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Abstract

Sequential recommenders predict users’ next
interactions based on historical behavior and
are essential in modern recommendation sys-
tems. While Large Language Models (LLMs)
show promise, their size and high inference
costs limit deployment on resource-constrained
devices. Small Language Models (SLMs) pro-
vide a more efficient alternative for edge de-
vices, but bridging the recommendation per-
formance gap between LLMs and SLMs re-
mains challenging. Typical approaches like
supervised fine-tuning or vanilla knowledge
distillation (KD) often lead to suboptimal per-
formance or even negative transfer. Our mo-
tivational experiments reveal key issues with
vanilla KD methods: feature imitation suf-
fers from redundancy and uneven recommen-
dation ability across layers, while prediction
mimicking faces conflicts caused by differing
weight distributions of prediction heads. To ad-
dress these challenges, we propose a simple yet
effective framework, C2KD, to transfer task-
relevant knowledge from two complementary
dimensions. Specifically, our method incorpo-
rates: (1) cross-layer feature imitation, which
uses a dynamic router to select the most rele-
vant teacher layers and assimilate task-relevant
knowledge from the teacher’s late layers, allow-
ing the student to concentrate on the teacher’s
specialized knowledge; and (2) cross-head logit
distillation, which maps the intermediate fea-
tures of the student to the teacher’s output head,
thereby minimizing prediction discrepancies
between the teacher and the student. Exten-
sive experiments across diverse model fami-
lies demonstrate that our approach enables 1B-
parameter SLMs to achieve competitive perfor-
mance compared to LLMs (e.g., Llama3-8B),
offering a practical solution for real-world on-
device sequential recommendations.
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1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020) have demonstrated great potential in sequen-
tial recommendation tasks (Geng et al., 2022; Bao
et al., 2023b), leveraging their extensive world
knowledge and contextual reasoning. Among them,
generation-based LLM recommenders (Li et al.,
2023c; Zhang et al., 2023; Li et al., 2023b) are
an important branch, which usually inherits the
autoregressive architecture of LLMs, transform
user behaviors into language prompts, and employ
Low-Rank Adaptation (LoRA) (Hu et al., 2021) to
repurpose pretrained LLMs for recommendation
tasks. However, their large model size and high
computational costs hinder deployment in resource-
constrained environments. For example, the repre-
sentative recommender LLARA (Liao et al., 2024)
has over 7 billion (7B) parameters and takes 3.8 sec-
onds to process each user sequence, highlighting
the need for more efficient alternatives.

Small Language Models (SLMs)' have recently
garnered attention for achieving comparable per-
formance across various tasks with smaller model
size (Wang et al., 2024a; Bellagente et al., 2024; Hu
et al., 2024), offering high efficiency and lower de-
ployment costs. These strengths make SLMs well-
suited for real-world on-device applications, such
as personalized e-commerce recommendations. De-
spite their potential, the application of pretrained
SLMs to sequential recommendation tasks remains
largely underexplored, especially in their ability to
achieve performance comparable to LLMs.

To address this, we first conduct preliminary
studies across various popular SLMs, as shown in
Figure 1. The results reveal that directly applying
supervised fine-tuning (SFT) to SLMs on recom-
mendation datasets results in significantly worse
performance compared to LLMs, implying that

1Following (Lu et al., 2024; Zhao et al., 2023), we define
SLMs as models with fewer than 5B parameters.
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Figure 1: Performance comparison of different methods
in fine-tuning SLMs on the LastFM dataset (Cantador
etal., 2011). We follow the evaluation protocol in (Liao
et al., 2024). The purple dashed line indicates teacher
model performance. Our approach significantly outper-
forms vanilla KD methods.

SFT alone is inadequate to equip SLMs with the
capabilities needed for effective recommendations.
To mitigate the performance gap while preserving
the efficiency of SLMs, Knowledge Distillation
(KD) offers a promising solution by transferring
knowledge from large models to smaller models.
While our study (Figure 1) shows that vanilla KD
methods (Hinton, 2015; Liang et al., 2023), such
as prediction mimicking (‘Vanilla logit KD’) and
feature imitation (‘Vanilla feature KD’), often fail
to effectively close the performance gap between
teacher and student models or even result in nega-
tive transfer.

