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Abstract

Recent advancements in multimodal Large Lan-
guage Models (LLMs) have significantly en-
hanced the automation of medical image analy-
sis, particularly in generating radiology reports
from chest X-rays (CXR). However, these mod-
els still suffer from hallucinations and clini-
cally significant errors, limiting their reliabil-
ity in real-world applications. In this study,
we propose Look & Mark (L&M), a novel
grounding fixation strategy that integrates radi-
ologist eye fixations (Look) and bounding box
annotations (Mark) into the LLM prompting
framework. Unlike conventional fine-tuning,
L&M leverages in-context learning to achieve
substantial performance gains without retrain-
ing. When evaluated across multiple domain-
specific and general-purpose models, L&M
demonstrates significant gains, including a
1.2% improvement in overall metrics (A.AVG)
for CXR-LLaVA compared to baseline prompt-
ing and a remarkable 9.2% boost for LLaVA-
Med. General-purpose models also benefit
from L&M combined with in-context learn-
ing, with LLaVA-OV achieving an 87.3% clini-
cal average performance (C.AVG)—the high-
est among all models, even surpassing those
explicitly trained for CXR report generation.
Expert evaluations further confirm that L&M
reduces clinically significant errors (by 0.43
average errors per report), such as false predic-
tions and omissions, enhancing both accuracy
and reliability. These findings highlight L&M’s
potential as a scalable and efficient solution for
AI-assisted radiology, paving the way for im-
proved diagnostic workflows in low-resource
clinical settings.

1 Introduction

Recently, the advent of multimodal Large Lan-
guage Models (LLMs), in which vision encoders
are integrated with powerful language generation
models, has significantly advanced the automa-
tion of medical image analysis (Li et al., 2023,

2024b; Wu et al., 2023a; Yildirim et al., 2024; Saab
et al., 2024). Chest X-ray (CXR) interpretation, in
particular, has benefited greatly from these devel-
opments: by ingesting both image and text data,
modern LLMs can generate radiology reports, per-
form visual question answering, and even conduct
error-checking in clinical documents (Hyland et al.,
2023; Chen et al., 2024b; Lee et al., 2023; Wu et al.,
2023b, 2024a).

Despite these advances, hallucinations, outputs
diverging from actual image content, remain a ma-
jor obstacle for real-world applications of these
models, reducing the trust and clinical userabil-
ity. (Xiao et al., 2024; AlSaad et al., 2024; Chen
et al., 2024a; Wu et al., 2024b). One promising
way to overcome these hallucinatory behavior is
by incorporating expert insights directly into the
model pipelines. Several studies have shown that
integrating human input with AI models can sub-
stantially boost both accuracy and reliability, some-
times surpassing the performance of either clini-
cians or AI models alone (Calisto et al., 2022; Patel
et al., 2019). Two relevant sources of expert knowl-
edge in radiology are (1) bounding boxes, which
are rectangular markers that radiologists draw to
highlight suspicious regions in medical images, and
(2) radiologist eye fixations, which reveal the nat-
ural diagnostic process by tracking where doctors
look and how long they spend examining different
areas of a chest X-ray.

Bounding box annotations help localize the
language output in well-defined spatial coordi-
nates, reducing the risk of free-form hallucinations
and improving multimodal large language model’s
“grounded” report generation ability (Bannur et al.,
2024). Meanwhile, eye-tracking data offers in-
sights into the contextual logic clinicians apply,
indicating not only the spatial information but also
the order of saliency for the spatial information.
This additional information enhanced the capabil-
ities of multimodal LLMs in CXR interpretations
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Method Uses Gaze Uses BBox LLM-Based Training-Free Report Generation

MAIRA2 (Bannur et al., 2024) ✗ ✓ ✓ ✗ ✓
CXR Fixation (Kim et al., 2024b) ✓ ✗ ✓ ✗ ✗
FG-CXR (Pham et al., 2024) ✓ ✓ ✗ ✗ ✓
Ours (Look & Mark) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of related methods. Our method is the only one that is LLM-based, training-free (prompt-only),
and integrates both radiologist gaze and bounding box information for report generation.

including report generation (Kim et al., 2024a,b).
Each approach brings a complementary perspec-
tive: bounding boxes offer explicit “marks” of sus-
picious regions, whereas fixation data conveys their
relative significance with the duration of "looking".

In this work, we propose “Look & Mark”: a
grounding fixation strategy for CXR report gen-
eration that merges radiologist eye fixations with
bounding box annotations in multimodal LLMs.
Crucially, we avoid large-scale model retraining
by employing in-context learning or prompt engi-
neering. Through bounding box coordinates, we
provide precise “marks” that ground suspicious
regions, while eye fixations encode how expert ra-
diologists spatially and temporally navigate those
regions. This grounding fixation can significantly
reduce hallucinations and clinically significant er-
rors by generating more coherent, clinically rele-
vant CXR reports.

The contributions of our work are as follows:

• Novel Integration Framework - Performance
improvement Without Re-Training: We pro-
pose a systematic approach for combining spatial
(bounding boxes) and temporal (eye fixations)
expert knowledge in a single unified framework,
enabling more comprehensive image understand-
ing that mirrors expert diagnostic processes with-
out re-training for domain adaptation or task spe-
cific fine-tuning.

• Fewer Hallucinations and Errors: We show,
through radiologist expert evaluations, that
grounding fixation strengthens the alignment of
generated text with the ground truth reports, mit-
igating one of the most pressing drawbacks of
large-scale LLM-based solutions for radiology.

