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Abstract

Recent years have witnessed rapid advance-
ments in Large Language Models (LLMs).
Nevertheless, it remains unclear whether state-
of-the-art LLMs can infer the author of an
anonymous research paper solely from the text,
without any additional information. To inves-
tigate this novel challenge, which we define
as Open-World Authorship Attribution, we in-
troduce a benchmark comprising thousands of
research papers across various fields to quan-
titatively assess model capabilities. Then, at
the core of this paper, we tailor a two-stage
framework to tackle this problem: candidate
selection and authorship decision. Specifically,
in the first stage, LLMs are prompted to gener-
ate multi-level key information, which are then
used to identify potential candidates through
Internet searches. In the second stage, we intro-
duce key perspectives to guide LLMs in deter-
mining the most likely author from these can-
didates. Extensive experiments on our bench-
mark demonstrate the effectiveness of the pro-
posed approach, achieving 60.7% and 44.3%
accuracy in the two stages, respectively. We
will release our benchmark and source codes to
facilitate future research in this field.

1 Introduction

The advancement of Generative Artificial Intelli-
gence (Al) and Large Language Models (LLMs)
has revolutionized numerous fields due to their re-
markable capabilities in Natural Language Process-
ing (NLP) tasks (Hagos et al., 2024; Naveed et al.,
2024; Cui et al., 2024; Zhang et al., 2024). De-
spite their widespread applications, their potential
for authorship attribution—the task of identifying
an author from anonymous text—remains largely
unexplored. In this paper, we investigate an intrigu-
ing question: Can state-of-the-art LLMs infer the
author of an anonymous research paper without
any additional information? This problem is both
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practical and ambitious. On one hand, accurately
attributing authorship in academic research is cru-
cial for maintaining integrity, recognizing contribu-
tions, and detecting plagiarism or ghostwriting. On
the other hand, directly applying modern LLMs to
this task is challenging, as the relevant information
is often dispersed across Internet-scale data, which
makes it infeasible for these models to process effi-
ciently.

In this paper, we define this challenging task as
Open-World Authorship Attribution. Since no ex-
isting benchmark evaluates LLLM performance in
this area, we construct a dataset comprising thou-
sands of academic papers from various research
fields. Building on insights from this data, we pro-
pose a novel two-stage framework to address the
task, including Candidate Selection and Authorship
Decision.

Specifically, in the candidate-selection stage, we
leverage LLLMs to generate multi-level key repre-
sentations of a target paper, which are then utilized
to search the Internet for relevant authors and their
publications at multiple levels of specificity. The
retrieved authors along with authors in the citation
list form our candidate pool. In the authorship-
decision stage, LLMs assess potential authorship
in the candidate pool by evaluating the anonymous
text against multiple guidelines. Finally, a holistic
decision is made to determine the most probable
author, serving as the final output.

We conduct experiments using multiple state-
of-the-art LLLMs, including both open-source and
closed-source models.

Extensive evaluation validate the effectiveness
and the superiority of the proposed solution. Specif-
ically, our approach achieves 60.7% accuracy of
candidate selection and 44.3% accuracy of author-
ship decision. The contribution of this work is
summarized as below:

* We are the first to define, study, and bench-

17744

Findings of the Association for Computational Linguistics: ACL 2025, pages 17744-17758
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics



mark the task of open-world authorship attri-
bution to the best of our knowledge.

* By leveraging impressive capacity of recent
LLMs, we devise a novel two-stage pipeline,
including candidate selection and authorship
decision, to tackle this challenge.

» Extensive evaluations showcase the potential
of modern LLMs and our proposed solution
for open-world authorship attribution. We will
release the dataset, prompts, and codes to sup-
port future research in this field.

2 Related Work

2.1 Large Language Models (LLMs)

LLMs have demonstrated remarkable capability
in solving various Natural Language Processing
(NLP) tasks, such as mathematical reasoning, and
text summarization (Xuanfan Ni, 2024; Desta
Haileselassie Hagos, 2024). The unique charac-
teristic of LLMs lies in utilizing a unified paradigm
without additional training to address various tasks
(Qin et al., 2024).

Language modelling: Language modelling as
the core to current LLMs has developed from the
traditional statistical methods like n-gram (Sharma
et al., 2018a) models to Neural Network language
models. The transformer language models with
self-attention mechanisms further lay the founda-
tion for the current rapid development of LLMs
(Vaswani et al., 2017). The introduction of the rev-
olutionized transformer helped the development of
the GPT-1 transformer-decoder structure and Bert’s
transformer-encoder structure.

LLMs Tuning: Tuning techniques have evolved
alongside the development of LLMs. Tuning con-
sists of full-parameter and partial-parameter tun-
ing. Due to computational constraints, research
has focused on Parameter-Efficient Fine-Tuning
(PEFT), including prompt tuning, Adapter-Tuning,
and LoRA. In-context learning, a form of prompt
learning, enables adaptation without parameter up-
dates by providing example-based prompts.

Instruction tuning is also the current focus. The
purpose is to transform NLP tasks with natural lan-
guage instruction which improves the performance
of LLMs in zero-shot learning. Chain-of-Thought
(Wei et al., 2023) is another reasoning strategy to
resolve the issue of low performance in arithmetic
reasoning, normal inference and symbol inference.

2.2 Al-generated texts Detection with LL.Ms

The widespread accessibility of generative mod-
els has led to a proliferation of Al-generated texts
across the internet. Several detection approaches
have been developed to detect LLM-generated
works to address the issue of authenticity (Sun et al.,
2025): (1) Training-based method adopt classi-
fiers like Support Vector Machines (SVMs) or fine-
tuned pre-trained language models like ROBERTa
and T5(Yang et al., 2023; Tang et al., 2023). (2)
Zero-shot Detection method directly uses the in-
herent properties embedded in LLMs (Yang et al.,
2023). (3) Watermarking-based Detection like
Inference-time watermarking (Tang et al., 2023)
embeds unique patterns into text during generation
by manipulating decoding processes, while post-
hoc watermarking retroactively modifies generated
text using rule-based or neural techniques to ensure
traceability (Tang et al., 2023).