To investigate the limitations of vanilla KD meth-
ods for SLM-based sequential recommendations,
we conduct motivational experiments in Section 2.
We identify two key challenges that hinder effective
task-relevant knowledge transfer: First, traditional
prediction mimicking method suffers from distinct
output head weight distributions. In this case, even
when teacher and student features are similar, head
disparities amplify their differences, which leads
to contradictory learning and interferes with opti-
mization. Second, the final layer of the LLM does
not always deliver the best performance, and the
contribution of each LLM layer to recommendation
abilities varies across different datasets.

In light of these challenges, we hereby propose
a simple yet effective KD framework to empower
SLM-based recommenders. Given a well-trained
LLM as the teacher, our method transfers knowl-
edge to pretrained SLMs by fine-tuning them with
LoRA (Hu et al., 2021), updating only a small
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Figure 2: Comparison of model parameters, infer-
ence time, and recommendation performance. Our
method enables Llama3-1B outperform current SLMs
and achieve performance comparable to 7-8B models.

set of parameters. The task-relevant knowledge
transfer is achieved through two complementary
perspectives: (1) Cross-layer feature imitation,
which aligns the teacher’s and student’s intermedi-
ate features using a dynamic router, allowing the
student to select the most relevant teacher guidance
across different layers. Moreover, to focus on task-
relevant knowledge, feature imitation is applied
only to the teacher’s late layers, with learnable
filters extracting recommendation-related features
for more efficient knowledge transfer. (2) Cross-
head prediction mimicking, which utilizes a learn-
able projection layer with orthogonal constraints
to map the student’s intermediate features into the
teacher’s prediction head. This process generates
cross-head predictions that are then aligned with
the teacher’s original outputs, enabling more effec-
tive and harmonious knowledge distillation. No-
tably, our framework is orthogonal to other LLM
post-training efficiency techniques, such as quanti-
zation and pruning, and can be combined for further
improvements in efficiency.

Without bells and whistles, comprehensive ex-
periments demonstrate that our method consistently
exhibits superior performance across various rec-
ommendation datasets while maintaining high ef-
ficiency. For example, on three large-scale recom-
mendation datasets (Cantador et al., 2011; Harper
and Konstan, 2015; Kang and McAuley, 2018),
our method enables Llama3-1B to achieve perfor-
mance comparable to Llama3-8B, despite having a
model size less than 15% of Llama3-8B and achiev-
ing a 4x inference speedup, as shown in Figure 2.
Furthermore, our method consistently outperforms
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existing KD methods, revealing the importance of
designing tailored KD methods for building SLM-
based sequential recommenders?.

2 Motivational Study

In LLM-based recommenders, a common approach
is to apply LoRA (Hu et al., 2021) on pretrained
LLMs to adapt them to recommendation tasks.
However, despite its effectiveness, the inference
cost and computational burden of LLMs make them
impractical for resource-constrained applications.
On the other hand, SLMs, with their smaller size,
are well-suited for on-device deployment but of-
ten suffer from limited performance when directly
fine-tuned on recommendation tasks (as shown in
Figure 1). To strike a balance between effectiveness
and efficiency, Knowledge Distillation (KD) pro-
vides an effective solution by transferring knowl-
edge from large teacher models (LLMs) to smaller
student models (SLMs). To assess the applicability
of KD in building SLM-based sequential recom-
menders, we revisit vanilla KD methods and reveal
their limitations in this section.

Sequential Recommendation. Given a user’s his-
torical interactions in chronological order, a LLM-
based sequential recommender aims to select the
item 4, that is truly preferred by user v from the
candidate set C, = {i; };V:l, where N is the num-
ber of candidates. Following the LLARA frame-
work (Liao et al., 2024), hybrid prompts that com-
bine collaborative signals from ID-based models
(e.g., SASRec (Kang and McAuley, 2018)) with
item text descriptions are fed into the LLM. Item
IDs are mapped to tokens in the LLM space using
a trainable projector. The task-specific loss Lk 1S
defined in the form of causal language modeling:

|y]

