negative, implying minimal
influence of teacher performance. Overall, teacher
quality inconsistently impacts student gains, with
structured mathematical tasks benefiting more than
open-ended reasoning tasks. However, Figure 2
shows that a task-unaware teacher can significantly
degrade student performance. Post-distillation per-
formance of student model can drop up to 40%, if
teacher is not fine-tuned on downstream domain.

Does KD depend on student model size? Ta-
ble 3 shows a strong negative correlation (—0.66,
p-value=0.0) between KD improvement and stu-
dent size, indicating diminishing returns as model
size increases. This trend is most pronounced in
MultiArith (—0.83, p-value=0.0), AddSub (—0.64,
p-value=0.0) and SingleEq (—0.59, p-value=0.0),
where larger models already possess strong rea-
soning capabilities. In commonsense reasoning,
similar effect is observed (—0.54, p-value=0.0). In
instruction following, correlations are mostly weak.
These results confirm that KD benefits smaller LMs
significantly, while larger LMs see diminishing re-
turns as they already exhibit strong reasoning.

How does KD impair teacher-student agree-
ment? Figure 3 and Figure 8 of Appendix B
show that post-KD agreement between student
and teacher models declines as student size in-
creases. Smaller models (e.g., Qwen-0.5B and
Qwen-1.5B) exhibit higher agreement with larger
Qwen-14B model in structured mathematical tasks
like AddSub (89.1%) and MultiArith (94.5%), in-
dicating effective transfer of well-defined rules.
Table 4a reveals that higher agreement does not
always translate to better student performance (e.g.,
negative correlation for MultiArith and SVAMP)
suggesting that effective students deviate from
teacher outputs rather than mimicking them. For
commonsense reasoning (reported in Table 4b), the

correlation between teacher-student agreement and
the student performance remains weak, indicating
statistically insignificant correlation.

How does KD impair teacher-student fidelity?
Teacher-student fidelity, measuring alignment in
reasoning patterns, varies by model size and distil-
lation method. Along with the BLEU-based fidelity
metric, we devise an alternative fidelity metric, cal-
culated using the cosine similarity between sen-
tence embeddings (Reimers and Gurevych, 2019)
of teacher and student responses. The Spearman
correlation between BLEU scores and cosine sim-
ilarity is 0.97 (p-value = 1e-9), indicating strong
agreement. Therefore, we report only BLEU-based
fidelity metric, as the resulting hypotheses remain
unchanged. While KD improves fidelity over SFT
(Figure 4a), Table 5 indicates weak correlations
between fidelity and student performance, imply-
ing that strict imitation does not necessarily en-
hance performance. For instance, AddSub (0.01,
p-value=1.0) and GSMS8k (0.01, p-value=0.9) show
low correlations, reinforcing that high fidelity alone
is not a reliable predictor of KD effectiveness. Er-
ror analysis in Table 10 of Appendix C further
highlights the feeble connection between teacher-
student fidelity and student generalization.

Impact of noisy teacher signals on KD. Con-
sidering the low fidelity of KD despite its improve-
ments in generalization, we investigate the signifi-
cance of teacher signals by injecting Gaussian noise
(e ~ N(0,0)) into teacher logits before distillation.
Figure 5 shows that increasing o from 0 (no noise)
to 1 slightly reduces performance (e.g., Qwen-3B
— Qwen-1.5B drops by 3.6%). A further increase
to o = 2 continues the decline (e.g., Qwen-7B —
Qwen-3B falls by 4.7%). At o = 5, performance
collapses, with Qwen-3B — Qwen-0.5B plummet-
ing from 55.87% to 5.85%, confirming that ex-
cessive noise disrupts knowledge transfer. Com-
monsense reasoning follows a similar trend but is
slightly more robust, with Qwen-3B — Qwen-1.5B
maintaining 66.62% at o = 2 compared to its math-
ematical counterpart (59.26%). However, at o = 5,
performance sharply declines (e.g., Qwen-7B —
Qwen-3B drops from 78.94% to 51.76%), reinforc-
ing that moderate noise may aid generalization, but
excessive noise severely impairs KD.

Impact of temperature smoothing. Figure 6
highlights that temperature (7) significantly im-
pacts KD effectiveness. A moderate 7 = 2 consis-
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—— Agreement after KD

Student self-agreement

(b) Commonsense reasoning tasks

Figure 3: Student agreement with teacher before KD and after KD on (a) mathematical and (b) commonsense
reasoning tasks. We omit the instruction following tasks as the final output is in free-text form, therefore we can not
determine exact match. We also highlight the student’s self-agreement between the before and after KD outputs.
Results with Qwen-14B and LLaMA-8B teachers are highlighted in Figures 8 and 10 of Appendix B, respectively.