• Comprehensive Evaluation Across Multiple
LLMs: We validate Look & Mark on several
general-purpose and medical multimodal LLMs,
demonstrating consistent gains in accuracy.

2 Related Works

2.1 MAIRA2: Grounded Radiology Report
Generation

MAIRA2 is a large multimodal radiology-specific
model designed for grounded report generation
(Bannur et al., 2024). The model incorporates
bounding box annotations as spatial constraints,
ensuring that each finding in the generated report
is explicitly localized on the CXR image. By
grounding language outputs in bounding boxes,
MAIRA2 mitigates hallucinations and improves
alignment between generated text and image con-
tent. Additionally, the model integrates contex-
tual inputs, such as prior imaging studies and clini-
cal indications, to further enhance report accuracy
and completeness. Despite its strong performance,
MAIRA2 focuses solely on bounding box ground-
ing and does not incorporate the dynamic reasoning
patterns captured through radiologists’ eye fixa-
tions.

2.2 Chest X-ray Diagnosis with Eye Fixation

Kim et al.(Kim et al., 2024b) explored the role
of radiologists’ fixation data in guiding multi-
modal LLMs for CXR analysis. By incorporating
fixation-based textual prompts and aligning fixa-
tions with anatomical bounding boxes, the study
demonstrated improvements in classification tasks
such as diagnosis and report error-checking (pres-
ence or absence). However, the study primarily
focuses on diagnostic tasks and does not address
the report generation task directly. It also does not
leverage bounding boxes of abnormalities. Our
work addresses these gaps by combining gaze in-
formation with abnormalities’ bounding boxes to
guide multimodal LLMs more effectively in gener-
ating radiology reports.

2.3 FG-CXR: Fine-Grained Alignment of
Gaze and Text

FG-CXR is a dataset, which aligns radiologist gaze
Lmaps with anatomical segmentation masks and
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Figure 1: Overview of the Look & Mark framework. The input to the model consists of a chest X-ray image
augmented with two forms of expert-derived visual grounding: (1) Bounding boxes highlighting abnormal findings
(Mark), and (2) Radiologist eye fixations, converted into fixation heatmaps and summarized in the prompt as text
(Look). The bounding boxes are overlaid on the image as part of the visual input, while the fixation durations
mapped to abnormalities are embedded in the textual prompt. These dual cues are used to construct an in-context
prompt for a multimodal LLM, enabling it to generate clinically relevant, grounded radiology reports without model
retraining. To comply with the MIMIC-CXR data usage license, we use a substitute image from Wikimedia that
reflects a comparable diagnosis, and paraphrase the associated report text.

corresponding diagnostic report text (Pham et al.,
2024). This dataset was used to develop the Gen-
XAI framework, which generates CXR reports by
leveraging gaze attention Lmaps to ground textual
outputs in anatomical regions.

While FG-CXR advances interpretability in re-
port generation, it does not employ multimodal
large language models, instead relying on gaze-
linked text to train a specific vision and language
model. Furthermore, it lacks the use of bounding
box annotations to explicitly ground abnormalities
spatially. Our grounding fixation approach extends
this work by unifying gaze data within abnormali-
ties’ bounding boxes, improving the performance
of report generation tasks in multimodal LLMs
without requiring additional training.

3 Look & Mark

Figure 1 provides an overview of the workflow,
which includes preprocessing the input, construct-
ing multimodal prompts, and evaluating the output.

3.1 Abnormalities Bounding box Integration

Let the input image be I and the bounding boxes
of abnormalities be B = {b1, b2, . . . , bn}, where
each bounding box bi is defined as:

bi = (xi1, yi1, xi2, yi2, li), (1)

where (xi1, yi1) and (xi2, yi2) are the top-left
and bottom-right coordinates, respectively, and
li is the associated abnormality label (e.g., “Car-
diomegaly”). For each bounding box, an abnormal-
ity caption is assigned, as shown in Figure 1.

3.2 Eye Fixation Integration
Fixation data G = {g1, g2, . . . , gm} is represented
as:

gj = (xj , yj , tj), (2)

where (xj , yj) denotes the coordinates of the fix-
ation point, and tj is the duration of fixation at
that location. Each fixation point is mapped to a
corresponding bounding box bi in the set of bound-
ing boxes B = {b1, b2, . . . , bn}, which represent
regions of abnormalities in the chest X-ray.

The mapping is defined as:

M(gj , B) = bi if (xj , yj) ∈ bi, (3)

where bi = (xi1, yi1, xi2, yi2) defines the coor-
dinates of the bounding box. This mapping links
each fixation point to the associated abnormality
label li of the bounding box bi.

In cases where multiple bounding boxes contain
the same fixation point, we resolve the ambiguity
by selecting the smallest bounding box (i.e., the one
with the minimum area). This prioritization reflects
the assumption that tighter boxes offer more precise
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localization of abnormalities and ensures that each
fixation is attributed to the most relevant region.

For each bounding box bi, we compute the total
fixation time Ti, which represents the cumulative
duration of all fixations mapped to that bounding
box:

Ti =
∑

gj∈G,M(gj ,B)=bi

tj . (4)

The fixation data is formatted into textual
prompts following this template: Fixation Data:
[Abnormality bounding box: {label},
Fixation Time: {time} seconds]. This for-
mat encodes the temporal patterns of radiologist
attention for each identified abnormality.

As Figure 1 demonstrates, the bounding box
annotations are used as a visual prompt, provid-
ing spatial guidance to the model by highlighting
abnormalities directly in the image. The fixation
data linked to abnormalities is provided as a tex-
tual prompt, encoding temporal significance and
prioritization.