Ligsk = »_108(Po(yilru, y<;©)), (1)
t=1

where z,, denotes the user history interaction se-
quence, y; is the ¢-th token in the model prediction,
and © represents LLM parameters

Preliminaries of LLARA We adopt LLARA (Liao
et al., 2024) as LLM-based recommendation frame-
work, and the overall architecture is shown in Fig-
ure 4. Specifically, the hybrid prompt integrates
item textual descriptions with item embeddings
derived from traditional recommenders (e.g., SAS-
Rec). To align item IDs with the token space of

2Codes and models are available at https://github.
com/ShawnChenn/C2KD-LLMRec

the LLM, a trainable projector is employed. For
fair comparisons, we randomly sample negative
items from the candidate pool that the user has not
interacted with, alongside the positive item as the
ground truth. LLM is then repurposed for identi-
fying the true item from these candidate items. It
is an end-to-end framework trained with a causal
language modeling loss.

Current Knowledge Distillation Frameworks
primarily includes two categories: i) prediction
mimicking, which aligns student prediction distribu-
tions with the teacher. It mainly minimizes predict
discrepancies between the teacher model and stu-
dent model via the KL divergence (Van Erven and
Harremos, 2014). and ii) feature imitation, which
aligns hidden representations by minimizing the
intermediate feature distance using mean squared
error (MSE) as a metric.

However, applying vanilla KD methods to stu-
dent recommendation models often results in
marginal performance gains or even negative trans-
fer (as shown in Fig.1). We suspect these issues
arise from two main factors: layer redundancy in
the teacher model and the discrepancy between the
output heads of the teacher and student models. For
prediction KD, previous methods (Hinton, 2015;
Sun et al., 2024) directly minimize the discrepancy
between teacher and student predictions. However,
since LLMs and SLMs are pretrained on different
datasets, their output heads naturally inherit distinct
distribution patterns and lie in different spaces. As
aresult, directly aligning predictions can be ineffec-
tive and may hinder the distillation of useful knowl-
edge. For feature KD, previous layer-wise distilla-
tion methods (Sun et al., 2019; Liang et al., 2023)
use a linear mapping function to align teacher and
student feature layers, assuming that performance
improves gradually as layers deepen. However, this
approach overlooks the potential layer redundancy,
where certain intermediate LLM layers contribute
less to the recommendation task.

To verify the above conjectures, we conduct
preliminary studies on various recommendation
datasets, as shown in Fig.3. We employ a layer-
wise probing strategy to evaluate the recommen-
dation ability of each decoder layer in LLMs and
SLMs. In detail, we halt inference at each decod-
ing layer and use learnable probing heads to map
intermediate features to tokens, which are trained
with L. Additionally, we apply PCA projec-
tion to the output head weights of the teacher and
student models to visualize the distribution differ-
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Figure 3: The relationship between the number of decoder layers and the recommendation accuracy in the LLM
(Llama3-8b) and SLM (Llama3-1b), with the traditional recommender SASRec included as a baseline (abde).
Additionally, the output head weight distribution gap between different models (cf) is examined to reflect the
potential risk of using different heads for prediction mimicking.
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hoose only one movie from the candidates.

Figure 4: Overview of the LLARA architecture.

ences between them. Based on these studies, we
derive the following insights: (i) late emergence
of recommendation ability. Sequential recommen-
dation ability typically emerges in the middle to
later layers (e.g., after layer 18 in Llama3-8b, layer
12 in Llama3-1b). We speculate earlier layers pri-
marily capture low-level textual cues and lack the
context reasoning required for sequential recom-
mendations. (ii) Intermediate layers outperform
final Layer in the LLM. In Llama3-8b, intermedi-
ate layers (e.g., layers 24-30) demonstrate stronger
recommendation performance than both the tradi-
tional recommender SASRec and the final layer.
However, the best-performing layer varies across
datasets, suggesting that layer selection in teacher
models requires careful designs. While SLM (e.g.,
Llama3-1b) has a more compact structure, since

its intermediate layers do not outperform the final
layer. (iii) Distinct head distribution. The teacher-
student output heads have different distributions
across model families. Considering that they are
frozen during distillation, even if the teacher and
student feature representations are highly similar,
the mismatch between their output heads negatively
impacts prediction alignment, thereby limiting the
effectiveness of KD.

