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Abstract

Hyperbolic representations are effective in
modeling knowledge graph data which is preva-
lently used to facilitate multi-hop reasoning.
However, a rigorous and detailed comparison
of the two spaces for this task is lacking. In this
paper, through a simple integration of hyper-
bolic representations with an encoder-decoder
model, we perform a controlled and compre-
hensive set of experiments to compare the ca-
pacity of hyperbolic space versus Euclidean
space in multi-hop reasoning. Our results show
that the former consistently outperforms the
latter across a diverse set of datasets. In addi-
tion, through an ablation study, we show that a
learnable curvature initialized with the delta hy-
perbolicity of the utilized data yields superior
results to random initializations. Furthermore,
our findings suggest that hyperbolic represen-
tations can be significantly more advantageous
when the datasets exhibit a more hierarchical
structure.

1 Introduction

Multi-hop reasoning is a complex task that requires
models to integrate information across multiple
pieces of evidence to arrive at accurate conclusions.
For instance, to answer Which country is the com-
poser of the song Cloudburst from? using a simple
knowledge graph like Figure 1, the model has to
first find the answer to the first relation (composer
of Cloudburst), and then look for the answer to
the second relation (Whitacare’s country of citi-
zenship). This inherently involves traversing hier-
archical relationships, making it particularly chal-
lenging for traditional language models that rely
on Euclidean representations. While Euclidean
representations are commonly used and can cap-
ture hierarchical structures to some extent (Nguyen
et al., 2023; Misra et al., 2023; Zhang et al., 2024a),
recent research has shown that hyperbolic represen-
tations are more effective in handling such data

Cloudburst

Eric Whitacre Francis Searle

American 14 March 1909 31 July 2002

composer director

country of citizenship date of birth date of death

Question: Which country is the composer of the song Cloud-
burst from?

Path: Cloudburst → composer → Eric Whitacre → country
of citizenship → American

Figure 1: A knowledge graph with entities as the nodes
and the relations as the edges, illustrating a 2-hop ques-
tion answering process.

due to their superior ability to model hierarchical
and relational information (Nickel and Kiela, 2017;
Dhingra et al., 2018; Balažević et al., 2019; Chami
et al., 2020; Xu et al., 2022).

In multi-hop reasoning tasks, hierarchical rea-
soning often manifests in navigating knowledge
graphs or layered question answering frameworks,
where the complexity increases with each addi-
tional hop. Given the hierarchical nature of multi-
hop reasoning tasks, hyperbolic geometry presents
a compelling alternative to Euclidean space for em-
bedding representations. Specifically, hyperbolic
space provides a larger capacity and more expres-
sive way of encoding tree-like and graph-like struc-
tures (Chami et al., 2019), which are prevalent in
knowledge graphs used for reasoning.

Although many studies successfully implement
hyperbolic architectures and report performance
gains (Zhou et al., 2021; Xiao et al., 2022; Wang
et al., 2024), they often fail to disentangle the ef-
fects of geometric properties from the introduction
of additional trainable parameters and the resulting
model architecture.

A controlled comparison incorporating equiva-
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lent Euclidean architectures with comparable para-
metric complexity would be necessary to isolate the
geometric contribution to model performance. In
addition, models in the literature often require sig-
nificant architectural changes, which can increase
model complexity and computational costs. In con-
trast, our approach focuses on incorporating hy-
perbolic geometry into existing language model
architectures with minimal changes.

In this paper, we address the lack of a care-
fully controlled comparative study for evaluat-
ing the differences between hyperbolic and Eu-
clidean spaces in multi-hop reasoning. As such,
we incorporate hyperbolic representations into an
encoder-decoder via the addition of a single layer
and exponential mapping operation in the Poincaré
ball model of hyperbolic space. We conduct a com-
prehensive set of experiments on multiple datasets,
demonstrating that adding a hyperbolic layer to
increase the learning capability of a language
model consistently outperforms its Euclidean
counterpart. In addition, we perform an ablation
study to evaluate the impact of initialization of the
curvature. Our results indicate that initializing the
curvature using the δ-hyperbolicity of the dataset
leads to superior performance compared to random
initialization. Furthermore, we show that the per-
formance gain from hyperbolic representations
is more pronounced for datasets with more hier-
archical structures (defined based on the number
of out-going relations for the nodes). Our compre-
hensive ablation studies deepen our understanding
of geometric learning advantages in the context of
language models and underscore the importance of
aligning the geometric properties of the model with
the inherent structure of the data.