3B -> 0.5B 3B -> 1.5B

MultiArith MultiArith

—— Reasoning fidelity before KD

7B -> 0.5B

MultiArith

—— Reasoning fidelity after KD

7B -> 1.5B

MultiArith MultiArith

Student self-reasoning fidelity

(a) Mathematical reasoning tasks

3B -> 0.5B 3B -> 1.5B 7B -> 0.5B 7B -> 1.5B 7B -> 3B
Dolly Dolly
50
SN é icuna S na SN 6 icuna S
Se UNI Sel UNI

—— Reasoning fidelity before KD

—— Reasoning fidelity after KD

Student self-reasoning fidelity

(b) Instruction following tasks

Figure 4: Student reasoning fidelity with teacher model on (a) mathematical reasoning and (b) instruction following
tasks. We omit the commonsense reasoning tasks for this analysis as the reasoning steps are not generated. Results
with Qwen-14B and LLaMA-8B teacher are highlighted in Figures 9 and 11 of Appendix B, respectively.

tently yields the best results across both reasoning
types. In mathematical reasoning tasks, increasing
7 from 1 to 2 improves all models (e.g., Qwen-
3B — Qwen-1.5B rises from 65.09% to 66.93%,
Qwen-7B — Qwen-3B reaches 75.95%). How-
ever, 7 = O leads to severe performance drops,
especially for smaller students (e.g., Qwen-3B —

Qwen-0.5B drops to 8.3%), indicating that exces-
sive smoothing weakens the learning signal. Larger
students tolerate higher temperatures better (e.g.,
Qwen-7B — Qwen-3B retains 66.51% at 7 = 5).
Commonsense reasoning follows a similar pattern,
but performance degradation at 7 = 5 is less severe
compared to mathematical tasks. These findings
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AddSub GSMS8k  MultiArith SVAMP
0.01 (1.0) 0.01(0.9) -0.25(0.1) -0.07 (0.7)

(a) Mathematical reasoning tasks

AQuA
-0.09 (0.6)

SingleEq
-0.12 (0.5)

Test Type
Spearman rank

Vicuna
0.07 (0.8)

Dolly Self SNI
0.3(0.2) -0.06(0.8) -0.06(0.8)

(b) Instruction following tasks

UNI
-0.13 (0.6)

Test Type
Spearman rank

Table 5: Spearman rank correlation and p-value between student performance and teacher-student fidelity.
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Figure 5: Impact of teacher input noise scale (¢) on student’s downstream performance on (a) mathematical and (b)

commonsense reasoning tasks.
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(a) Mathematical reasoning

7B->0.5B
Student Model
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(b) Commonsense reasoning

Figure 6: Impact of smoothing factor (7) on student’s downstream performance on mathematical (a) and common-

sense (b) reasoning tasks.

emphasize that temperature tuning is crucial, with
optimal 7 values varying by student size and task
complexity.

Impact of teacher-student gap on KD.
Mirzadeh et al. (2020) observe that in com-
puter vision models, student performance tends
to degrade when the gap between the teacher and
student is too large. We find a similar trend in our
setting: the most effective teacher for a student
model is not necessarily the largest one available.
For instance, as shown in Table 7, Qwen-1.5B
achieves its best performance when distilled from
Qwen-7B rather than the larger Qwen-14B. We
observe this pattern across multiple knowledge
distillation methods and datasets.

6 Conclusion

This paper elaborated the impact of KD on small
LMs, considering factors like teacher performance,

student size, and distillation methods across mathe-
matical and commonsense reasoning tasks. Results
showed that KD significantly benefits smaller mod-
els, but its effectiveness diminishes with increas-
ing model size. Teacher domain adaptation played
a more critical role than teacher performance in
KD success, particularly for structured reasoning
tasks. Surprisingly, higher teacher-student agree-
ment did not always correlate with better student
performance, especially in complex reasoning tasks
where strong students often deviated from teacher
outputs. These findings underscore the need for
task-aware KD strategies and adaptive distillation
techniques tailored to student learning dynamics.
Future research should explore alternative KD ob-
jectives, self-distillation mechanisms, and refined
teacher-student alignment strategies to improve
both performance and reasoning fidelity.
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Limitation

While this study provides a comprehensive eval-
uation of KD across diverse reasoning tasks, cer-
tain aspects remain open for further exploration.
Firstly, our experiments focus on a select set of
reasoning tasks, and while the findings general-
ize well within these domains, future work could
extend the analysis to broader task distributions,
including multimodal learning and domain-specific
applications. Secondly, while we investigate multi-
ple KD techniques, our study primarily evaluates
teacher-student distillation in a single-step process;
iterative and multi-teacher KD frameworks may
further enhance performance and warrant deeper
investigation.

Ethical Considerations

We acknowledge the potential ethical concerns as-
sociated with knowledge distillation, such as the
risk of bias propagation from teacher models to
students and the possible loss of interpretability
in distilled models. Our analysis highlights cases
where KD enhances accuracy but does not always
preserve reasoning fidelity, raising concerns about
trustworthiness in critical applications. To mitigate
these risks, we encourage the development of more
interpretable KD techniques and stress the impor-
tance of evaluating distilled models not only for
performance but also for fairness, robustness, and
alignment with human reasoning.
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A Datasets

The Mathematical Reasoning benchmark consists
of the following datasets:

* GSMS8K(Grade School Math 8k) (Cobbe et al.,
2021) - This dataset consists of basic math
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problems from grade school that require multi-
step reasoning.