3 Method

In this section, we introduce C2KD, a novel
Knowledge Distillation based framework that com-
bines Cross-Layer Feature Distillation and Cross-
Head Prediction Mimicking for SLM-based sequen-
tial recommendation. Notably, we keep the pre-
trained SLM backbone frozen and leverage LoRA
modules to transfer task-specific knowledge from
well-trained LLMs to SLMs. This approach signif-
icantly reduces training computation costs while
avoiding catastrophic forgetting.

3.1 Overview

Fig.5 illustrates the overall workflow of our C2KD,
which involves an LLM (e.g., Llama3-8b) as the
teacher, denoted as Oy, and an SLM (e.g., Llama3-
1b) as the student, denoted as ©,. Both models
have a shared vocabulary space, which is crucial
for precise distillation. Our C2KD consists of two
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Figure 5: Overview of the proposed C2KD framework.

key components: a) Cross-layer Feature Distilla-
tion: This component enhances the student model’s
ability to learn specialized knowledge from hidden
representations while addressing the side effects of
layer redundancy in the teacher model. b) Cross-
head Prediction Mimicking: This component in-
troduces a tailored cross-head mechanism to align
the predictions between the teacher and student
model effectively.

3.2 Cross-layer Feature Distillation

As revealed in Fig.3, the late emergence of recom-
mendation capabilities and uneven layer contribu-
tions cast doubt on the effectiveness of the vanilla
layer-wise distillation strategy. On one hand, due to
the large model capacity gap between teacher and
student models, general knowledge may compete
with task-specific knowledge during distillation,
making feature imitation across all layers subopti-
mal. On the other hand, the varying performance
across layers indicates that a simple linear map-
ping between teacher and student layers is inad-
equate for identifying the most relevant teacher
layers. These observations underscore the need to
rethink what to distill and where to distill to enable
more effective knowledge transfer.

First, given the student model’s limited capacity,
it often struggles to replicate the teacher’s exten-
sive knowledge (Durrani et al., 2020). To address
this, we focus on distilling task-relevant knowledge
from the teacher’s late layers, where task-specific
information is concentrated. To filter and extract
task-specific knowledge, we apply learnable filters
to the hidden representations of the teacher model.
Let the task-aware filter at layer [ be denoted as
g'(-; W), where W' represents its parameters. The
filter transforms the original teacher’s hidden repre-

sentations H} € RI*I*4 into H! € RI#1*4s where
|| is the sequence length, and d; and ds are the
dimensions of the teacher’s and student’s hidden
representations, respectively. We apply these fil-
ters only to the last M layers of the teacher model,
where M is half of the total layers. The learnable
filters are jointly optimized as follows:

M
win y | —E, 5 [Lusk(g™ (H™ W), @)
m=1

where W = {W™}M_, denote the set of learn-
able task-aware filter parameters, and L, repre-
sent the recommendation task loss. These filters are
well-trained prior to conducting feature distillation.

Second, for a specific student layer, it is crucial
to identify the corresponding layer in the teacher
model for distillation. Since some intermediate lay-
ers of the teacher may outperform the final layer
in recommendation tasks, we introduce a dynamic
router mechanism that adaptively selects the most
relevant teacher layer to guide each student layer.
This enables more flexible and effective cross-layer
feature distillation. Specifically, we treat each fil-
tered teacher hidden representation g™ (H{™; W)
as a unique feature expert. For the student feature
H} e RI#1%ds at Jayer n, the dynamic router com-
putes the similarity between the student feature and
each filtered teacher feature, and the teacher layer
with the highest similarity is automatically selected
for feature distillation. This can be formulated as:

y (HZ, gi™( Z";WZ")X
SMYTH g (H W |
3)

m” = argmax,,c g1 9

17831



By default, we apply feature imitation only to
the student model’s last two layers to enhance task
knowledge assimilation. Then, the cross-layer fea-
ture distillation loss between student layer n and
teacher layer m* can be defined as follows:

Liea(©4]00) = MSE (g (™ s W™), HY)
4

where the discrepancy between the filtered teacher
features and the student features are measured with
the mean-squared error.