2.3 Authorship Identification

Several studies have already researched the au-
thorship identification capabilities of LLMs, high-
lighting the importance of authorship attribution
in forensic investigations, cybersecurity, and tack-
ling misinformation (Huang et al., 2024; Wen et al.,
2024; Huang et al., 2025).

Traditionally, authorship attribution and verifica-
tion focus on analyzing writing styles to measure
similarities and make authorial decisions. Early
methods employed natural language processing
(NLP) techniques, such as n-grams (Sharma et al.,
2018a), part-of-speech (POS) tags (Sundararajan
and Woodard, 2018), and Linguistic Inquiry and
Word Count (LIWC) (Uchendu et al., 2020). These
handcrafted features are designed to quantify stylis-
tic patterns, including vocabulary richness, syntac-
tic complexity, and semantic focus, for effective
analysis (Huang et al., 2024, 2025).

More recently, with advancements in deep learn-
ing, text embeddings have become a prominent tool
in authorship attribution. Text embeddings repre-
sent textual data as vectorized numerical represen-
tations, enabling models to encode both semantic
and stylistic nuances. (Kumarage and Liu, 2023)
emphasizes the potential of leveraging large pre-
trained language models (LLMs) like BERT and
GPT to generate embeddings that capture deeper
stylistic and contextual patterns, thus applying
them to authorship attribution tasks. Another sig-
nificant change in authorship attribution is the in-
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Violin Plot of Entropy Across Authors
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Figure 1: Violin plot illustrating the distribution of in-
formation entropy among 300 authors. An information
entropy value of 1.5219 indicates that, among the five
collected articles for a given author, two articles share
the same topic group, another two belong to a different
topic group, and the remaining article falls into a sepa-
rate group

tegration of contrastive learning techniques into
embedding-based methods(Patel et al., 2023).

Some methods developed the prompt pipeline
for authorship identification, leveraging the inher-
ent stylistic and linguistic extraction capabilities of
LLMs (Huang et al., 2024; Wen et al., 2024; Huang
et al., 2025). The results demonstrate the ability of
LLM:s to capture nuanced stylistic features without
explicit feature engineering. However, limitations
of the study are noticeable, such as dependency on
pre-collected candidate authors which hinders its
application in large-scale candidate pools. In most
cases, the number of candidate authors is fewer
than 50, making the approach impractical for real-
world applications. Their focus on stylometric fea-
ture analysis and prioritizing explainability in the
authorship decision-making limits its efficiency.

3 Methods

In this section, we elaborate on the proposed bench-
mark and two-stage approach for open-world au-
thorship attribution. Sec. 3.1 introduces the data
sources and the construction of the benchmark.
Secs. 3.2 and 3.3 describe the main pipelines of
the two stages: candidate selection and authorship
decision, respectively, in the proposed solution. In
the first stage, candidate papers are retrieved from
the Internet using LLM-generated keywords. In
the second stage, LLMs determine the most likely
author from these candidates. Fig. 3 provides an
overview of the entire streamline.

Group Co-occurrence Heatmap (Row-Normalized)
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Figure 2: This heatmap shows the extent to which au-
thors choose the same topics across their publications.
Each cell represents the co-occurrence strength between
topics for the same author, with darker shades indicat-
ing a higher likelihood of an author selecting the same
topic in their papers. Each number in axises indicates
different topic groups 6

3.1 Data Curation

Considering there is no off-the-shelf benchmark for
the task of open-world authorship attribution, we
construct a dataset in this work. Specifically, To en-
sure diversity, we select papers from CVPR 2024,
spanning 30 subfields in computer vision. We also
curated 50 additional samples from non-CVPR
fields, including topics in Mathematics, Quanti-
tative Finance, Physics, and Economics. The test
results for these non-CVPR samples are provided in
Appendix 5. Moreover, to guarantee sufficient on-
line reference materials for candidate selection, we
filter out authors with fewer than five first-author
papers. This results in a dataset comprising 300 au-
thors and 1,500 papers. More details are provided
in Sec. 4.1.

3.2 Candidate Selection

The core challenge of open-world authorship attri-
bution lies in handling Internet-scale data, which
significantly exceeds the processing capabilities of
LLMs. Therefore, identifying common patterns
among papers by the same author is crucial for nar-
rowing down potential candidates from such a vast
data source.

During our investigation and collection of the
dataset, we observe that many authors’ published
papers demonstrate a correlation in research topics.
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Figure 3: The whole process of the proposed automatic end-to-end authorship identification consists of 2 stages. The
first stage will contribute to the collection of relevant candidates. The second stage performs 2 rounds of inference
decision based on different metrics with different input information from candidate pool. The final decision is based

on the 2 inferences.

To analyze the relationship between authors and re-
search topics, we leverage Information Entropy and
perform a statistical analysis. Specifically, for each
author, we evaluate the randomness and diversity
of the involved research fields via:

N
H(T) ==Y p(T;)logy p(T3), (1)
=1

where p(T;) represents the probability of an au-
thor’s papers belonging to topic 7;. Higher entropy
suggests greater diversity in research areas, while
lower entropy indicates topic consistency, aiding in
author identification.

In the violin plot shown in Fig. 1, we observe that
only a small subset of authors exhibit high entropy
and diversity across research fields. In Fig. 2, we
also visualize the extent to which authors in a given
field also conduct research in other fields. Strong
diagonal activations suggest a high likelihood of
topic overlap within an author’s publications.