4 Experiments

4.1 Dataset

For this study, we used two primary datasets: the
REFLACX dataset as the source of eye fixation
data and dictated reports, and the MS_CXR dataset
as the source of abnormalities bounding boxes
(Bigolin Lanfredi et al., 2022; Boecking et al.,
2022). Both datasets are derived from the widely
used MIMIC_CXR dataset, which provides chest
X-ray images alongside corresponding findings and
impression sections of radiology reports (Johnson
et al., 2019).

The MIMIC_CXR dataset has served as a foun-
dation for many radiology report generation mod-
els, which often rely heavily on the findings and im-
pression sections for training and evaluation. How-
ever, several key challenges exist:
• Incomplete Annotations: Some chest X-ray

images in MIMIC_CXR lack findings or impres-
sion sections, reducing the reliability of these
sections as a sole reference for report genera-
tion.

• Low Inter-Rater Agreement: Interviews con-
ducted during the design of this study revealed
that even expert radiologists often disagree on
chest X-ray interpretations. This variability in
interpretation further questions the validity of
using a single ground-truth report per image.

• Free-Form Terminology: Radiology reports
are inherently free-form in style and terminology,
making it challenging to evaluate models against
a single predefined ground-truth report.
To address these limitations, we chose to use

the dictated reports from the REFLACX dataset
rather than the standard MIMIC_CXR findings and
impressions. REFLACX provides multiple dic-
tated reports per image, which better capture the
variability in radiologist interpretation and report
terminology. This approach allows for a more ro-
bust evaluation of our model’s ability to generalize
across diverse reporting styles.

Category Statistic

General Statistics
Number of Images 560
Number of Dictated Reports 1,372
Average Reports per Image 2.5

Missing MIMIC_CXR Reports
Images without Findings 210
Images without Impression 129

Average Text Lengths (Characters)
Findings Section 410.3
Impression Section 227.5
Dictated Reports 243.7

Table 2: Look & Mark Dataset Statistics.

Furthermore, to enhance the dataset, we in-
tegrated bounding box annotations from the
MS_CXR dataset, which offers precise localiza-
tion of abnormalities. These bounding boxes are
linked with textual prompts and fixation durations,
providing additional multimodal data that can be
leveraged to analyze the relationship between im-
age regions of interest and the corresponding dic-
tated text.

Table 2 highlights the key statistics of the Look
& Mark dataset, a combined dataset created for
this study. It includes 560 chest X-ray images
paired with 1,372 dictated reports, averaging 2.45
reports per image. Notably, 210 images lack find-
ings sections and 129 images lack impression sec-
tions in the original MIMIC_CXR dataset, empha-
sizing the gaps that the Look & Mark dataset helps
to fill.

The dictated reports from the dataset are shorter
(average length of 243.7 characters) than typical
findings (410.3 characters) but offer free-form de-
scriptions closely resembling real-world clinical re-
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porting styles. Each report is also accompanied by
bounding box annotations for abnormalities, along
with fixation duration data, providing a unique mul-
timodal dataset that combines textual, visual, and
spatial information.

4.2 Models

Model Name Size Trained for

CXR-LLaVA(Lee et al., 2023) 8B RG
MAIRA2(Bannur et al., 2024) 7B Ground RG
LLaVA-Med(Li et al., 2024b) 8B Medical VQA

Llama3.2V(Dubey et al., 2024) 11B IU
LLaVA-OV(Li et al., 2024a) 8B VU
Qwen2.5VL(Team, 2025) 8B Grounding, VU

Table 3: Model descriptions. Models in bold are trained
with the MIMIC-CXR dataset. Acronym for the tasks
are as follows: Report Generation - RG, Visual Question
Answering - VQA, Image Understanding - IU, Vision
Understanding (Image, Video) - VU

Table 3 describes the models evaluated in this
study. The selection includes both models specif-
ically fine-tuned for the medical domain and
general-purpose multimodal models, enabling a
comprehensive comparison of their performance
under the Look & Mark (L&M) approach.

Two of the evaluated models, CXR-LLaVA and
MAIRA2, were fine-tuned on the MIMIC-CXR
dataset. These models are specifically designed for
radiology tasks, making them well-suited for chest
X-ray interpretation. CXR-LLaVA, with 8 bil-
lion parameters, was trained for report generation
(RG) and focuses on translating visual abnormal-
ities into detailed radiology reports. On the other
hand, MAIRA2, built on the Mistral 7B backbone,
is uniquely trained for grounded report generation
(Ground RG), linking textual reports to specific
regions of interest in the chest X-ray.

In contrast, LLaVA-Med was trained using an
instruction tuning dataset derived from figures and
legends in PubMed papers. This model, with 8
billion parameters, was designed for medical visual
question answering (VQA) tasks, demonstrating
strong reasoning capabilities but lacking specific
training on MIMIC-CXR data.

To provide broader context, the study also in-
cludes general-purpose multimodal models such
as Llama3.2V, LLaVA-OV, and Qwen2.5VL.
Llama3.2V, the largest model with 11 billion pa-
rameters, is trained for image understanding (IU),
providing insights into how parameter scaling im-
pacts performance. LLaVA-OV and Qwen2.5VL,

both with 8 billion parameters, focus on vision un-
derstanding (VU), encompassing tasks involving
image and video comprehension. Qwen2.5VL is
the only model that is trained to do object ground-
ing. While these models were not fine-tuned for the
medical domain, they serve as baselines for eval-
uating generalization capabilities on CXR report
generation.