* SVAMP(Simple Variations on Arithmetic
Math word Problems) (Patel et al., 2021) -
This is a challenge set that tests a model across
different aspects of Math Word Problems like
testing whether a model is Question sensitive,
has robust reasoning ability or is invariant to
structural alterations in questions.

e MultiArith (Roy and Roth, 2015) - This
dataset consists of arithmetic problems with
multiple steps and basic mathematical opera-
tions.

¢ AddSub (Hosseini et al., 2014) - This dataset
consists of arithmetic problems involving just
addition and subtraction.

* AQuA (Ling et al., 2017) - This dataset con-
sists of algebraic word problems with answer
rationales.

» SingleEq (Koncel-Kedziorski et al., 2015) -
This dataset contains math word problems that
can be expressed in a singl equation.

e Math10K (Hu et al., 2023) - This dataset
contains training examples from GSMSK,
AQuA, MAWPS and MAWPS-single (Koncel-
Kedziorski et al., 2016). The original training
examples only contain equations and final an-
swers. Hence the authors used ChatGPT to
generate intermediate reasoning steps for each
training example to curate the final Math10K
dataset.

The Commonsense reasoning benchmark con-

sists of the following datasets:

* Hellaswag (Zellers et al., 2019) - This dataset
is used for evaluating commonsense NLI. Au-
thors use Adversial Filtering to select a chal-
lenging set of examples.

* Winogrande (Sakaguchi et al., 2021) - This
dataset contains fill-in the blank problems that
are inspired by the original Winograd Schema
Challenge, but modified to improve scale and
robustness against dataset-specific bias. Given
two options, the goal is to choose the right
option for a given sentence which requires
commonsense reasoning.

¢ ARC (Clark et al., 2018) - This dataset con-
tains multiple-choice question answers from
grade school science exams. The dataset is
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split into "Challenge set" and "Easy set", with
the "Challenge" set including only those ex-
amples that were incorrectly answered by both
a retrieval-based algorithm and a word co-
occurrence algorithm.

* OBQA (Open Book Question Answer-
ing) (Mihaylov et al., 2018) - This is a new
kind of question-answer dataset that is mod-
eled after open-book exams. It contains ques-
tions that need multi-step reasoning and broad
common knowledge to answer them.

* BoolQ (Clark et al., 2019) - This dataset con-
tains questions that can be answered with ei-
ther a yes or no as the answer. The questions
are gathered from queries to the google search
engine. They are filtered and annotated by
humans.

* PiQA (Physical Interaction Question Answer-
ing) (Bisk et al., 2020) - This dataset intro-
duces the task of physical commonsense rea-
soning to investigate physical knowledge of
models.

* SiQA (Social Interaction Question Answer-
ing) (Sap et al., 2019) - This dataset is used
for testing social commonsense intelligence.
It contains questions related to a wide variety
of social interactions. Answer options include
both human curated answers and machine gen-
erated answers.

e Commonsense-15K (Hu et al., 2023) - This
dataset contains examples from BoolQ, PiQA,
SiQA, Hellaswag, Winogrande, ARC-e, ARC-
¢ and OBQA. Authors use a structured tem-
plate by first describing the particular task’s
goal, followed by the content and answer of
the example.

The Instruction following benchmark consists of
the following datasets:

* Dolly (Gu et al., 2024) - Following Gu et al.
(2024), we use a filtered set from databricks-
dolly-15K containing about 12.5k samples for
training, 1k samples for validation and 500
samples for testing.

e Self (Wang et al., 2022a) - This dataset
consists of 252 user-oriented instruction-
following samples.

* Vicuna (Chiang et al., 2023) - This dataset
contains 80 challenging questions synthesized
by GPT-4 used in Vicuna evaluation.



* SNI (Wang et al., 2022b) - The dataset com-
prises approximately 9K samples drawn from
around 119 tasks within the Super-Natural In-
structions benchmark. Following Gu et al.
(2024), we divide the samples into three sub-
sets based on the length of the ground-truth
responses. For our experiments, we use the
subset with response lengths in the range [11,
oo] which contains about 1.6K samples.

¢ UNI (Honovich et al., 2023) - This dataset con-
sists of samples from the core set of Unnatural
Instructions. As with S-NI, we focus on the
subset where ground-truth response lengths
fall within the range [11, co]. We use first 2k
samples of them for evaluation.

The train/val/test dataset splits for mathematical,
commonsense reasoning and instruction following
datasets are highlighted in Table 6.