Based on the correlation of topics between au-
thors’ different papers above, we can rely on this
to search for the author. Therefore, we need some
keywords which can summarize the topics from

anonymous text and be utilized for searching the
relevant articles. This is where LLMs can help in
our candidate selection stage - keyword generation.
These candidate articles will be used further in the
next stage of decision-making.

Keywords Generation. The keywords gener-
ated need to accurately capture the contents of the
anonymous input for the effective searching of the
relevant articles. Therefore, we decided to generate
the relevant keywords in hierarchies to describe the
anonymous content. The different levels should
range from general (level 1) to specific (level 5). In
this way, we can search from the most specific to
the most general to get the relevant articles as our
candidates prepare for the next stage of decision-
making.

Few-shot Prompting. If we ask LLMs to gener-
ate the keywords directly in hierarchies, the output
may be in different formats and the quality of gen-
eration is not guaranteed by the simple instruction
of "Generate 5-level keywords". Few-shot prompt-
ing is utilized for LLMs to demonstrate how the
response should look. We will manually create
an example 6 and use it as an example within the
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CDF of Citation Similarity: Same vs. Different Authors
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Figure 4: This figure presents the cumulative density
plot (CDF) of citation similarity as it increases. The
varying rate of cumulative percentage growth indicates
that articles within the same topic tend to exhibit higher
citation similarity.

prompt. This will maximize the possibility of ef-
fective keyword generation which follows our pro-
posed method.

Candidates Search & Collect. Different levels
of the keywords will be sent to the search engine to
collect the potential candidates. The search engine
we choose is Scholar Inbox which has a semantic
section to input the different level keywords. In
each search result of the level keywords, we de-
cided to collect the first 20 papers with their respec-
tive titles, authors and abstracts. If the searched
article provides an arxiv link, we will try to retrieve
the introduction and citation to help the stage 2
decision-making.

Appending Self-citation. Most authors tend to
cite their previous works, especially when focused
on a specific research area. This characteristic in-
creases the likelihood of successfully including the
true author in the candidate pool, which serves as
the foundation for Stage 2. To leverage this, we in-
corporate self-citation into our candidate selection
process, and their metadata is retrieved through
web scraping to enhance the effectiveness of our
decision-making.

3.3 Authorship Decision

LLMs also show their great capability in analyz-
ing large-scale data. Therefore In this stage, after
creating our potential candidate pool, we need to
enable LLMs to decide the most possible author.
However, direct instruction like "Please decide the

Algorithm 1 Open World Authorship Attribution

: Input: Anonymous article
: Prompts: metrics = {style, citation}
: Output: Final attributed author
: Step 1: Keyword Generation
# Extract representative keywords using LLMs:
keywords <— LLM s(x, Prompts, Example)
: Step 2: Candidates Collection
: for each level in keywords do
# Use web scraping to collect potential authors and
articles:
9:  CandidatePool += WebScraping(level)
10: end for
11: Step 3: Iterative Filtering by Metrics
12: for i = 1 to |metrics| do
13: # Use LLMs to rank authors based on current metric:
14:  TopAuthors < LLM s(x,CPool, metrics;)
# Append with the top-ranked authors:

15: CandidatePool < TopAuthors
16: end for
17: Step 4: Final Attribution

#determine the most likely author from Top Authors:
18: FinalAuthor < LLM s(x,TopAuthors)
19: Return: Final Author

B W =

P

most possible author from the candidate pool" is
not detailed enough for LLMs to accurately de-
cide the most possible author. Therefore, we estab-
lish different metrics to guide LLMs in identifying
the most probable author step by step. Chain-of-
Thought (CoT) (Wei et al., 2023) prompting is a
technique designed to enhance the reasoning capa-
bilities of large language models (LLMs) by guid-
ing them to generate intermediate reasoning steps
before arriving at a final answer. This approach
mirrors the human thought process, and by simu-
lating it, LLMs can achieve more accurate analysis
and decision-making outcomes.

For each metric, we ask the LLMs to list the
top 5 authors that most match the metrics. In the
last step, we input all the decision results from its
decision and let LLMs decide the most possible one
holistically. In this way, we can identify the most
possible author. LLMs will perform 3 rounds of
most possible author inference based on contents,
writing styles, and citation similarities. The full
prompting can be referred to in Appendix 7.

3.3.1 Contents

As mentioned in the above section, due to the
similarities of authors chosen topic in their pub-
lished paper, content is the important metric to
determine the actual author (Halvani and Graner,
2021; Potha and Stamatatos, 2019). the specific
metrics within the contents is preferred topics and
Domain-Specific term used in the writing. We will
input author names, titles, abstracts and introduc-
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tion (not every paper have) from the candidates
pool for LLMs inference.

3.3.2 Writing Style

Relying on stylometry is the traditional way of
authorship attribution. Evolving from the human
skills in identifying (Argamon et al., 2009), compu-
tational methods gradually become the main trend
in the analysis of authors’ unique linguistic fea-
tures in stylometry methods(Lagutina et al., 2019;
Neal et al., 2017). Machine learning methods with
LLMs further advance the computational methods
with their powerful ability to extract features (Boen-
ninghoff et al., 2019; Kojima et al., 2022).

In our proposed method, we also utilize writing
style as an important factor in identifying the author
from our collected candidate pool. Different people
have different habits or underlying characteristics
in writing. Some typical metrics are repetition Pat-
terns in words and phrases (Sharma et al., 2018b),
sentence complexity, paragraph structure, sentence
length and variation.