4.3 Evaluation
To evaluate the performance of the models on the
Look & Mark dataset, we tested different input
modalities and grounding strategies, including de-
fault prompts (-), eye fixation data represented as
heat maps (L), bounding box grounding (M), and
our proposed grounding fixation approach combin-
ing both heat maps and bounding boxes (L&M).
For general-purpose large language models (LLMs)
not fine-tuned on the dataset, in-context learning
(I) was applied. This involved providing three ex-
emplar reports, each with different style of writing
and not included in the dataset but sourced from
REFLACX dictated reports, as context to teach the
model chest X-ray writing style.

For hyperparameters, we used a batch size of
1 and a temperature of 0 or 0.1 (where 0 is not
accepted). The temperature was chosen to mini-
mize the randomness in the generated report. The
maximum length of new tokens was 512 tokens.

We used both lexical and clinical relevance eval-
uation metrics:
• ROUGE-L (Lin, 2004): Measures the lexical

overlap between the generated and reference re-
ports, emphasizing long matching sequences.

• BERTScore (Zhang et al., 2019): Computes
semantic similarity between generated and ref-
erence reports by comparing token embeddings,
offering a more nuanced view of report coher-
ence.

• RadGraph-XL (Delbrouck et al., 2024): Eval-
uates the ability of models to extract clinically
relevant entities and relations, assessing how
well the generated reports align with annotated
medical knowledge graphs.

• RaTEScore (Zhao et al., 2024): A metric tai-
lored for radiology report evaluation, empha-
sizing clinical entities, negations, and synonym
robustness to assess the quality of generated text.

• Clinical Metrics (C.AVG): This score is cal-
culated by normalizing each clinical relevance
metric (RadGraph-XL and RaTEScore) by the
highest scores, converting each to a percentage,
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and then averaging them. It provides a unified
percentage-based metric to assess clinical utility.

• All Metrics (A.AVG): Similarly, this score is
calculated by normalizing all metrics (ROUGE-
L, BERTScore, RadGraph-XL, RaTEScore, and
others) by their respective highest scores, con-
verting them to percentages, and then taking the
average. It provides a comprehensive, normal-
ized view of model performance across all eval-
uation dimensions.

Clinical Metric Selection Rationale. While
CheXpert F1 (Smit et al., 2020) has been widely
used in past work, several recent studies have
shown that it correlates poorly with expert radi-
ologist evaluations, particularly for complex, multi-
sentence report generation tasks. Instead, we adopt
more recent and clinically grounded evaluation
metrics such as RadGraph-XL (Delbrouck et al.,
2024) and RaTEScore (Zhao et al., 2024), which
are specifically designed to assess clinical accu-
racy and factual consistency in radiology reports.
These metrics have demonstrated stronger align-
ment with human expert judgment compared to
earlier classification-based metrics like CheXpert
F1.

5 Results and Discussion

5.1 Performance Comparison Across Models
and Methods

Table 4 presents a comprehensive evaluation of
model performance across key metrics: ROUGE-
L (RG-L), BERTScore, RadGraph-XL (RadG),
and RaTEScore (RaTE). These results demon-
strate the effectiveness of Grounding Fixation
Prompting (L&M) in improving report genera-
tion performance across both domain-specific and
general-purpose models. Furthermore, the exten-
sion of L&M with in-context learning, denoted as
I&L&M, significantly enhances general-purpose
models’ adaptability.

5.1.1 Domain-Specific Models.

Among domain-specific models, CXR-LLaVA
demonstrates the highest improvement when in-
corporating the L&M strategy. For instance, RG-
L increases from 0.1653 (default prompting) to
0.1697, and BERTScore improves from 0.8586 to
0.8602. Clinical average improves from 84.42%
to 86.01%, indicating that L&M aligns better with
clinical expectations as well. These improvements

highlight the ability of grounding fixation to en-
hance both the linguistic and clinical quality of
generated reports.

However, in the case of MAIRA2, the results re-
veal a more nuanced outcome. While L&M slightly
improves RG-L (0.1469 vs. 0.1460), there is a
small decline in C.AVG (73.16% vs. 74.35%).
This suggests that MAIRA2’s architecture may al-
ready effectively integrate bounding box informa-
tion, leaving limited room for further enhancement
with gaze data. Additionally, the architectural com-
plexity or pretraining objectives of MAIRA2 might
not optimally benefit from the added eye fixation
cues.

For LLaVA-Med, we see a huge performance
boost with L&M in clinical relevance evaluation
metrics, while decreased performance in the lexi-
cal evaluation metrics. As the decresae in lexical
evaluation metrics was marginal when compared
to the performance boost in the clinical evaluation
metrics, the overal average score (A.AVG) resulted
in 9.19% increase.

5.1.2 General-Purpose Models
General-purpose models, Llama3.2V, LLaVA-
OV, and Qwen2.5VL, also experience in per-
formance improvement with L&M. LLaVA-OV
performance increased in all evaluation metrics.
Llama3.2V performance increased in all evaluation
metrics except ROUGE-L. However, Qwen2.5VL
model only increased in RaTEScore. The perfor-
mance increase in these general domain models,
which have not been specifically trained with chest
X-ray datasets, adds the generalizability of the
L&M prompting.

They also benefit significantly from the addition
of in-context learning (I) combined with L&M. For
LLaVA-OV, I&L&M achieves notable improve-
ments across all metrics, with BERTScore increas-
ing to 0.8365 and RaTEScore to 0.4893. C.AVG
improves dramatically from 55.58% (default) to
87.34%, showcasing the adaptability of I&L&M
to general-domain models. In fact, LLaVA-OV’s
I&L&M resulted in the highest RaTEScore and
C.AVG, higher than CXR-LLaVA’s L&M result.
These improvements can be attributed to the incor-
poration of clinical writing samples and grounding
cues of L&M.