2 Related Work

Knowledge-based multi-hop reasoning. Multi-
hop reasoning requires traversing relational paths to
synthesize new knowledge, making it essential for
question answering. In the early approaches, path-
based methods were utilized, in which reasoning
was conducted using predefined rules or relational
paths within the KB (Lao et al., 2011). Although
these approaches were interpretable, they were fre-
quently constrained by the availability and com-
pleteness of the KB. Neural-based reasoning mod-
els, including embedding-based methods (Bordes
et al., 2013; Wang et al., 2014; Yang et al., 2015;
Sun et al.), introduced vectorized representations of

entities and relations, enabling reasoning through
learned relational patterns. More recent work has
integrated graph-based neural architectures, such as
Graph Convolutional Networks (Schlichtkrull et al.,
2018) and Graph Attention Networks (Veličković
et al., 2018), to propagate information across multi-
hop relational structures in KBs. Reinforcement
learning has been effectively applied to multi-hop
reasoning over knowledge bases, enabling models
to navigate complex relational paths and infer miss-
ing information. In this context, an RL agent is
trained to traverse a KB by selecting a sequence of
relations and entities, forming a reasoning path that
leads to the desired answer (Ma et al., 2024; Wan
et al., 2021; Lin et al., 2018; Zhu et al., 2022).
Hyperbolic multi-hop reasoning. Recent studies
have proposed frameworks that leverage hyperbolic
geometry to enhance multi-hop reasoning capabil-
ities (Zhou et al., 2021; Xiao et al., 2022; Wang
et al., 2024). Hyperbolic knowledge graph em-
beddings have demonstrated significant potential
for multi-hop reasoning to model the hierarchical
relationships in knowledge graphs (Chami et al.,
2020; Balažević et al., 2019; Montella et al., 2021;
Kolyvakis et al., 2019). More recently, hyperbolic
graph neural networks (HGNNs) have emerged as
a promising direction for improving multi-hop rea-
soning (Liu et al., 2024, 2019; Chami et al., 2019).
These models extend traditional GNNs by incor-
porating hyperbolic message passing, allowing for
better hierarchical aggregation of multi-hop depen-
dencies.

While these works highlight the potential of fully
hyperbolic architectures, they often make signifi-
cant architectural changes and fail to disentangle
the advantages of hyperbolic geometry from those
modifications in the model. By simply adding a
hyperbolic layer to an existing language model, we
efficiently integrate it without sacrificing the scala-
bility or flexibility of these models. Furthermore,
we utilize an identical model with the same number
of trainable parameters to compare the two geome-
tries, resulting in a deeper understanding of the
characteristics of the two spaces.

3 Background

3.1 Multi-Hop Reasoning

Multi-hop reasoning can be defined as a process
by which conclusions or answers are derived by
sequentially combining information from multi-
ple pieces of evidence. In contrast to single-hop
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reasoning, which relies on direct connections be-
tween a query and its answer, multi-hop reasoning
involves traversing intermediate steps or relation-
ships to reach the outcome. This capability is essen-
tial for tasks that require analyzing interconnected
data or reasoning through layered information. The
process of multi-hop reasoning necessitates the re-
trieval of relevant pieces of information and their
coherent integration, often involving the navigation
of hierarchical relationships, temporal sequences,
or contextual dependencies within data. A com-
mon approach to facilitate multi-hop reasoning is
through the utilization of knowledge graphs, which
represent entities and their relationships as a net-
work. In a knowledge graph, reasoning involves
following edges between entities to combine in-
formation across multiple nodes, thereby enabling
complex inference over interconnected facts.