To demonstrate the importance of writing style in
differentiating authors, we select three paragraphs
from three articles—two written by the same au-
thor and one by a different author(Appendix 7). To
eliminate the influence of topic variation, all three
articles cover the same subject. We then prompt
GPT-4o to analyze the texts and determine which
two paragraphs are authored by the same individ-
ual. GPT-40 demonstrates its ability to make this
distinction based on factors such as writing tone,
repetition patterns, sentence complexity, and para-
graph structure.

In this metric, we have the same input as content-
based inference which is title, author, abstract and
introduction.

3.3.3 Citation Similarity

As mentioned above, the topics for an author’s
published papers are largely overlapped. This may
also indicate that the literature review - citations of
an author tend to be similar. In other words, the
author has a preference for some citations and they
may prefer to reuse these citations in their other
works. Based on this assumption we establish the
third metric which is the citation similarities. In
this stage, we only utilize the author names, articles
titles with the corresponding citations as the input
for the LLMs.

We conduct a citation similarity analysis on our
collected dataset, calculating the similarity between

the citations of test articles and titles authored by
the same or different authors. The plotted cumu-
lative distribution function (CDF) Figure 4 illus-
trates the distribution of citation similarity under
the same or different authors. Approximately 40%
of the articles exhibit similar citation match proba-
bilities between the same author and different au-
thors. However, the remaining 60% show a clear
distinction in citation similarity. In general, arti-
cles written by the same author tend to have higher
citation similarity values.

4 Experiments

4.1 Experimental Setup

Models. We choose nowadays popular LLMs to
conduct the test. We download the open source
Meta-Llama-3.1-8B-Instruct (Grattafiori and et al.,
2024) for the initial test with both abstract-only and
abstract-plus-introduction as input information in-
put. We also use the recent GPT-40-mini (OpenAl
et al., 2024) to conduct the test. GPT-40-mini was
accessed and tested via API requests.

Dataset. Due to a lack of academic paper
datasets available online, We self-collected our
dataset for our testing. Our dataset includes 300
authors, with 5 papers selected for each author. To
ensure relevance and keep the writing style of the
author, we only selected the paper where the au-
thor is listed as the first author or second author
of the paper. For every author, the first paper we
collected is ensured to be the most recent published
from the author (simultaneously ensuring the au-
thor is the first author), which can minimize the
possible bias that the paper is included as the pre-
training data of the popular LLMs. To facilitate the
extraction of relevant information such as authors,
titles, abstracts, introductions or citations, we col-
lect the paper link in the sample. Additionally, we
assume that the authors’ papers are published on
the arxiv.org website. Hence, all the paper links are
arxiv links. For every test, we use every author’s
first paper as the anonymous text input. The rest 4
papers are used for other analysis.

Implementations. Meta-Llama-3.1-8B-Instruct
model was downloaded and deployed on 4-10 RTX
4090 GPUs, with the max new token set to 2000
to guarantee complete output. GPT-40-mini was
utilized through API request. The maximum input
tokens for GPT-40-mini is about 200K. During the
searching process, if we collect the same article
as our anonymous test input, we will ignore it as

17749



Table 1: Test Results of Two Stages: Candidate Selection and Authorship Decision. Extra test results from

non-CVPR datasets are shown in Appendix 5

STAGE 2 (%)

MODEL ‘ STAGE 1 ‘
‘ (%) ‘ CONTENT WRITING STYLE  CITATION SIMILARITY FINAL ACCURACY
| | Top1  Top5 | Tor1  Top5 | Topl Top 5 | (%)
LLAMA-3.1-8B 60.7 19.0 47.0 21.3 21.3 52.0 57.0 31.3
GPT-40-MINI 56.3 27.3 52.3 36.3 61.3 49.3 66.0 41.3
Table 2: Classification Report of Different ML Models
METHODS MODEL ‘ WRITING STYLE ‘ CITATION ‘ FINAL SCORE (%)
| Tor1  Tops | Torl Tops |
LIP LLAMA-3.1-8B 10.0 18.3 - 8.7
(HUANG ET AL, 2024)  GpT 40.min1 | 6.7 17.7 ; 9.3
DEEPSEEK-V3 4.0 21.7 - 10.3
AIDBENCH LLAMA-3.1-8B 9.7 18.0 - 10.0
(WENETAL.,2024)  Gprgo-mini | 113 21.7 ; 11.3
DEEPSEEK-V3 6.3 23.0 - 11.67
LLAMA-3.1-8B 8.7 16.0 12.3 20.0 11.6
OUR METHOD
GPT-40-MINI 18.0 29.7 15.0 26.7 17.7
DEEPSEEK-V3 9.3 30.7 7.7 28.7 18.7

the assumption of our method is that the test paper
should not appear on the website.

Evaluations. Our evaluations are divided into 2
parts, the first part is to examine the effectiveness
of searching and collecting the true author from the
crawling based on the generated keywords from
LLMs. The second part is to examine the ability
of the LLMs to identify the true author from the
candidates pool. If the first stage fails to collect the
true author, we add the same authors’ other papers
from our dataset to the candidate pool and allow
the LLMs to reattempt the stage 2 test.

Baseline. We identify related baselines (Wen
et al., 2024; Huang et al., 2024) that also employ
prompt-based methods, closely aligning with our
approach. Both methods emphasize writing style
analysis within their prompts. Accordingly, we
adopt these baselines in the authorship decision
stage and apply them to the same candidate sets
produced by our candidate selection method. This
setup ensures a fair comparison under consistent
input conditions.

Additionally, we conducted an overall score eval-

uation, as our proposed method is an automated,
end-to-end process. This test measures the percent-
age of cases where the correct author is success-
fully selected and identified throughout the entire
pipeline.