For Qwen2.5VL, I&L&M yields significant
gains, especially in RadGraph-XL (0.0812 vs.
0.0534) and C.AVG (74.83% vs. 61.27%). Sim-
ilarly, Llama3.2V sees marked improvements in
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Model Method RG-L BERT RadG RaTE C.AVG (%) A.AVG (%)

CXR-LLaVA - 0.1653 0.8586 0.1107 0.4730 84.42 73.21

CXR-LLaVA L&M 0.1697 0.8602 0.1148 0.4752 86.01 74.40
(+0.0044) (+0.0016) (+0.0041) (+0.0022) (+1.59) (+1.19)

MAIRA2 - 0.1460 0.8492 0.0868 0.4507 74.35 66.70

MAIRA2 L&M 0.1469 0.8489 0.0810 0.4574 73.16 66.31
(+0.0009) (-0.0003) (-0.0058) (+0.0067) (-1.19) (-0.39)

LLaVA-Med - 0.0942 0.8392 0.0000 0.2445 24.99 40.62

LLaVA-Med L&M 0.0817 0.8253 0.0295 0.4191 52.46 49.81
(-0.0125) (-0.0139) (+0.0295) (+0.1746) (+27.47) (+9.19)

Llama3.2V - 0.0413 0.7652 0.1412 0.0027 46.34 41.32

Llama3.2V L&M 0.0393 0.7694 0.1494 0.0071 49.44 42.30
(-0.0020) (+0.0042) (+0.0082) (+0.0044) (+3.10) (+0.98)

Llama3.2V I&L&M 0.0402 0.7696 0.1533 0.0089 50.91 42.99
(-0.0011) (+0.0044) (+0.0121) (+0.0062) (+4.57) (+1.67)

LLaVA-OV - 0.0518 0.8085 0.0471 0.3936 55.58 47.14

LLaVA-OV L&M 0.0527 0.8107 0.0497 0.4531 62.51 50.07
(+0.0009) (+0.0022) (+0.0026) (+0.0595) (+6.93) (+2.93)

LLaVA-OV I&L&M 0.0959 0.8365 0.1145 0.4893 87.34 65.69
(+0.0441) (+0.0280) (+0.0674) (+0.0957) (+31.76) (+18.55)

Qwen2.5VL - 0.0576 0.8080 0.0534 0.4291 61.27 50.08

Qwen2.5VL L&M 0.0427 0.7933 0.0528 0.4488 63.08 48.71
(-0.0149) (-0.0147) (-0.0006) (+0.0197) (+1.81) (-1.37)

Qwen2.5VL I&L&M 0.0614 0.8045 0.0812 0.4730 74.83 55.88
(+0.0038) (-0.0035) (+0.0278) (+0.0439) (+13.56) (+5.80)

Table 4: Performance for all the models using L&M and I&L&M compared to baseline (-). Numbers in parentheses
on the second row for each method indicate the absolute difference from the baseline method for the same model.
RG-L: ROUGE-L, BERT: BERTScore, RadG: RadGraph-XL, RaTE: RaTEScore. The best scores for each metric
are bolded.

RadGraph-XL (0.1533 vs. 0.1412) and A.AVG
(42.99% vs. 41.32%). The RadGraph-XL score,
0.1533, is actually highest among all the models
and methods. These results highlight the poten-
tial of I&L&M to bridge the gap between general-
purpose models and domain-specific tasks, making
them more clinically relevant and robust.

5.2 Is Look & Mark really better than Look
or Mark?

CXR-L
LaV
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2

0.00

0.02

0.04

0.06

0.08

0.10

0.12 L&M vs L
L&M vs M

Figure 2: Performance increase/decrease in A.AVG of
L&M compared to L and M for domain-specific models.

Figures 2 and 3 analyze the relative performance
of Look & Mark (L&M) compared to using only
Look (L) or Mark (M).
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Figure 3: Performance increase/decrease in A.AVG of
I&L&M compared to I&L and I&M for general-purpose
models.

5.2.1 Domain-Specific Models (Figure 2)

For domain-specific models, the performance im-
provements achieved by combining fixation cues
(L) and bounding box grounding (M) in L&M
consistently outperform using either method alone.
The CXR-LLaVA model demonstrates significant
gains with L&M. L&M achieves an A.AVG im-
provement of 1.5% compared to M and 2.8% com-
pared to L. LLaVA-Med demonstrates the high-
est improvements with L&M. L&M achieves an
A.AVG improvement of 3.8% compared to M
and 11.8% compared to L. The MAIRA2 model
shows no performance gain with having additional
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fixation cues. This strengthens our finding that
MAIRA2’s performance depends too much on the
grounded visual prompt. Still, L&M performed bet-
ter than L in all models, although very small (0.8%)
for MAIRA2. This shows that grounding can be
more effective than fixation for report generation.

5.2.2 General-Purpose Models with
In-Context Learning (Figure 3)

For general-purpose models, in-context learning
combined with Look & Mark (I&L&M) leads to
significant performance gains over I&L in all mod-
els. This also strengthens the point that grounding
can be more effective than fixation for report gen-
eration. LLaVA-OV with I&L&M consistently
outperforms both I&L and I&M, with a substan-
tial increase of 6.2% compared to I&L and 1.9%
compared to I&M. While the improvements are
smaller for Llama3.2V, I&L&M still achieves a
positive increase of 2.3% compared to I&L, high-
lighting incremental gains. However, the increase
compared to I&M is minimal (0.3%), indicating
that the model may struggle to fully utilize fixation
cues alongside bounding boxes. Qwen2.5VL with
I&L&M outperforms I&L with a small incarse of
0.6% but underperforms when compared to I&M
(-10.82%). This result also confirms that models
trained for Grounding does not have capacity to
effectively use fixation cues.