3.3 Cross-head Prediction Mimicking

As outlined in Fig.3, vanilla prediction mimick-
ing faces challenges due to the distinct output
head distribution between teacher and student mod-
els, which would prevent the student model from
achieving optimal performance.

To address this, we propose a Cross-head distil-
lation method with orthogonal regularization. In-
stead of solely focusing on output predictions, our
approach delivers the student’s intermediate fea-
tures appropriately to the teacher’s output head,
generating cross-head predictions. This ensures
the student effectively mimics the teacher’s output
distributions. In particular, we introduce a learn-
able projection layer Wi € R%>d¢ to align the
dimension of the student’s intermediate features
with that of the teacher’s features.

Moreover, to avoid redundancy or information
loss in feature projection (Bansal et al., 2018), we
further enforce orthogonality of W; within the
row space and column space, defined as:

Lorts = [|WprojWoroj — Ll + Wproj Woroj — 1]-
(5)

Then, with the orthogonal constraint in Eq. (5),
the aligned student features and teacher features
are fed into the same output head of the teacher
model. This process is formulated as:

ﬁlogit(®s|@t) = Dpred (Pt(yk‘y<k7 xu)7
Ps(yk‘y<k7xu))7 (6)

where P, (yi|y<k, ) and Ps(yk|y<k, ) repre-
sent the predicted token probabilities of the teacher
and student, respectively, given the input sequence

xy. The distance metric Dyeq measures the differ-
ence between their output distributions, where we
use the Kullback-Leibler (KL) divergence (Van Er-
ven and Harremos, 2014).

3.4 Overall Optimization Objective

The overall training objective is formulated as a
weighted sum of the task-specific loss and the dis-
tillation loss:

Héin Liask + O51£logit + a9 Lfeat + @3Lorth, (7)

where o1, a2, a3 are hyper-parameters that balance
various objectives. In this way, we transfer the
teacher’s complex knowledge to the student model
from two complementary perspectives: mimick-
ing the prediction distributions and imitating the
feature representations.

4 Experiment

4.1 Experiment Settings
4.1.1 Datasets

We conduct comprehensive experiments on
three real-world recommendation datasets:
LastFM (Cantador et al., 2011), Movie-
LensI00K (Harper and Konstan, 2015), and
Steam (Kang and McAuley, 2018). These datasets
consist of user behavior sequences along with
item content information. To prepare the data,
we sorted the interaction sequences by ascending
order of timestamps and split each dataset into
training, validation, and testing sets with a ratio
of 8:1:1. For fair comparisons, we followed the
preprocessing procedures in (Liao et al., 2024;
Kong et al., 2024).

4.1.2 Baselines

We compare the following categories of methods:

(i) Traditional Sequential Recommenders: We se-
lect GRU4Rec (Hidasi, 2015), SASRec (Kang and
McAuley, 2018), FMLP (Zhou et al., 2022) and
Caser (Tang and Wang, 2018a) as representative
RNN, CNN, all-MLP and attention-based sequen-
tial recommenders.

(ii) LLM-based Sequential Recommenders: We con-
sider the following generation-based LLM recom-
menders: Llama2 (Touvron et al., 2023), an open-
source LLM developed by Meta; GPT-4 (Achiam
et al., 2023) a landmark model released by OpenAl,
excelling across diverse tasks; MoRec (Yuan et al.,
2023), which improves traditional recommenders
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LastFM MovieLens Steam

Category | Method  LLM  Param | .o . @] vValidRatio HitRatio@l ValidRatio HitRatio@l ValidRatio
GRU4Rec - 0.2616 1.0000 03750 1.0000 0.4168 1.0000

Traditional Caser - 02233 1.0000 0.3861 1.0000 0.4368 1.0000
Recommender | FMLP - <IB | 02541 1.0000 03579 1.0000 0.4098 1.0000
SARSRec - 02233 1.0000 0.3444 1.0000 0.4010 1.0000