Multi-Conversation Handling. The input to-
ken limits of OpenAl API requests are 128,000
to 200,000 tokens. When the input token number
exceeds the token limitations due to additional in-
formation such as citation and introduction, or a
large number of papers collected in the candidate
pool, we implement a hierarchical batch process-
ing approach. The candidate pool is divided into
equal-sized batches, with each containing almost
same number of candidates. We first identify the
top 5 candidates from each batch independently.
These preliminary selections are recorded and sub-
sequently aggregated to form a consolidated can-
didate pool. We then extract the complete infor-
mation profiles for these candidates from the origi-
nal dataset, enabling a comprehensive final evalua-
tion. In this way, we construct small candidate pool
based on each metrics and then make the holistic

17750



Table 3: Ablation experiment by using different input and different prompts. The experiment was conducted using

GPT-40-mini.
‘ METRICS FOR PROMPTING ‘ FINAL
INPUT ACCURACY (%)
‘ CONTENT  WRITING STYLE  CITATION SIMILARITY ‘

ABSTRACT Vv N4 26.0
ABSTRACT+INTRO+CITATION Vv Vv 39.7
ABSTRACT+INTRO+CITATION vV V4 4 41.3
ABSTRACT+INTRO+CITATION ‘ Vv Vv 443

Table 4: Evaluating the accuracy of searching the correct
author’s other published articles in our stage 1. The
keywords are generated by Llama-3.1-8B.

KEYWORD INSTRUCTION STAGE-1 Acc. (%)

NO INSTRUCTONS 7.3
FROM GENERAL TO SPECIFIC 12.0
WITH LEVELS 15.7
SELF-CITATION 55.3
WITH LEVELS + SELF-CITATION 60.7
19 Model Final Score Comparison
/%
18 12.6% 18.3% 18.1%
17
S
o 16
3
& 15
214
[T
13
12
Llama-3.1-8B GPT-40-mini GPT-40 DeepSeek-V3
Model

Figure 5: The final Score comparison across different
models using our methods.

decision of the final author.

4.2 Results

First, the experiment results of Stage 1 and Stage 2
are summarized in Table 1. In Stage 1, we utilize
our hierarchical levels to guide the models in emu-
lating the keyword generation process. Each level
serves as a basis for retrieving candidate authors,
which are then used in Stage 2 for decision-making.
Additionally, we incorporate citation information
from the anonymous articles into our candidate
pool to enhance selection accuracy. Using key-
words generated by Llama-3.1-8B, we achieved an
accuracy of 59.3%. Keywords emulated and gen-

erated by GPT-40-mini are slightly less effective,
yielding an accuracy of 56.3%.

In Stage 2, we collect information about the can-
didate authors and input this data into LLMs for
reference-based evaluation using three key metrics:
content similarity, writing style, and citation sim-
ilarity. Across all three metrics, Top-5 accuracy
consistently exceeded 50%. Among these metrics,
writing style outperform content similarity in dis-
tinguishing authors. However, citation similarity
achieves the highest accuracy, with Top-1 accu-
racy reaching 52% for Llama-3.1-8B and 49.3%
for GPT-40-mini. Finally, by integrating these three
metrics, our final decision accuracies are 31.3% for
Llama-3.1-8B and 41.3% for GPT-40-mini.

We also experiment to evaluate the overall accu-
racy by combining Stage 1 and Stage 2 (Table 2).
The final score indicates the probability of correctly
identifying the author from searching to authorship-
decision, Our method achieves the best results us-
ing GPT-40-mini (17.6%), outperforming the base-
line models LIP (Huang et al., 2024) and AID-
Bench (Wen et al., 2024) in both Llama and GPT
models.

To validate the effectiveness of our proposed hi-
erarchical keyword levels for candidate collection,
we conduct ablation experiments on keyword anal-
ysis in Table 4. The results demonstrate that using
different prompts leads to varying search perfor-
mance. When applying our proposed levels, we
achieve an accuracy rate of 15.7%. Furthermore,
when combined with self-citation, the overall accu-
racy increases significantly to 60.7%.

We also investigate the impact of incorporating
the introduction and citation in author attribution
in Table 3, finding that it significantly improves the
LLMs’ ability to identify the correct author, with
accuracy increasing from 26% to approximately
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40%. When prompting the model to perform infer-
ence based on content, writing style, and citation
similarity, the results are slightly lower than the
accuracy achieved using only writing style and ci-
tation similarity (44.3%).

Finally, in Figure 5, we achieve the highest over-
all score of 18.3% using the latest GPT-40 model.

5 Conclusion

In this paper, we introduce the first benchmark
and dedicated solution for Open-World Authorship
Attribution. Leveraging recent advancements in
LLMs, we propose a two-stage pipeline: candidate
selection and authorship decision. In the first stage,
multi-levels keywords extracted from the target pa-
per are used to search the Internet. The retrieved
results, combined with citation lists, form a pool
of potential candidates. In the second stage, LLMs
infer authorship based on writing style and cita-
tion similarity from these candidates. Extensive
experiments demonstrate the effectiveness and su-
periority of our approach over multiple potential
baseline methods.

6 Limitations

Table & Figure Features. Another distinguish-
ing feature in authorship attribution is the unique
preferences authors showcase in structuring and de-
signing their tables and figures. These characteris-
tics manifest in various ways, including the choice
of color palettes, where some authors consistently
favor specific hues or grayscale representations.
Differences also emerge in plotting styles, such
as the use of bar charts, scatter plots, heatmaps,
or line graphs, along with variations in grid us-
age, axis formatting, and legend placement. Label-
ing and annotation preferences also contribute to
stylistic distinctions, as authors may differ in font
choices, caption positioning, and the inclusion of
callout markers. Additionally, the structuring of
tables varies, with some researchers favoring de-
tailed grid layouts while others opt for minimalistic
designs with selective use of horizontal and vertical
lines. Another notable characteristic is the number-
ing and referencing approach, with some authors
preferring “Figure 1” while others use “Fig. 1,”
along with variations in how they cross-reference
visual elements within the text. In future work, we
aim to systematically analyze and quantify these
stylistic preferences, leveraging feature extraction
techniques and deep learning models to explore

how visual elements can enhance authorship attri-
bution accuracy.