5.3 Expert evaluation to confirm Look &
Mark reducing the errors or
hallucinations

To further validate the effectiveness of Look &
Mark (L&M) in reducing hallucinations and clin-
ically significant errors, we conducted an expert
evaluation involving three radiologists with var-
ied levels of experience. The goal of this evalua-
tion was to assess whether L&M-generated reports
demonstrated fewer errors compared to reports gen-
erated by other methods.

Three radiologists performed a blind evaluation
of generated reports and annotated the number of
clinically significant errors based on predefined
error categories adapted from the ReXVal dataset
(Yu et al., 2023). The error categories were as
follows:

1. False prediction of finding
2. Omission of finding
3. Incorrect location/position of finding
4. Incorrect severity of finding
5. Mention of comparison that is not present

To assess inter-annotator reliability, we calcu-
lated Krippendorff’s Alpha for the radiologists’ an-
notations, which resulted in a score of 0.647 (Krip-
pendorff, 2011). This indicates a moderate level
of agreement, reflecting consistency in identifying
clinically significant errors across the evaluated re-
ports. Minor variability in annotations may stem
from subjective differences in error interpretation.

Table 5 summarizes the results, presenting the
average number of errors per generated report
across methods and models.

Models (Methods) Errors

CXR-LLaVA (L&M) 1.75
MAIRA2 (-) 1.75
LLaVA-OV (I&L&M) 1.88
Qwen2.5VL (I&L&M) 2.12
CXR-LLaVA (-) 2.18

Table 5: Expert evaluation of clinically significant errors
(average per generated report).

The results indicate that L&M reduces clini-
cally significant errors as CXR-LLaVA (L&M)
achieved the lowest average error count (1.75),
while CXR-LLaVA baseline method had the high-
est average error count (2.18). This highlights
the effectiveness of grounding fixation in reduc-
ing hallucinations and aligning reports with clini-
cal standards. Similarly, LLaVA-OV (I&L&M)
performed well, with an error count of 1.88, demon-
strating the adaptability of L&M combined with
in-context learning for general-purpose models. In
fact, both LLaVA-OV (I&L&M) and Qwen2.5VL
(I&L&M) surpassed the baseline methods of CXR
report generation model such as CXR-LLaVA (-).

Figure 4 provides qualitative analysis of model
outputs, comparing generated reports from differ-
ent methods against ground truth reports. Three ex-
amples are shown, with clinically significant errors
marked in red, as identified by radiologists. The
examples include cases of pneumothorax, pleural
effusion, and atelectasis. This Figure shows the
effect of L&M as CXR-LLaVA with our method
significantly reduces the number of errors in the
generated reports.

These findings confirm that L&M enhances clini-
cal accuracy while reducing hallucinations, making
it a robust framework for CXR report generation
across both domain-specific and general-purpose
multimodal models.
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Methods Example 1 Example 2 Example 3

Ground Truth

no pneumothorax. support apparatus. me-
diastinum normal. effusions, atelecta-
sis, consolidation, or mass in the right
hemithorax.

support apparatus. no pneumothorax. me-
diastinum normal. bilateral pleural effu-
sions with superimposed atelectasis ver-
sus consolidation.

a large right pleural effusion is present.
right apical pneumothorax is present. the
heart is normal in size. pulmonary vessels
in the left lung are normal in caliber. no
acute osseous abnormality is present.

CXR-LLaVA (-)

The chest radiograph reveals a left-sided
pneumothorax. There is also some im-
proved aeration at the left base. No other
significant abnormalities are noted in the
lungs, mediastinum, heart, and thorax.

The radiologic report reveals a small left
apical pneumothorax. There is also evi-
dence of pneumomediastinum and subcu-
taneous emphysema in the left neck and
chest wall. A small left pleural effusion
is present. The left basal consolidation,
likely due to atelectasis, is noted.

The radiologic report reveals a persis-
tent moderate right-sided pleural effusion.
There is no evidence of pneumothorax.
The left lung appears clear. The cardio-
mediastinal silhouette shows no abnor-
malities. A moderate upper right-sided
pneumothorax is also present.

CXR-LLaVA (L&M)

The chest radiograph reveals a right lower
lobe consolidation and a right pleural ef-
fusion. The left lung appears clear. The
heart size is within normal limits. There
is no evidence of pneumothorax.

The chest radiograph reveals an opacity
in the left lower lobe, likely indicative of
a combination of atelectasis and a small
pleural effusion. The mediastinal and car-
diac contours appear normal. No pneu-
mothorax is observed.

The chest radiograph reveals a moderate
right pleural effusion. The left lung ap-
pears clear. There is evidence of right
basilar atelectasis, likely due to the pleu-
ral effusion. No focal consolidations are
observed. A right apical pneumothorax is
present. The cardiac silhouette is stable.

Figure 4: Expert analysis of model outputs. Red-colored text shows the clinically significant error marked by
radiologist.

6 Conclusion

This study introduces Look & Mark (L&M), a
novel approach to radiology report generation that
integrates radiologist fixation cues (Look) with
bounding box annotations (Mark) to guide mul-
timodal Large Language Models (LLMs). By com-
bining these complementary grounding strategies,
L&M significantly improves the clinical relevance
of generated reports, reduces hallucinations, and en-
hances model alignment with real-world diagnostic
workflows. Importantly, L&M achieves these gains
without requiring extensive fine-tuning, leveraging
in-context learning to adapt both general-purpose
and domain-specific models alike.