Llama2  Llama2 7B 0.0246 03443 0.0421 0.4421 0.0135 0.1635

GPT-4 ) S175B | 03770 1.0000 0.2000 0.9895 0.3626 0.9798

MoRec  RoBERTa 125M |  0.1652 1.0000 0.2822 1.0000 03911 1.0000

LLM-based | g o T5 1B 03115 1.0000 03789 1.0000 0.4132 1.0000
Recommender | 117 pec  Liama2 7B 0.4180 0.9836 0.3895 0.9263 0.4637 0.9840
LLARA  Llama2 7B 0.5080 1.0000 0.4787 0.9895 0.4949 0.9970

Teacher Model | LLARA  Llama3 8B 0.5328 1.0000 0.4947 1.0000 0.5413 1.0000
SFT Llama3 1B 03471 09918 0.4000 0.9474 0.4425 0.9890

SeqkD  Llama3 1B 0.4180 1.0000 04105 0.9684 0.4471 0.9684

LogitKD  Llama3 1B 0.4098 1.0000 04222 0.9474 0.4376 0.9474

Student Model | Hint  Llama3 1B 03770 1.0000 04315 0.9789 0.4611 0.9831
TAD  Llama3 1B 04262 1.0000 04517 0.9789 0.4796 0.9915

Ours  Llama3 1B 05163 1.0000 0.4947 0.9894 0.4966 0.9940

Table 1: Comparison with representative methods on the recommendation benchmarks. We compare our method
with Traditional Recommenders and LLM-based generative recommenders. The best result is in bold, and the

second-best result is underlined. *(p-value < 0.05)

by incorporating LLM-encoded item modality fea-
tures, such as text information; TALLRec (Bao
et al., 2023b), which adopts instruction tuning for
LLMs on recommendation datasets; TIGER (Ra-
jputetal., 2023), a Generative Retrieval framework
for Recommender Systems based on Semantic ID
representation of items; LLARA (Liao et al., 2024),
which integrates LLM embeddings with ID embed-
dings from traditional recommenders effectively.

(iii) Distillation methods: We select Hint (Romero
et al., 2014) and TAD (Liang et al., 2023) as
representative methods that distill knowledge us-
ing teacher embeddings; LogitKD (Hinton, 2015),
which uses output logits from the teacher model
as soft labels to guide the student; SeqKD (Kim
and Rush, 2016), which trains the student with data
generated by the teacher. For sequential recom-
mendation, following (Wang et al., 2024b), we use
recommendation rationales as the generated data.

4.1.3 Evaluation Metrics

Following prior works on generation-based LLM
recommenders (Liao et al., 2024; Kong et al., 2024),
for each user sequence, we randomly select 20 non-
interacted items to construct the candidate set, in-
cluding the correct subsequent item. All methods
aim to identify the correct item, with performance
evaluated using i) HitRatio@1. LLM-based rec-
ommenders generate a single candidate item via
prompting, while traditional models predict the
item with the highest probability. Since LLM-

based generative approaches may produce halluci-
nated responses, we introduce an additional metric
ii) Valid ratio@1, which measures the proportion
of valid responses within the candidate set.

4.1.4 Implementation Details

Our method is implemented in PyTorch and runs
on 4 NVIDIA A100 GPUs. The training process
involves a total of 5 epochs. The teacher model,
initialized from a pretrained LLM (e.g., Llama3-
8B (Dubey et al., 2024)), is fine-tuned on recom-
mendation datasets following LLARA (Liao et al.,
2024). By default, LLARA uses SASRec (Kang
and McAuley, 2018) to extract user behavior to-
kens. During distillation, the student model (e.g.,
Llama3-1B) is initialized from an SLM and fine-
tuned using LoRA to efficiently adapt to the tar-
get recommendation tasks. Note that our method
requires the teacher and student models to have
aligned vocabulary, i.e., identical vocabulary sizes.
The hyperparameters are setas a; = 0.5, ag = 0.5,
and as = 0.01 across different datasets. Our
method shows a relatively low sensitivity to hy-
perparameter value selection.