Large input. Since our method follows an open-
world authorship attribution approach with an end-
to-end pipeline, it requires collecting a substantial
amount of information as input for the LLMs. This
often exceeds the maximum token limit of many
models, which results in extra strategies to handle
multi-turn conversations, as these models do not
have built-in memory functions.

7 Future Work

Source Code. The code will be made available to
facilitate reproduction of our results.

Low Final Score. The methodology we present,
along with our dataset, provides valuable resources
for further advancement in this field. Our work
establishes an important foundation and benchmark
upon which future research can build more robust
and accurate solutions. However, we acknowledge
that the final accuracy scores still have a large room
for improvement to support real-world high-stakes
applications like plagiarism detection or forensic
analysis. We will continuously find new methods
to improve the result.

More LLMs for Testing. Currently, we use
LLaMA, the GPT series, and DeepSeek as our pri-
mary models for testing. Other LLMs, such as
Claude, may not support large input token lengths
like GPT, making inference cumbersome. We will
continue to monitor the availability of other LLMs
and plan to include them in future experiments.

Impact of Author Position. In this paper, we
curate the dataset using the first and second authors
as the label. Our primary assumption is that first
and second authors typically contribute most sig-
nificantly to the writing style and content of papers,
making them more suitable for authorship attribu-
tion. We will investigate how different authorship
positions as well as co-authorship affect the perfor-
mance in the future.

Search Engine & Collection of Papers. Cur-
rently, our candidate pool is generated solely
through Scholar Inbox, which offers convenient
access to paper searches. In future work, we plan
to develop additional agents to support more search
engines.

For the choice of retrieving the first 20 papers, it
is based on practical considerations, which provide
a good balance between search time and search
accuracy, allowing us to identify the right author
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with a reasonable trade-off. In the future, we will
analyze how different search engines, ranking al-
gorithms, and retrieval counts affect the overall
performance of our method.

More Baselines. Although there are still many
baselines that could be discussed, some remain
impractical for our specific setting. For exam-
ple CAVE (Ramnath et al., 2025) is designed for
pairwise authorship verification between two texts.
which makes it impractical for identification with
100 candidates. The Bayesian Approach method
(Hu et al., 2024) requires retrieving the logits of
each token predicted by open-source LL.Ms, mak-
ing it computationally expensive in both runtime
and memory for our setting. Due to the lack of
publicly available source code for reproduction and
the complexity and intricate details of the method,
it is challenging for us to accurately implement the
method. We will continue to explore and incorpo-
rate new methods into our comparisons to further
enrich our dataset.
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A Appendix

A.1 Ethical Discussion

The application of this method may lead to unintended consequences, such as identifying authors during
the Open Review stage of anonymous submissions, which would constitute an inappropriate and unethical
use of our approach. Misuse of this technique in peer review processes could compromise the integrity of
double-blind evaluation systems, introducing bias in scholarly assessments.

To mitigate such risks, we strongly advocate for the ethical application of our method in domains where
it can serve as a tool for transparency, accountability, and integrity. These include plagiarism detection,
where it can help identify unauthorized reproduction of content; authenticity verification, which ensures
the legitimacy of texts to detect spam and fraudulent writing; and forensic linguistic analysis, where
attribution techniques contribute to research integrity.

Furthermore, we emphasize the importance of responsible deployment, encouraging institutions, pub-
lishers, and Al practitioners to implement strict ethical guidelines when leveraging authorship attribution
technologies. By doing so, we can ensure that such methods are used only in contexts that promote
fairness, trust, and the credibility of research and publishing.

A.2 Cost Discussion

During testing, the primary cost is associated with API access to OpenAl models. GPT-40-mini and
GPT-40 are priced at 0.15 and 2.50 USD per million input tokens, respectively. Due to the large input
size generated by our candidate pools, each test round involving 300 authors incurs an estimated cost of 5
USD when using GPT-40-mini and 50 USD per round when using GPT-4o0.

A.3 Effectiveness Analysis of Multi-Level Keywords Retrieval

Search Effectiveness Across Multi-Levels (With Levels VS No Levels)

Multi-levels Keywords Example 25 || M No Levels
. =3 With Levels
Level 1: General Topics ‘ . éz‘:;’z;sg:;e Concepts
- Efficient Dge_p L_earning - Neural Language Models
- Model Optimization ‘ - Efficiency and Optimization in Al Models 20
: ]
L - ' ©
' Leve! 3: Specific Techniques and Methods Level 4: Task-Specific Approaches and = | °
i | - Pruning Metrics : =15
- Structured Pruning - CoFi (Coarse- and Fine-grained Pruning) | ! ]
- Coarse-Grained Pruning (Layer-based) ey RErE e : H
: - Fine-Grained Pruning (Heads, Hidden - Accuracy vs. Model Size Trade-Off @
+ | Units) . . c
! | - Knowledge Distillation - Parallelizable Subnetworks g 10
H - Layerwise Distillation o
- Model Distillation Techniques H
Level 5: Applications and Evaluation X :
- Benchmark Datasets Input for : 5
- GLUE ; :
- SQUAD Searching 3
- Efficiency Metrics H -
- Speedups J K 0
- Accuracy Drop Levell Level2 Level3 Level4 Level5

B EEEEEEEEEal Levels

Figure 6: Our proposed Multi-Levels keywords serve as the foundation for searching and collecting candidate
authors. These keywords are used as example prompts for LLMs to generate emulated results. The Keywords Level
Analysis evaluates the effectiveness of each multi-levels in the search process, comparing the results against those
obtained without any guiding instructions.