Dataset #train  # validation # test
Math10k 10K 500 -
GSM8K 8.8K - 1319
SVAMP - - 1000
MultiArith - - 600
AddSub - - 395
AQuA 1K - 254
SingleEq - - 508
(a) Mathematical reasoning tasks
Dataset #train  # validation # test
Commonsensel5K 15K 500 -
Hellaswag 3.5K - 10K
Winogrande 5.5K 1.2K
ARC-c 100 1.1K
ARC-¢e 200 2.3K
OBQA 500 - 500
BoolQ 800 3.2K
PiQA 1.5K - 2K
SiQA 3K - 2K

(b) Commonsense reasoning tasks

Dataset #train # validation # test
Dolly15K 12.5K 1k 500
Selflnst - - 252
VicunaEval - - 80
S-NI - - 1.6K
UnNI - - 2k

(c) Instruction following tasks

Table 6: Dataset splits for all tasks.

B Results

Impact of KD on student generalization. We
report the detailed results for SFT, SeqKD, RevKD
and GKD of all teacher-student combinations for
Math Reasoning tasks in Table 7, Commonsense
reasoning tasks in Table 8 and Instruction follow-
ing tasks in Table 9. RevKD consistently deliv-
ers the best performance, with Qwen-3B distilled
from Qwen-7B achieving 76.91%, outperforming
SeqKD (73.96%) and GKD (76.18%). However,
larger student models benefit less from KD, as seen
in Qwen-7B distilled from Qwen-14B, which only
shows a marginal improvement over its fine-tuned
counterpart (77.81% — 78.02%). Structured tasks
such as MultiArith and SingleEq exhibit the high-
est gains, often exceeding 90% accuracy, indicating
that KD effectively transfers arithmetic-based rea-
soning. Conversely, AQuA and GSMS8K remain
more challenging, particularly for smaller students,
highlighting that complex multi-step reasoning is
harder to distill. Additionally, the results suggest
that KD effectiveness does not depend on model
architecture, as LLaMA-based students benefit sim-
ilarly from KD, with LLaMA-1B distilled from
LLaMA-8B with GKD achieving 54.03% imporv-
ing the SFT model by 12%. Finally, distillation
from stronger teachers improves student perfor-
mance, but not linearly, as Qwen-3B distilled from
Qwen-7B performs almost as well as when dis-
tilled from Qwen-14B, reinforcing that teacher ex-
pertise matters more than sheer size. Overall, these
findings underscore that KD significantly enhances
smaller models’ reasoning capabilities, but dimin-
ishing returns appear for larger models, necessi-
tating adaptive KD strategies tailored to student
capacity and task complexity.

On commonsense reasoning tasks also RevKD
generally outperforms other KD methods, with
Qwen-7B distilled from Qwen-14B achieving
85.26%, surpassing both SeqKD (83.55%) and
GKD (84.90%). Similarly, Qwen-3B distilled from
Qwen-14B using RevKD reaches 80.79%, show-
ing a consistent advantage over SeqKD (78.77%)
and GKD (80.38%). Larger models like Qwen-7B
exhibit only marginal gains post-distillation, indi-
cating that they already possess strong common-
sense reasoning capabilities. Structured tasks such
as ARC-e, ARC-c, and PiQA benefit most from
KD, as they involve multiple-choice reasoning,
where teacher guidance is transferred effectively.
However, open-ended tasks such as BoolQ and
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LLaMA3-1B LLaMA3-3B
LLaMA3-1B LLaMA3-3B
Hellaswag Hellaswag

MultiArith MultiArith
—— SFT  —— SeqgKD ~—— RevkKD —— GKD — SFT —— SeqKD —— RevKkD —— GKD
(a) Performance on mathematical reasoning tasks (b) Performance on commonsense reasoning tasks
LLaMA3-1B LLaMA3-3B

fcuna

NI —uNI

—— SFT  —— SeqgkKD — RevkD —— GKD

(c) Performance on instruction following tasks

Figure 7: Performance of LLaMA-3 student models on different mathematical reasoning (a) commonsense reasoning
(b) and instruction following (c) tasks without and with distillation from LLaMA-3-8B model.

14B -> 0.5B 14B -> 1.5B 14B -> 3B 14B -> 7B

MultiArith MultiArith MultiArith MultiArith
—— Agreement before KD —— Agreement after KD —— Student self-agreement

(a) Mathematical reasoning tasks

14B -> 0.5B 14B -> 1.5B 14B -> 3B 14B -> 7B

—— Agreement before KD —— Agreement after KD —— Student self-agreement

(b) Commonsense reasoning tasks

Figure 8: Student agreement with Qwen-14B teacher.
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14B -> 0.5B

14B -> 1.5B
AQUA

14B -> 3B 14B -> 7B

MultiArith MultiArith

—— Reasoning fidelity before KD

—— Reasoning fidelity after KD

MultiArith MultiArith

Student self-reasoning fidelity

(a) Mathematical reasoning tasks

14B -> 0.5B 14B -> 1.5B
Dolly Dolly

c

—— Reasoning fidelity before KD

14B -> 3B 14B -> 7B
Dolly Dolly

una SN, icuna

na SN'una SN \ .
Se UNI Sel UNI Se! UNI

—— Reasoning fidelity after KD

Student self-reasoning fidelity

(b) Instruction following tasks

Figure 9: Student reasoning fidelity for Qwen-14B teacher model.