4.2 Performance Comparison

Table 1 showcases the quantitative comparison
on three large-scale sequential recommendation
datasets. We have several key observations: (1)
Compared to traditional recommenders, LLM-
based generative recommenders usually due to their

17833



extensive world knowledge. Due to scaling laws,
larger models with more parameters often achieve
better recommendation performance. (2) Our dis-
tillation approach substantially narrows the perfor-
mance gap between the teacher and student model,
enabling SLMs to achieve performance compara-
ble to their teacher models. This improvement is
attributed to its ability to absorb teacher knowl-
edge from multiple perspectives, resulting in ap-
proximately a 28% performance enhancement over
supervised finetuning on the student model, i.e.,
‘SFT". (3) Vanilla knowledge distillation techniques
typically fail to effectively mitigate the significant
performance gap between the teacher and student
models and may even risk negative transfer.

4.3 Ablation Study

As shown in Table 2, we ablate different mod-
ules in our method to evaluate their importance.
With different knowledge distillation regularizers
(namely ‘Ours cross-layer feat’ and ‘Ours cross-
head logit’), the framework demonstrates improved
performance compared to using only supervised
fine-tuning (‘SFT’). The two distillation strategies
are complementary when combined (‘Ours w/o
orthogonal’). Meanwhile, Ly, consistently fa-
cilitates stable improvements in cross-head logit
distillation or when using both feature and logit
distillation (‘Ours’).

Method Lusk  Lreat  Liogit Lomn HitRatio@1  Valid Ratio@1

SFT v 0.3471 0.9918
Ours cross-layer feat v v 0.4344 1.0000
Ours logit v v 0.4426 1.0000
Ours cross-head logit v v v 0.4672 1.0000
Ours w/o orthogonal v v v 0.5081 1.0000
Ours v v v v 0.5163 1.0000

Table 2: Ablation study on the LastFM dataset, where
the teacher model is Llama3-8B and the student model
is Llama3-1B.

4.4 Effectiveness and Efficiency Analysis

Our proposed distillation framework can be ap-
plied in various LLM families, as shown in Ta-
ble 3. The teacher model can be a pre-trained
LLM (e.g., Llama2-7B (Touvron et al., 2023), OPT-
6.7B (Zhang et al., 2022)) fine-tuned on recom-
mendation datasets. The student model is a smaller
LLM with the same vocabulary, such as TinyL-
LaMA (Zhang et al., 2024b), OPT-1.3B (Zhang
et al., 2022)).

It can be observed that our method consistently
mitigates the performance gap between the teacher

OPT 6.7B — OPT 1.3B
Teacher Student Ours

Dataset Llama2 7B — TinyLlama 1.1B

Teacher Student Ours

Lastfm 50.28 40.16 47.54 45.08 39.34 4754
Movielens  52.53 47.39 49.96 46.67 38.94 4526
Steam 47.36 43.16 47.36 45.83 3693 4494

Table 3: Performance comparison of HitRatio @1
across various models.

and student models. We report the time efficiency
and parameters of comparative baseline LLARA
and our model in Table 4.

Method LLaRA Ours-Llama3 Ours-TinyLlama Ours-OPT
Inf time (s)  3.81 0.84 2.10 2.23
Params (b) 6.79 1.24 1.11 1.30

Table 4: Efficiency comparison between LLaMA and our
method on various SLMs in terms of instance-wise inference
time (seconds) and total number of model parameters (billion).

5 Related Work
5.1 LLM-based Sequential Recommenders

Sequential recommendation focuses on predict-
ing the next item a user is likely to engage with
based on their previous interaction history. Early
research primarily relied on modeling user prefer-
ences using architectures like RNNs (HidasiB et al.,
2015), CNNs (Tang and Wang, 2018a), or Trans-
formers (Kang and McAuley, 2018). With the rise
of LLMs, their extensive knowledge and reason-
ing abilities show great promise for sequential rec-
ommendation. Integrating LLMs into recommen-
dation systems typically follows two paradigms:
LILMs as recommenders (Bao et al., 2023a,b; Liao
et al., 2024), where LLMs are repurposed for rec-
ommendations via fine-tuning, prompting, or in-
context learning; and LLMs as enhancers (Xi et al.,
2024; Ren et al., 2024; Wang et al., 2023), where
LLMs provide feature embeddings or rationales but
still rely on conventional relevance calculations,
limiting their reasoning potential. In this paper,
we adopt the first architecture for both the teacher
and student models, and follow (Liao et al., 2024)
to integrate collaborative information from tradi-
tional models. Though LLM-based recommenders
achieve notable progress, their high inference cost
and large model size prohibit deployment on edge
devices. Recently, SLMs have gained attention
for achieving comparable performance on various
tasks with significantly smaller model sizes (Wang
et al., 2024a; Lu et al., 2024). However, their poten-
tial in recommendations remains underexplored.
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5.2 Knowledge Distillation in RecSys