A.4 Expand the Dataset

Here, we expand our dataset to include authors from other fields beyond computer vision. We collect data
from 54 additional authors: 20 from mathematics, 10 from quantitative finance, and 24 from economics.
We conduct evaluation using GPT-40-mini across these new domains, and the results shown below
demonstrate the effectiveness of our method beyond the field of computer vision.
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Table 5: GPT-40-mini results of 54 additional authors in fields of mathematics, finance, physics and economics.

STEP1 ACCURACY(%) STEP2Tor 5 Acc(%) STEP2Tor 1 Acc(%)
61.11 90.90 21.67

Table 6: Categories & Groups in Heatmap

Groups Categories Groups Categories

1 3D Vision and Reconstruction 16 Natural Language Processing (NLP)

2 Medical Imaging and Diagnostics 17 Scene Understanding and Parsing

3 Image Processing and Enhancement 18 Tracking and Re-Identification

4 Video Understanding and Generation 19 Federated and Distributed Learning

5 Vision-Language Models 20 Al Ethics and Explainability

6 Generative Models and Techniques 21 Physics and Scientific Topics

7 Object Detection and Recognition 22 Data Representation and Augmentation

8 Semantic and Instance Segmentation 23 Audio and Speech Processing

9 Adversarial Techniques and Robustness 24 Emotion and Human-Centric Applications
10 Optimization and Efficiency 25 Novel Applications and Emerging Topics
11 Robotics and Navigation 26 Large Language Models (LLM)

12 Graph Neural Networks and Hyperbolic Models | 27 Neural Architecture Optimization

13 Multimodal and Hybrid Models 28 Other

14 Scientific Modeling and Mathematics 29 Deep Learning and Foundational Models
15 Self-Supervised and Semi-Supervised Learning

Table 7: Full Instruction & Prompting used in decision stage based on 3 different metrics: Content, Writing Style
and Citation Similarities.

Metrics Instruction as Input

Content I will provide the information of the anonymous article’s title, abstract, dataset, introduc-
tion or extra information, please remember them. Then, Please choose the top 5 possible
articles’ author(s) among all the candidates with their corresponding information. In this
time, Decide the author(s) based on the Content like topics covered. You need to evaluate
based on metrics focused on contents includes:(a) Preferred Topics: Common themes or
subjects frequently addressed by the author. (b)Domain-Specific Terms: Use of jargon or
technical language tied to the author’s expertise. Now i will start to give you the list of
candidates for you to decide!

Writing Style Please choose the top 5 most possible articles’ author(s) among all the candidates with
their corresponding information. In this time Decide the author based on the writing style.
Metrics for evaluation include: (a) Writing Tone: Formal, casual, emotional, or neutral
tone in the text; (b) Repetition Patterns: Tendency to repeat certain ideas, phrases, or
structures; (c) Complexity: Use of compound or complex sentences, and overall readability
level; (d) Paragraph Structure: Length and organization of paragraphs; (e) Vocabulary
Usage: Word choices, diversity, and domain-specific terms; (f) Punctuation Patterns:
Frequency and style of punctuation usage; (g) Sentence Length and Variation: Average
length and variability of sentences; (h) Personal Pronouns and Voice: Usage of pronouns
and active/passive voice; (i) Lexical Density: Ratio of content words to function words; (j)
Rhythm and Flow: Natural sentence progression and rhythm.

Citation Similarity Please choose the top 5 most possible articles’” author(s) among all the candidates with
their corresponding information. In this time Decide the author based on the citations.
Different papers with the same author tend to share similarities in references. Therefore,
please refer to References and Sources: Citation patterns, including the types of resources
cited (e.g., scholarly papers, blogs).
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Examples GPT-40 Output Analysis

ﬁe growing size of neural language models has led to increaseh Writing Tone: formal, technical, and \
attention in model compression. The two predominant approaches methodologically focused.
are pruning, ..., and distillation, ... but hardly achieve large speedups Repetition Patterns: "pruning,” "distillation," and
- 0 as distillation. However, distillation methods ... In this work, we "models".
5 propose a task-specific structured pruning method CoFi (Coarse- Complexity: short explanatory sentences, with longer
= § ~ and Fine-grained Pruning), which delivers highly parallelizable descriptive ones
8 L§ subnetworks and matches the distillation methods in both accuracy Paragraph Structure: Context — Methods —
and latency, without resorting to any unlabeled data. Our key insight Limitations — Proposal — Innovation — Optimization
is to jointly prune coarse-grained (e.g., layers) and fine-grained — Results
(e.g., heads and hidden units) modules, which controls the pruning Pacing: Balanced pacing, with a logical flow from
decision ... problem to solution.