MultiArith

MultiArith

—— Agreement before KD
—— Agreement after KD

Student self-agreement

(a) Mathematical reasoning tasks

8B -> 1B

—— Agreement before KD Student self-agreement

—— Agreement after KD

(b) Commonsense reasoning tasks

Figure 10: Student agreement with LLaMA-3-8B teacher.

SiQA show smaller improvements, suggesting that
KD is less effective in distilling nuanced, context-
dependent reasoning. Additionally, LLaMA-based
models benefit similarly from KD with LLaMA-
1B and LLaMA-3B RevKD models improving
their SFT counterparts by 12.7% and 4.8% respec-
tively. This reaffirms that although KD effective-
ness depends on model size, it does not depend
on pre-training differences or reasoning architec-
tures. Overall, these findings underscore that KD
is highly effective for commonsense reasoning in
smaller models but offers diminishing returns for
larger models, necessitating more adaptive distilla-

tion strategies for complex reasoning tasks.

On instruction following tasks as well, RevKD
outperforms other KD methods. Distilled Qwen-
0.5B improves highest on SNI and UNI by 0.11 and
0.15 absolute points respectively. Similarly other
distilled Qwen and Llama models achieve largest
improvements on these two tasks.

Teacher-student agreement. Figure 8 and 10
highlights the key differences between SFT, KD,
and self-agreement across various mathematical
and commonsense reasoning tasks for Qwen-14B
and LLaMA-8B teacher models, respectively. Gen-
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MultiArith

—— Reasoning fidelity before KD
—— Reasoning fidelity after KD

MultiArith

Student self-reasoning fidelity

(a) Mathematical reasoning tasks

8B -> 1B

Dolly

Se

—— Reasoning fidelity before KD
—— Reasoning fidelity after KD

8B -> 3B
Dolly

Se

Student self-reasoning fidelity

(b) Instruction following tasks

Figure 11: Student reasoning fidelity for LLaMA-3-8B teacher model.

erally, KD enhances agreement between the teacher
and student compared to SFT, with improve-
ments most pronounced in smaller student mod-
els. For instance, in the LLaMA-1B model, agree-
ment in MultiArith improves from 62.5% (SFT)
to 71.5% (KD), and in GSM8K from 12.66%
to 14.02%. Similarly, for Qwen2.5-0.5B dis-
tilled from Qwen2.5-14B, KD increases agree-
ment in AddSub (71.39% to 81.77%) and Mul-
tiArith (73.67% to 84.67%). However, as stu-
dent models grow larger, agreement gains dimin-
ish, with Qwen2.5-7B showing marginal improve-
ments in GSMS8K and SingleEq. Interestingly, self-
agreement, which measures alignment between
SFT and KD versions of the same student, exhibits
lower scores than KD-teacher agreement, suggest-
ing that knowledge distillation introduces distinct
learning patterns. For instance, in the Qwen2.5-
0.5B model, self-agreement in GSM8K drops from

34.95% (KD) to 20.92%, and in MultiArith from
84.67% to 70.67%.

Similarly on commonsense reasoning tasks,
KD improves agreement over SFT, particularly
in smaller student models. For instance, in the
Qwen2.5-0.5B model distilled from Qwen2.5-14B,
agreement in ARC-c increases from 50.94% (SFT)
to 54.35% (KD) while in ARC-e, it improves from
66.45% to 70.74%. However, the impact of KD is
less pronounced in larger students, with Qwen2.5-
7B showing only marginal gains across most tasks.
Interestingly, in higher-complexity datasets like
Hellaswag, Winogrande, and BoolQ, KD does not
always lead to a significant increase in agreement.

Teacher-student fidelty. Figure 9 and 11 illus-
trates the teacher-student fidelity for Qwen-14B
and LLaMA-8B teacher models, respectively. The
reasoning fidelity analysis highlights how closely
student models replicate their teacher’s reasoning
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process post-distillation. Across all models, KD im-
proves fidelity over SFT, demonstrating that knowl-
edge transfer enhances reasoning similarity. With
Qwen2.5-0.5B model distilled from Qwen2.5-14B,
fidelity in GSMS8K increases from 47.31% (SFT)
to 51.39% (KD), and in SingleEq, it improves
from 55.35% to 59.76%. Similarly, for the larger
Qwen2.5-3B model, fidelity scores increase across
tasks, such as MultiArith (from 54.28% to 58.01%)
and SVAMP (from 51.28% to 55.18%). However,
the improvements are modest for larger students,
suggesting that they develop their own reasoning
strategies instead of strictly mimicking the teacher.
Similarly as seen in Figure 9b and Figure 11b, KD
significantly improves fidelity over SFT across all
instruction following tasks in all the models. SNI
and UNI show the largest improvement among in-
struction following tasks.

Self-fidelity, which measures the similarity be-
tween a KD-trained student and its SFT-trained
counterpart, follows a different trend. While self-
fidelity remains high, it is often lower than KD-
teacher fidelity, particularly in tasks like GSM8K
and AQuA, where the reasoning process shifts post-
KD. For instance, in Qwen2.5-3B and Qwen2.5-
1.5B, self-fidelity is typically 2% lower than KD-
teacher fidelity, indicating that the knowledge trans-
fer process alters reasoning dynamics slightly.