3.2 Poincaré Ball Model
As previous work has demonstrated the effective-
ness of the Poincaré ball model (Nickel and Kiela,
2017; Ganea et al., 2018; Chami et al., 2020;
Khrulkov et al., 2020; Chen et al., 2024) in cap-
turing hierarchical relationships, we adopt it to
enhance our ability to model such structures ef-
ficiently. The Poincaré ball provides a hyperbolic
space where points are confined within the unit
ball, enabling the representation of complex hierar-
chal structures with increasing precision near the
boundary. Similarly to the approach in Nickel and
Kiela (2017), we define the Poincaré ball model
as Bn

c = {x ∈ Rn : c∥x∥2 < 1, c ≥ 0}. This
space is equipped with a conformal factor given by:
λc
x = 2

1−c∥x∥2 where the hyperparameter c deter-
mines the curvature of the space, with larger values
of c corresponding to spaces of higher negative
curvature.
Möbius addition. For a pair x, y ∈ Bn

c , the
Möbius addition is defined as follows:

x⊕cy :=
(1 + 2c⟨x, y⟩+ c∥y∥2)x+ (1− c∥x∥2)y

1 + 2c⟨x, y⟩+ c2∥x∥2∥y∥2

where ⟨x, y⟩ denotes the Euclidean inner product,
and ∥ · ∥ represents the Euclidean norm.
Distance. The induced distance function in this
model is expressed as:

dc(x, y) :=
2√
c
arctan(

√
c∥ − x⊕c y∥)

which captures the geodesic distance between
points x and y within the Poincaré ball.

To transition between Euclidean and hyperbolic
spaces, we utilize the exponential and logarithmic
mappings:
Exponential mapping maps a Euclidean vector
v ∈ ToD (the tangent space at the origin) to a point
y ∈ Dn

c on the Poincaré ball:

expc0(v) =
tanh (∥v∥ · √c)

∥v∥ · √c
· v

Logarithmic mapping maps a point y ∈ Bn
c back

to the tangent space at the origin ToBn
c :

logc0(y) =
tanh−1(∥y∥ · √c)

∥y∥ · √c
· y

Poincaré linear layer. The Poincaré linear layer,
adapted from Ryohei et al. (2021); van Spengler
et al. (2023), extends the concept of a Euclidean lin-
ear layer into hyperbolic space, enabling models to
effectively process hierarchical data. For an input
x ∈ Dn

c the layer computes a hyperbolic transfor-
mation parameterized by weights Z = {zk ∈ Rn}
and biases r = {rk ∈ R}mk=1. The transformed
output for each class k is obtained through the
following formulation of hyperbolic multinomial
logistic regression:

vk(x) =

2√
c
∥zk∥ sinh−1

(
λc
x

〈√
cx,

zk
∥zk∥

〉
cosh(2

√
crk)

− (λc
x − 1) sinh(2

√
crk)

)
(1)

where
〈
., .
〉

represents the Euclidean inner prod-
uct. The final output of the Poincaré linear layer is
computed as:

y =
w

1 +
√
1 + c∥w∥

,

where w = ( 1√
c
sinh(

√
cvk(x)))

m
k=1.

3.3 Delta Hyperbolicity
Delta hyperbolicity (δ-hyperbolicity) quantifies the
extent to which a space is similar to a tree. This
property makes it particularly relevant for analyz-
ing and optimizing the curvature of multi-hop rea-
soning datasets.
Gromov product. The Gromov product is defined
for points x, y, w in a metric space (X, d) as:

(x, y)w =
1

2
[d(x,w) + d(y, w)− d(x, y)].
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Figure 2: Model architecture for our approach. After the T5 encoder, we project the resulting Euclidean embeddings
onto the Poincaré ball. These hyperbolic embeddings are then refined through a trainable Poincaré layer. For
compatibility with the T5 decoder, we project the hyperbolic embeddings back to the Euclidean space. While the T5
encoder and decoder parameters remain frozen throughout the training, the input contains trainable soft prompts.

A metric space is δ-hyperbolic if, for any four
points w, x, y, z ∈ X , the inequality:

(x, z)w ≥ min{(x, y)w, (y, z)w} − δ

is satisfied. Smaller δ values indicate a closer re-
semblance to a tree-like structure. In our work,
we adopt the approach outlined in Khrulkov et al.
(2020); Sawhney et al. (2024); Ermolov et al.
(2022), using δ-hyperbolicity as a scale-invariant
measure to assess the hyperbolic nature of the
dataset. Specifically, we estimate the hyperbol-
icity constant δ(X), which represents the smallest
possible δ satisfying the four-point condition for
all quadruples of points in X . To account for vari-
ations in the scale of the dataset, we compute the
relative hyperbolicity as