Our experiments demonstrate that L&M signifi-
cantly boosts performance across both lexical and
clinical evaluation metrics, with the largest gains
observed in clinical metrics such as RaTEScore
and RadGraph-XL. For instance, CXR-LLaVA
achieved a 1.2% improvement in overall metrics
(A.AVG) compared to baseline prompting, while
LLaVA-Med demonstrated a remarkable 9.2%
boost. General-purpose models also benefited sig-
nificantly, with LLaVA-OV achieving an 87.3%
clinical average (C.AVG), the highest among all
tested models, even surpassing domain-specific
models trained explicitly for chest X-ray report
generation. Furthermore, expert radiologist eval-
uations confirmed the clinical reliability of L&M,
with fewer errors (by 0.43 average errors per report)
in categories such as false predictions, omissions,
and incorrect severity descriptions. These results
highlight that grounding multimodal LLMs with

both bounding boxes and fixation cues provides a
synergistic effect, improving performance across
diverse models and tasks.

By eliminating the need for retraining, L&M of-
fers a scalable and practical solution for deploying
advanced AI systems in low-resource clinical en-
vironments. This makes it particularly suited for
improving diagnostic workflows in settings with
limited computational resources, while still achiev-
ing state-of-the-art performance.

Future work will focus on extending L&M to
other medical imaging modalities, such as CT
and MRI, and exploring automated grounding for
the bounding boxes of abnormalities. These ad-
vancements will further enhance L&M’s potential
to become a foundational framework for reliable
and scalable AI-driven diagnostics in low-resource
healthcare settings.

Limitations

While Look & Mark (L&M) demonstrates signifi-
cant improvements in radiology report generation,
several limitations remain that warrant further in-
vestigation.

First, L&M, as implemented in this study, relies
on single-view chest X-rays, whereas clinical prac-
tice often incorporates multiple views (e.g., frontal
and lateral). Multi-view integration could provide
a more comprehensive understanding of anatomi-
cal structures and pathologies, reducing the risk of
missing findings that are evident only in specific
views. Future work should extend L&M to support
multi-view training and inference to align more
closely with real-world diagnostic workflows.
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Second, the use of bounding box annotations
and fixation data requires expert input for dataset
creation. While L&M leverages these resources
effectively, the scalability of this approach may
be limited in settings where such annotations are
unavailable. Exploring alternative strategies, such
as weakly supervised learning or automatic fixa-
tion prediction and bounding box grounding, could
reduce the reliance on expert-labeled data.

Lastly, this study focuses exclusively on chest X-
rays, limiting its generalizability to other medical
imaging modalities. Expanding L&M to support
other modalities, such as CT, MRI, or ultrasound,
would enhance its applicability across broader radi-
ology and clinical domains.

Broader Impacts and Ethics Statement

The development of Look & Mark (L&M) has the
potential to positively transform radiology work-
flows by improving diagnostic accuracy and reduc-
ing errors. All data used in this research adhered
to strict ethical guidelines. MIMIC-CXR and re-
lated datasets used are publicly available and con-
tain de-identified patient information. To access
MIMIC-CXR and related datasets, researchers have
completed necessary training course and signed the
data use agreement.

While L&M demonstrates significant promise,
we acknowledge the potential risks associated with
the deployment of AI in healthcare. These in-
clude the propagation of biases present in training
datasets and the possibility of over-reliance on AI-
generated reports, particularly in high-stakes clini-
cal environments. To mitigate these risks, L&M is
explicitly designed as an assistive tool to support,
rather than replace, radiologist decision-making.
Additionally, future work will involve rigorous eval-
uation of performance across diverse populations
and imaging settings to identify and mitigate bi-
ases, ensuring equity and fairness in diagnostic
outcomes.
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Appendix

The three examples shown in Figure 4 can be also
regarded as the three exemplar reports that are used
for in-context learning.

Table 6 presents the performance metrics for all
models across various prompting methods, includ-
ing default prompting (-), eye gaze as a heatmap
(L), bounding box grounding (M), and the proposed
Look & Mark (L&M) strategy. The evaluation also
includes in-context learning (I) and its combina-
tions with Look and Mark (e.g., I&L, I&M, and
I&L&M). Key metrics include ROUGE-L (RG-L),
BERTScore, RadGraph-XL (RadG), RaTEScore,
Clinical Average (C.AVG), and All Metrics Aver-
age (A.AVG).

Since bounding boxes are rendered directly on
top of the original chest X-ray images, one might
worry that they could obscure clinically important
details. Despite this potential for partial visual
obstruction, our experimental results demonstrate
that bounding box grounding contributes positively
to both lexical and clinical performance metrics
across models. This suggests that the benefit of
explicit spatial localization outweighs any minor
loss of visual fidelity due to overlaid markings.
Notably, even general-domain models—without
prior training on medical data—show improved
performance when guided by these visual prompts.
This underscores the effectiveness of grounding as
a prompting strategy, even when visual clarity is
modestly reduced.