This suggests that while KD effectively aligns
student reasoning with the teacher, it also induces
modifications in reasoning strategies, particularly
in smaller models. Overall, the results indicate
that KD enhances reasoning similarity but does not
necessarily preserve the teacher’s exact decision-
making process.

C Error Analysis

In Table 10, we show three examples from the vali-
dation set of the SVAMP dataset for a more detailed
analysis. The student computes an incorrect final
answer in the first two examples, while it gets the
correct answer in the third example.

Examining the first example, we observe that
the student model’s intermediate reasoning steps
are accurate. The only error is the substitution of
“37” for “33” in the tower’s block count. Despite
the incorrect final answer, the student model’s rea-
soning steps are valid and align closely with the
teacher model’s steps. This alignment is effectively
captured by the high ‘fidelity’ score between the
student and teacher output.

Similarly, in the second example, the student
model computes “28 x 4 as “56” instead of the
correct answer, “112”. However, the intermediate
reasoning steps are accurate and align closely with
the teacher model’s steps, resulting in a high fidelity
score. This emphasis on the accuracy of the student
model’s reasoning steps instills confidence in the
model’s capabilities.

Conversely, in the third example, we observe
that the intermediate reasoning steps of the student
and teacher models are entirely different, yet both
lead to the correct answer. Here, the final answer
score plays a crucial role in evaluating the student’s
performance.
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Teacher Student Method GSM8K SVAMP MultiArith SingleEq AddSub AQuA Average

Qwen-0.5B SFT 23.50 41.90 76.17 77.17 74.68 23.62 52.84
Qwen-1.5B SFT 49.05 66.60 89.83 89.17 84.56 25.98 67.53
Qwen-3B SFT 59.29 71.80 92.67 89.57 84.81 30.71 71.47
Qwen-7B SFT 69.98 80.20 96.83 94.88 91.14 33.86 77.81
) Qwen-14B SFT 75.36 82.30 96.17 94.69 89.37 38.19 79.35
Llama-1B SFT 12.36 29.40 64.00 63.78 63.04 19.29 41.98
Llama-3B SFT 39.50 53.20 90.67 86.61 86.33 23.62 63.32
Llama-8B SFT 58.83 69.10 94.50 91.93 85.32 29.92 71.60
SeqKD 27.45 43.90 82.5 79.13 78.23 24.02 55.87
Qwen-0.5B RevKD 32.75 50.70 82.50 82.09 81.52 29.13 59.78
Owen-3B GKD 2904 4700 8433 8327 7696 2165 S04
SeqKD 42.61 63.80 86.67 87.80 82.53 27.17 65.10
Qwen-1.5B  RevKD 53.37 68.80 92.17 91.14 84.81 33.46 70.62
GKD 48.14 64.70 91.67 91.34 86.08 29.92 68.64
SeqKD 27.37 46.60 83.67 81.30 76.71 25.59 56.87
Qwen-0.5B RevKD 35.18 54.70 88.67 88.39 85.57 25.98 63.08
GKD 33.43 52.80 90.00 83.66 82.78 24.02 61.11
" SegkD 5057  68.10 9500 9409 8633 3504 7152
Qwen-7B Qwen-1.5B  RevKD 59.21 76.70 96.67 95.87 90.38 30.71 74.92
GKD 58.00 72.00 96.17 94.29 86.33 30.31 72.85
" SegkD 6270 7560  96.17 9390  87.85 2756  73.96
Qwen-3B RevKD 69.90 78.70 97.33 92.52 88.35 34.65 76.91
GKD 63.68 79.30 97.67 95.87 90.63 29.92 76.18
SeqKD 28.43 44.6 86.17 81.50 78.23 22.44 56.90
Qwen-0.5B RevKD 35.78 53.80 87.17 87.60 83.80 31.10 63.21
GKD 33.66 50.50 91.17 85.04 82.28 22.44 60.85
" SegkD 5034  66.10 9300 9193 8759 3031  69.88
Qwen-1.5B  RevKD 59.89 73.10 96.50 93.70 89.87 29.53 73.77
Qwen-14B OKD 5595 7220 9517 9213 8608 3189 7224
SeqKD 61.56 73.10 96.17 93.50 87.09 29.92 73.56
Qwen-3B RevKD 67.10 79.70 97.00 92.72 90.38 32.28 76.53
GKD 63.38 77.10 96.33 95.08 89.37 34.25 75.92
" SegkD 7096 7890  97.17 9508  90.13 3071  77.16
Qwen-7B RevKD 7491 82.50 97.17 94.69 87.34 31.50 78.02
GKD 72.02 80.60 96.50 94.88 88.61 34.65 77.88
SeqKD 14.33 29.50 73.17 64.76 69.87 21.26 45.48
Llama-1B  RevKD 20.77 36.30 77.67 69.69 71.65 24.02 50.02
Llama-$5 OKD 2168 4170 8633 7677 7646 2126 5403
SeqKD 38.21 55.70 91.67 87.99 85.57 22.05 63.53
Llama-3B  RevKD 45.34 60.80 90.83 88.58 85.57 24.80 65.99
GKD 45.72 61.10 94.33 90.94 85.06 24.80 66.99