Knowledge distillation (KD) compresses models
by transferring knowledge from a large teacher
model to a smaller student model. For LLM distil-
lation, some works (Kim and Rush, 2016; Gu et al.,
2024b,a) train small student models on teacher’s
generated text data. Other works explore better
optimization goals for distillation, such as aligning
token-level probability distribution (Muralidharan
et al., 2024), hidden features (Sun et al., 2019) and
attention matrices (Wang et al., 2020b,a). Early
RecSys methods (Tang and Wang, 2018b; Lee et al.,
2019; Kang et al., 2020; Lee and Kim, 2021; Chen
et al., 2023; Fan et al., 2022) focus on traditional
recommenders, utilizing the teacher’s top-N items
as soft labels or distilling knowledge from embed-
dings and topological relationships (Hinton, 2015;
Kang et al., 2021). With the rise of LLM-based
recommender architectures (Li et al., 2023a; Hou
et al., 2024), there is growing interest in distill-
ing knowledge from LLMs to lighter models (Wu
et al., 2024; Cui et al., 2024). For example, (Wang
et al., 2024b) introduces chain-of-thought distil-
lation to transfer reasoning abilities from LLMs
(e.g., ChatGPT) into the smaller model Llama2-7B,
which remains impractical for resource-limited sce-
narios. SMLRec(Xu et al., 2024) employs vanilla
feature imitation but enforces strict architectural
constraints, such as requiring identical hidden di-
mensions between teacher and student models. Ad-
ditionally, it does not leverage popular SLMs, lim-
iting its flexibility and adaptability.

5.3 Small Language Models

There has been a growing interest in developing
small language models (SLMs) recently, which aim
to maintain comparable task performance while
significantly improving inference efficiency (Wang
et al., 2024a; Lu et al., 2024). These SLMs can
generally be categorized into two types: general-
domain SLMs (Zhang et al., 2024b; Thawakar et al.,
2024; Abdin et al., 2024), which are designed to ac-
quire extensive general knowledge and capabilities
with compact model size (i.e., less than 5B); and
domain-specific SLMs (Zhang et al., 2024a; Bolton
et al., 2024), which focus on well-defined tasks and
expertise pertinent to specific fields (e.g., scientific
or biomedical domain). In this paper, we primar-
ily focus on fine-tuning general-domain SLMs us-
ing Low-Rank Adapters (LoRA) (Hu et al., 2021),
which enable SLMs to be tailored to sequential

recommendation tasks while ensuring low compu-
tational and memory costs.

6 Conclusion

This paper proposes a novel distillation framework
that efficiently transfers task-relevant knowledge
from LLMs to SLMs for sequential recommenda-
tion. Our motivational study reveals the limitations
of vanilla KD methods, including layer redundancy
and uneven recommendation ability across LLM
layers, along with differing weight distributions in
prediction heads. To address these challenges, our
method leverages cross-layer feature imitation and
cross-head logit distillation, enabling harmonious
and effective task-relevant knowledge transfer. Ex-
tensive experiments demonstrate that 1B-parameter
SLMs can achieve performance comparable to 8B-
parameter LLMs, providing a practical and scalable
solution for recommendation systems on resource-
constrained devices.
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Limitations

Despite the promising results demonstrated by our
method, it is important to acknowledge its limita-
tions. One key limitation lies in the empirical na-
ture of our findings, as the motivations are primarily
based on observed experimental results. Addition-
ally, due to limited computational resources, we
were unable to conduct experiments on larger mod-
els, such as Llama2-13B or beyond. This restricts
our ability to fully evaluate the scalability and gen-
eralizability of the proposed distillation framework
on larger-scale models. Future work could address
these issues by exploring more diverse model sizes
and conducting a deeper theoretical analysis to fur-
ther enhance our approach.
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