Figure 5 visualizes the normalized clinical aver-
age scores (C.AVG) across general-purpose models
when using different prompting strategies, includ-
ing in-context learning (I) and the proposed Look
& Mark method combined with in-context learning
(I&L&M). The evaluated models include LLaVA-
OV, Llama3.2V, and Qwen2.5VL, with metrics
such as ROUGE-L, BERTScore, RadGraph-XL,
and RaTEScore contributing to the C.AVG calcula-
tion. LLaVA-OV (I&L&M) achieves the highest
overall C.AVG across all metrics, with normalized
scores close to 1.0, showcasing the effectiveness of
combining Look & Mark with in-context learning.
Qwen2.5VL and Llama3.2V show varied improve-
ments with I&L&M compared to the baseline I,
particularly in clinical metrics such as RaTEScore
and RadGraph-XL. The variability across models
indicates that the integration of Look & Mark en-
hances the adaptability of general-purpose models
for clinical tasks, particularly when evaluated with

clinical relevance metrics.
This heatmap provides a clear comparative anal-

ysis of model performance under different prompt-
ing strategies, emphasizing the contributions of
Look & Mark in reducing hallucinations and align-
ing outputs with clinical standards.
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Model Method RG-L BERT RadG RaTE C.AVG (%) A.AVG (%)

CXR-LLaVA - 0.1653 0.8586 0.1107 0.4730 84.42 73.21
CXR-LLaVA L 0.1652 0.8592 0.1048 0.4626 81.46 72.04
CXR-LLaVA M 0.1672 0.8579 0.1093 0.4687 83.55 73.07
CXR-LLaVA L&M 0.1697 0.8602 0.1148 0.4752 86.01 74.40
MAIRA2 - 0.1460 0.8492 0.0868 0.4507 74.35 66.70
MAIRA2 L 0.1419 0.8487 0.0824 0.4460 72.45 65.44
MAIRA2 M 0.1469 0.8489 0.0810 0.4574 73.16 66.31
MAIRA2 L&M 0.1469 0.8489 0.0810 0.4574 73.16 66.31
LLaVA-Med - 0.0942 0.8392 0.0000 0.2445 24.99 40.62
LLaVA-Med L 0.0818 0.8216 0.0011 0.2511 26.02 39.15
LLaVA-Med M 0.0900 0.8281 0.0270 0.3107 40.56 46.09
LLaVA-Med L&M 0.0817 0.8253 0.0295 0.4191 52.46 49.81

Llama3.2V - 0.0413 0.7652 0.1412 0.0027 46.34 41.32
Llama3.2V L 0.0370 0.7656 0.1155 0.0035 38.01 37.39
Llama3.2V M 0.0400 0.7697 0.1528 0.0078 50.64 42.89
Llama3.2V L&M 0.0393 0.7694 0.1494 0.0071 49.44 42.30
Llama3.2V I 0.0415 0.7652 0.1471 0.0039 48.38 42.13
Llama3.2V I&L 0.0374 0.7654 0.1269 0.0031 41.70 38.80
Llama3.2V I&M 0.0400 0.7694 0.1479 0.0074 49.00 42.23
Llama3.2V I&L&M 0.0402 0.7696 0.1533 0.0089 50.91 42.99
LLaVA-OV - 0.0518 0.8085 0.0471 0.3936 55.58 47.14
LLaVA-OV L 0.0484 0.8087 0.0485 0.4029 57.00 47.31
LLaVA-OV M 0.0565 0.8110 0.0518 0.4567 63.56 50.95
LLaVA-OV L&M 0.0527 0.8107 0.0497 0.4531 62.51 50.07
LLaVA-OV I 0.0920 0.8384 0.1101 0.4354 80.41 62.50
LLaVA-OV I&L 0.0738 0.8268 0.1068 0.4386 79.67 59.79
LLaVA-OV I&M 0.0966 0.8350 0.1081 0.4685 83.13 64.05
LLaVA-OV I&L&M 0.0959 0.8365 0.1145 0.4893 87.34 65.69
Qwen2.5VL - 0.0576 0.8080 0.0534 0.4291 61.27 50.08
Qwen2.5VL L 0.0530 0.7989 0.0461 0.3926 55.14 46.88
Qwen2.5VL M 0.0496 0.7980 0.0588 0.4545 65.63 50.65
Qwen2.5VL L&M 0.0427 0.7933 0.0528 0.4488 63.08 48.71
Qwen2.5VL I 0.0877 0.8104 0.1063 0.4416 79.80 61.10
Qwen2.5VL I&L 0.0650 0.8047 0.0812 0.4469 80.02 58.38
Qwen2.5VL I&M 0.0914 0.8201 0.1175 0.4914 88.53 65.26
Qwen2.5VL I&L&M 0.0614 0.8045 0.0812 0.4730 74.83 55.88

Table 6: Performance metrics for all models and methods. Methods include: default prompt (-), eye gaze as a heat
map (L), abnormalities bounding box (M), and our method (L&M). In-context learning, noted as I. RG-L is the
acronym for ROUGE-L, BERT is the acronym for BERTScore, RadG is the acronym for RadGraph-XL, and RaTE
is the acronym for RaTEScore. The best scores for each metric are bolded and the models with the scores are also
bolded.
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ROUGE-L BERTScore RadGraph-XL RaTEScore
Method

LLaVA-OV*I

LLaVA-OV*I&L&M

Llama3.2V*I

Llama3.2V*I&L&M

Qwen2.5VL*I

Qwen2.5VL*I&L&M

M
od

el

0.96 1.00 0.96 0.89

1.00 1.00 1.00 1.00

0.43 0.91 0.03 0.51

0.42 0.92 0.08 0.48

0.91 0.97 0.93 0.90

0.64 0.96 0.71 0.97

Heatmap of C.AVG Across Models and Methods

0.2

0.4

0.6

0.8

1.0

C.
AV

G

Figure 5: Heatmap of normalized scores across general-purpose models to compare in-context learning and our
method.
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