“

o . . - L \ Writing Tone: f | and demic, F Id\
xisting methods, however, require either retraining, which is rarely v e B USSR, [ A

affordable for billion-scale LLMs, or solving a weight reconstruction eI, bk S“g.h“y eI Gt [ Gs e i
5 5 i i problem and solution.
problem reliant on second-order information, which may also be " . . - T
-0 X . . - Repetition Patterns: "magnitude pruning,” "sparsity,
e computationally expensive. In this paper, we introduce a novel, e e
S §~ straightforward yet effective pruning method, termed Wanda . P
= N : K A - Complexity: Moderate complexity with sentences that
ISES (Pruning by Weights and activations), ..... Notably, Wanda requires .
SRt e . are slightly less dense
= no retraining or weight update, and the pruned LLM can be used as ] -
y p—— . . Paragraph Structure: Context — Existing Challenges
& ..... Wanda significantly outperforms the established baseline of P
. . o E — Methods — results. More descriptive.
magnitude pruning and performs competitively against recent . ’ . .
7 N 5 o Pacing: Smooth and engaging, with emphasis on
method involving intensive weight update.
\ / welty and results. /
(The popularity of LLaMA (Touvron et al., 2023a;b) and other recently / \
emerged moderate-sized large language models (LLMs) highlights Writing Tone: Highly formal and methodically detailed
the potential of ..... ... remains high. In this work, we study structured Repetition Patterns: "pruning," "distillation," and
- pruning as an effective means to develop smaller LLMs from pre- "models".
§ = trained, larger models. Our gpproagh employs two key techniques: Complexity: High complexity, with intricate
N § o | (1) targeted structured pruning, which prunes a larger model ....(2) sentence structures
8 IE dynamic batch loading, ....\We demonstrate the efficacy of our Paragraph Structure: Motivation — Objectives —
approach by presenting ... Sheared-LLaMA models outperform Methods — Challenges — Concluding aim.
state-of-the-art open-source models of equivalent sizes, ...while Pacing: Deliberate and logical, with significant
requiring only 3% of compute compared to training such models emphasis on methodology and results.

Text 1 and Text 3 are likely from the same author:

\ from scratch. .... / \ /
\

« Both share a highly formal tone, dense complexity, and methodologically detailed structure.
o The logical flow and pacing are consistent, starting with context, delving into the method, and ending with resuilt.

Text 2 differs from Texts 1 and 3:

o Text 2 is more descriptive and narrative, focusing on simplifying the explanation.
« While it discusses pruning, it lacks the granular detail and precision seen in Texts 1 and 3.

Text 1 and Text 3 exhibit strong similarities in writing style /

Figure 7: The GPT-40 analysis was conducted on three selected texts. To minimize the influence of topic variation
on the LLM’s ability to determine authorship, all three texts were chosen to focus on the same topics: model pruning
and large language models (LLMs). The first and third text are from the same author (Xia et al., 2022, 2024).
Therefore the analysis shown LLMs’ ability to distinguish and identify authors based on writing style.
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Table 8: Full Example of Different Writing Styles. Example 1 (Xia et al., 2022), Example 2(Sun et al., 2023),
Example 3(Xia et al., 2024).

Class Abstract

Example 1 The growing size of neural language models has led to increased attention in model
compression. The two predominant approaches are pruning, which gradually removes
weights from a pre-trained model, and distillation, which trains a smaller compact
model to match a larger one. Pruning methods can significantly reduce the model
size but hardly achieve large speedups as distillation. However, distillation methods
require large amounts of unlabeled data and are expensive to train. In this work,
we propose a task-specific structured pruning method CoFi (Coarse- and Fine-
grained Pruning), which delivers highly parallelizable subnetworks and matches the
distillation methods in both accuracy and latency, without resorting to any unlabeled
data. Our key insight is to jointly prune coarse-grained (e.g., layers) and fine-grained
(e.g., heads and hidden units) modules, which controls the pruning decision of each
parameter with masks of different granularity. We also devise a layerwise distillation
strategy to transfer knowledge from unpruned to pruned models during optimization.
Our experiments on GLUE and SQuAD datasets show that CoFi yields models
with over 10x speedups with a small accuracy drop, showing its effectiveness and
efficiency compared to previous pruning and distillation approaches.

Example 2 As their size increases, Large Language Models (LLMs) are natural candidates
for network pruning methods: approaches that drop a subset of network weights
while striving to preserve performance. Existing methods, however, require either
retraining, which is rarely affordable for billion-scale LLMs, or solving a weight
reconstruction problem reliant on second-order information, which may also be
computationally expensive. In this paper, we introduce a novel, straightforward
yet effective pruning method, termed Wanda (Pruning by Weights and Activations),
designed to induce sparsity in pretrained LLMs. Motivated by the recent observation
of emergent large magnitude features in LLMs, our approach prunes weights with
the smallest magnitudes multiplied by the corresponding input activations, on a
per-output basis. Notably, Wanda requires no retraining or weight update, and the
pruned LLM can be used as is. We conduct a thorough evaluation of our method
Wanda on LLaMA and LLaMA-2 across various language benchmarks. Wanda
significantly outperforms the established baseline of magnitude pruning and performs
competitively against recent methods involving intensive weight update.

Example 3 The popularity of LLaMA (Touvron et al., 2023a;b) and other recently emerged
moderate-sized large language models (LLMs) highlights the potential of building
smaller yet powerful LLMs. Regardless, the cost of training such models from
scratch on trillions of tokens remains high. In this work, we study structured pruning
as an effective means to develop smaller LLMs from pre-trained, larger models. Our
approach employs two key techniques: (1) targeted structured pruning, which prunes
a larger model to a specified target shape by removing layers, heads, and intermediate
and hidden dimensions in an end-to-end manner, and (2) dynamic batch loading,
which dynamically updates the composition of sampled data in each training batch
based on varying losses across different domains. We demonstrate the efficacy of
our approach by presenting the Sheared-LLaMA series, pruning the LLaMA2-7B
model down to 1.3B and 2.7B parameters. Sheared-LLaMA models outperform
state-of-the-art open-source models of equivalent sizes, such as Pythia, INCITE,
and OpenLLLaMA models, on a wide range of downstream and instruction tuning
evaluations, while requiring only 3% of compute compared to training such models
from scratch. This work provides compelling evidence that leveraging existing LLMs
with structured pruning is a far more cost-effective approach for building smaller
LLMs.
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