Table 7: Performance of different KD methods on mathematical reasoning tasks.
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Teacher Student Method Hellaswag BoolQ SiQA PiQA ARC-e ARC-c Winogrande OBQA Average

Qwen-0.5B SFT 29.90 5391 53.84 60.50 67.00 50.94 4791 59.40 52.92
Qwen-1.5B SFT 63.90 61.28 6325 7693 8540 72.18 59.51 75.00 69.68
Qwen-3B SFT 81.91 59.79 71.08 81.56 92.42 80.12 68.90 82.60 77.30
Qwen-7B SFT 91.19 66.76 7472 87.81 94.61 87.80 74.35 89.40 83.33
} Qwen-14B SFT 94.39 7147 7799 90.70  96.93 92.41 82.79 94.60 87.66
Llama-1B SFT 27.37 5440 49.74 55.60 59.60 40.87 48.22 48.40 48.02
Llama-3B SFT 65.01 61.99 7037 80.47 8291 69.03 65.98 74.20 71.25
Llama-8B SFT 88.89 69.33 73.03 8526 90.15 81.66 76.87 82.80 81.00
SeqKD 33.66 5642 57.68 6230 7197 54.44 50.99 59.60 55.88
Qwen-0.5B  RevKD 39.77 56.48 59.52 6790 74.58 56.31 55.96 66.00 59.56
Owen3B (GKD_ 3645 5875 5896 6687 74l 5640 4420 6360 5745
SeqKD 66.68 59.30 5645 7824 82.28 71.84 63.30 72.60 68.84
Qwen-1.5B  RevKD 16.72 50.83 66.53 50.60 84.47 69.88 56.43 77.80 59.16
GKD 72.12 5847 69.70 79.82 89.14 76.11 63.38 81.00 73.72
SeqKD 31.26 61.99 5322 5854 68.60 56.06 51.54 60.80 55.25
Qwen-0.5B RevKD 44,13 58.04 60.29 69.15 75.17 57.34 54.54 67.20 60.73
GKD 39.42 55.72  60.80 66.87 74.49 54.61 51.54 65.40 58.61
" SeqkD 7071 60.67 6622 7356 8771 7321 5430  81.00 7092
Qwen-7B Qwen-1.5B  RevKD 27.76 60.52 61.77 73.67 82.83 63.57 49.72 70.80 61.33
GKD 76.14 60.95 7093 81.18 89.52 76.96 65.19 82.60 75.43
" SeqKD 8149 6318 7185 8210 9339 8328  69.61 8660 7894
Qwen-3B RevkKD 60.23 65.35 74.87 8433 94.28 83.36 72.45 89.00 77.98
GKD 11.67 57.92 7467 81.12 93.52 82.25 71.35 85.60 69.76
SeqKD 29.13 60.52 5491 61.86 71.09 53.75 51.70 61.80 55.59
Qwen-0.5B RevKD 37.27 26.79 57.88 64.04 7252 55.55 53.75 65.20 54.12
GKD 36.76 57.19 5885 66.87 74.24 56.91 51.70 64.60 58.39
" SeqkD 6670 6220 60.70 78.02 8131 < 69.88  63.14 7780 6997
Qwen-1.5B  RevKD 72.63 6391 7134 8215 89.77 77.13 63.69 82.60 75.40
Owen-148 _GKD__ 7659 6242 7114 8063 8880 7122 6433 8L8 7537
SeqKD 78.64 63.15 72.88 82.64 92.89 82.25 72.14 85.60 78.77
Qwen-3B RevKD 86.09 65.14 7584 84.17 93.52 83.62 72.14 85.80 80.79
GKD 86.57 65.23 73.85 83.08 93.77 83.28 72.69 84.60 80.38
" SeqKD  90.18  62.87 76.15 88.19 9453 8652 79.16  90.80 8355
Qwen-7B RevKD 92.44 6991 79.12 88.47 95.50 88.74 78.30 89.60 85.26
GKD 92.60 68.93 7738 87.81 95.20 87.88 78.77 90.60 84.90
SeqKD 29.83 5440 57.83 62.02 65.49 47.35 52.17 57.80 53.36
Llama-1B RevKD 39.52 58.87 6438 7035 7471 52.65 59.35 65.60 60.68
Llama.$5 _GKD__ 3024 5768 18 6921 7386 SL62 5706 6380 5933
SeqKD 71.69 62.11 70.52 80.63 83.67 72.61 70.80 76.40 73.55
Llama-3B RevKD 78.08 66.70 73.08 83.30 86.11 72.61 70.56 78.20 76.08
GKD 80.83 6431 7380 8194 8594 74.15 69.46 78.60 76.13