δrel(X) =
2δ(X)

diam(X)
,

where diam(X) represents the diameter of the
dataset, defined as the maximum pairwise distance
between points. Since δrel(X) is normalized by
the diameter of the dataset, it remains invariant un-
der uniform rescaling of distances, ensuring com-
parability across datasets of different scales. By
construction δrel(X) ∈ [0, 1], with values closer to
zero indicating a strong resemblance to hyperbolic
spaces. Using the estimated δrel(X), we compute
the curvature c(X) of the embedding space follow-
ing the formula provided by Khrulkov et al. (2020):

c(X) = (
0.144

δrel(X)
)2 (2)

This calculation enables us to determine the curva-
ture hyperparameter c.

4 Method

Our approach builds on the PaTH method Misra
et al. (2023), a two-step framework that fine-tunes
the T5 model using soft prompts, added as trainable
parameters to the input embeddings.

4.1 PaTH Method Overview

The PaTH method involves two primary stages of
knowledge integration and soft prompt tuning.
First, the T5 model is fine-tuned on the knowledge
graph using the triples of the entity-relation-entity
form (e1, r1, e2), enabling the model to internal-
ize the foundational entity-relation structures. For
each dataset, we only use the subgraph of triples
relevant to our 2-hop questions (e.g., the paths
connecting entities in each question) similar to
Misra et al. (2023). In soft prompt tuning, two
distinct soft prompts, called parsing prompt and
hopping prompt, are trained to facilitate ques-
tion parsing and reasoning tasks. The parsing
prompt parses a question into an incomplete se-
quence (e1, r1, r2, ..., rn), which serves as the in-
put for the hopping prompt in the reasoning step.
The hopping prompt is trained using uniform ran-
dom walks over the knowledge graph. The walks
from the dev and test sets are excluded. Given an
incomplete sequence representing the starting en-
tity and intermediate relations (e1, r1, r2, ..., rn),
the model is tasked with predicting the complete
sequence, including the intermediate entities and
relations (e1, r1, e2, r2, ..., rn−1, en). This enables
the model to infer reasoning paths by referring to
the incomplete path.

4.2 Incorporating Hyperbolic Representations

Figure 2 illustrates our simple integration of a hy-
perbolic layer into the T5 model.

The Euclidean embeddings generated by the T5
encoder are mapped onto the Poincaré ball using
exponential mapping. Then they are processed
through the hyperbolic layer, specifically designed
for operations within the Poincaré space to pre-
serve their geometric properties. After the trans-
formation, the embeddings are mapped back to the
Euclidean space using logarithmic mapping. This
step enables compatibility with the T5 decoder for
effective downstream processing. For the hyper-
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Dataset Nodes Edges Relations

2WikiMultiHopQA 97,298 95,116 29
MetaQA 31,374 58,974 9
MLPQ 51,402 53,327 72
PQ 1,056 1,211 13

Table 1: Knowledge graph statistics of the datasets

bolic operations and Poincaré layer, we use the
open-sourced implementation given by van Spen-
gler et al. (2023).

5 Experimental Setup

For all experiments, we used the T5-Large model
(770M parameters) (Raffel et al., 2020). This
model was fine-tuned using checkpoints adapted
through the prefix LM objective (Liu et al., 2018)
over 100,000 steps. We adopt the hyperparameters
presented in Misra et al. (2023), with a modification
to the batch size, reducing it to 64 to accommodate
hardware limitations. This adjustment applies to
both the knowledge integration and prompt tuning
processes. The optimizer is AdaFactor (Shazeer
and Stern, 2018) and for the additional hyperbolic
layer, we use the same learning rate of 0.001 used
to fine-tune the T5 model.

The curvature c is initialized using Formula 2 in
Section 3.3, which is based on the δ-hyperbolicity
of the dataset.

Since computing δ-hyperbolicity can be compu-
tationally expensive we calculate it in batches. We
sample 1500 points from the training dataset and
compute δrel. We repeat this process 5 times. For
evaluation, we use the codebase of Ho et al. (2020),
which is open-sourced1. Similarly to Misra et al.
(2023), we evaluate the model performance with
the Exact Match (EM) score.