Table 8: Performance of different KD methods on commonsense reasoning tasks.
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Teacher Student  Method Dolly Self Vicuna SNI UNI Average

Qwen-0.5B SFT 024 0.18 0.17 027 0.26 0.22
Qwen-1.5B SFT 026 0.19 017 031 031 0.25
Qwen-3B SFT 0.28 0.21 0.19 036 0.31 0.27
Qwen-7B SFT 029 022 018 038 0.32 0.28
Qwen-14B SFT 030 025 019 041 0.36 0.30
Llama-1B SFT 024 0.14 016 026 0.28 0.22
Llama-3B SFT 027 0.19 0.17 031 0.33 0.25
Llama-8B SFT 030 022 019 031 035 0.27
SegkD 0.23 0.15 0.15 029 029 0.22

Qwen-0.5B RevKD 0.28 021 021 038 041 0.30

Qwen-3B e —m = D LD ST g
Qwen-1.5B RevKD 0.31 0.24 0.23 041 044 0.33

Qwen-0.5B  RevKD 027 020 0.21 0.38 041 0.29

Qwen-7B Qwen-1.5B  RevKD 031 022 023 041 046 0.33

Qwen-3B RevKD 033 025 023 042 046 0.34

Qwen-0.5B RevKD 028 0.20 0.21 0.39 041 0.30

Qwen-1.5B RevKD 032 025 023 043 045 0.34

Qwen-14B T SeqKD 027 020 017 034 032 026
Qwen-3B RevKD 0.32 0.23 0.23 043 0.46 0.33
GKD 032 0.25 0.22 0.44 044 0.33
" SeqKD ~ 028 022017 038 032 027
Qwen-7B RevKD 0.33 0.28 0.23 048 047 0.36
GKD 033 0.28 0.23 045 0.46 0.35
SeqKD 0.23 0.16 0.15 0.23 0.27 0.21
Llama-1B RevKD 029 0.19 0.18 034 041 0.28
GKD 0.30 0.20 0.20 0.32 0.38 0.28

Llama-8B B IS e So--
Llama-3B  RevKD 0.33 024 021 039 044 0.32

Table 9: Performance of different KD methods on instruction following tasks using Rouge-L metric.

17950



Instruction

Student KD Output

Teacher SFT Output

Fidelity

Randy has 37 blocks. He
uses 33 blocks to build
a tower and 13 blocks to
build a house. How many
more blocks did he use
to build the tower than he
did to build the house?

Robin has 28 packages of
gum and 13 packages of
candy. There are 4 pieces
in each package. How
many pieces of gum does
Robin have?

Because of the decision
Sofia asked 310 students
to suggest specific types
of food. 185 students
suggested adding mashed
potatoes while others sug-
gested adding bacon to
the menu. How many stu-
dents suggested bacon?

To find the difference between
the number of blocks used to
build the tower and the house,
you can subtract the number of
blocks used to build the house
from the number of blocks used
to build the tower. Here are the
steps: - 13 blocks
= 24 blocks Therefore, Randy
used 24 more blocks to build the
tower than he did to build the
house.<lendoftext/>
“To solve this problem, we need
to use multiplication. 1. Iden-
tify the given information: Robin
has 28 packages of gum and 13
packages of candy. Each pack-
age has 4 pieces of gum and
candy. 2. Determine the op-
eration needed to find the total
number of pieces of gum: We
need to multiply the number of
packages of gum by the number
of pieces of gum in each pack-
age. 3. Multiply: 28 by 4 to
find the total number of pieces
of gum.
Therefore, Robin has 56 pieces
of gum.<lendoftext>
“To solve the problem, we can use
subtraction:Total number of stu-
dents = 310Number of students
who suggested mashed potatoes
= 185To find the number of stu-
dents who suggested bacon, we
subtract the number of students
who suggested mashed potatoes
from the total number of students:
310 - 185 = 125| Therefore, 125
students suggested adding bacon
to the menu.<lendoftext>

Step 1: Find the total number of
blocks used 33 blocks (for the
tower) + 13 blocks (for the house)
= 46 blocks Step 2: Find the dif-
ference between the number of
blocks used for the tower and the
house |33 blocks| (for the tower)
- 13 blocks (for the house) = 20
blocks Therefore, Randy used 20
more blocks to build the tower
than he did to build the house.
The answer in Arabic numerals
is 20.<lendoftextl>

"To solve this problem, we
need to use multiplication.
1.  Multiply the number of
packages of gum by the number
of pieces in each package:
28 packages x 4 pieces = 112
pieces of gum 2. Therefore,
Robin has 112 pieces of gum.
The answer in Arabic numerals
is: 112.<lendoftextl>

We can start by using the concept
of complementary counting. Let
x be the number of students who
suggested bacon. We know that
the total number of students is
310, so we can set up an equation:
185 + x = 310 Subtracting 185
from both sides: [X =310 - 185
Simplifying: x = 125 Therefore,
125 students suggested adding
bacon to the menu. Answer:
125 .<lendoftextl>

0.77

Table 10: Error analysis of Qwen student models on SVAMP validation data.
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