5.1 Dataset Preparation

We use four datasets in a closed-book QA setting,
where context was omitted to prioritize the rea-
soning capabilities of the model. The complete
statistics for these datasets can be found in Tables
1 and 2. To ensure consistent evaluation across all
datasets, we focus on the 2-hop questions.
2WikiMultiHopQA

(Ho et al., 2020), hereafter referred to as 2Wik-
iHop for simplicity, consists of two-hop English
questions constructed over a knowledge base con-
taining 98,284 entities and 29 relations sourced

1https://github.com/Alab-NII/2wikimultihop

Dataset Train Dev Test

2WikiMultiHopQA 72,760 8,085 6,768
MetaQA 47,108 5,951 5,942
MLPQ 57,283 7,160 7,161
PQ 1,698 210 191

Table 2: Number of questions in train/dev/test splits.

from WikiData (Vrandečić and Krötzsch, 2014).
Since the test splits of the 2WikiHop are private,

the validation split was repurposed as the test set,
with 10% of the training data reserved for valida-
tion. This adaptation mirrors the approach taken
by Misra et al. (2023).
MetaQA consists of questions that can have multi-
ple answers, different from 2WikiHop, where each
question is associated with a single answer. For
our study, we focused exclusively on a subset of
the MetaQA dataset containing questions with a
single possible answer to ensure consistency in the
evaluation. In particular, MetaQA does not directly
provide evidence for each question. To address this,
we generated the necessary evidence for each ques-
tion, as detailed in Appendix A.1. For this dataset,
we used the official train/dev/test split2.
MLPQ (Tan et al., 2023) consists of multilin-
gual questions paired with corresponding language-
specific knowledge graphs. For our study, we use
the evidence (paths) of the dataset as a unified
knowledge graph, resulting in a total of 51,401 enti-
ties and 72 relations. We specifically focus on files
that contain English questions alongside potential
French-language entities and relations. To main-
tain consistency during question parsing, French
relations are translated into English. The dataset is
divided into training, validation, and test sets with
a ratio of 8:1:1, resulting in 57,283 questions for
training, 7,160 for validation, and 7,161 for test-
ing. Although the evidence parts are structured
as triples, it is worth noting that due to the mul-
tilingual nature of the dataset, the tail of the first
evidence may not always match the head of the sub-
sequent evidence. To address this, we normalize by
always selecting the English entity to construct the
knowledge graph.
The Path Questions (PQ) dataset (Zhou et al.,
2018a) is a QA dataset designed for multi-hop
reasoning, leveraging entity relationships sourced
from a knowledge base called Freebase (Bollacker
et al., 2008). Our focus is on the 2-hop reasoning

2https://github.com/yuyuz/MetaQA
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Data Model 2WikiHop MetaQA MLPQ PQ

Dev Euclidean 44.36 22.92 81.03 18.28
Dev Hyperbolic 46.93 28.33 82.60 29.03

Test Euclidean 14.88 19.76 72.10 11.90
Test Hyperbolic 15.20 25.40 74.58 23.21

Table 3: Exact match scores for hopping prompt

Data Model 2WikiHop MetaQA MLPQ PQ

Dev Euclidean 88.60 95.51 97.08 100
Dev Hyperbolic 89.34 95.65 97.14 100

Test Euclidean 79.24 95.27 95.91 98.95
Test Hyperbolic 80.11 95.07 96.79 98.95

Table 4: Exact match scores for parsing prompt

subset, which comprises 1,908 questions, their cor-
responding answers, and the reasoning paths used
to derive them. We adopt the same dataset split
as Wang et al. (2024), which is an 8:1:1 ratio for
training, dev, and test sets, respectively. However,
contrary to Wang et al. (2024), we exclude the rea-
soning walks found in the dev and test splits during
training, making the task more challenging since
all supporting evidence present in the dev and test
sets was also part of their training split.

We chose PQ over the similar PQL (Zhou et al.,
2018b) dataset since PQ’s smaller size allowed us
to stay within our computational budget while cap-
turing the same multi-hop reasoning patterns.

6 Results

In this section, we compare the two spaces in a
variety of settings, provide an ablation study on the
curvature, show that computationally both cases are
similar, present the results of distance analysis in
the two spaces, and give some insights into dataset
difficulty.

6.1 Hyberbolic vs. Euclidean Layer
Table 3 presents the results across all datasets under
prompt tuning for the hopping prompt. The results
demonstrate that the hyperbolic layer outperforms
the Euclidean counterpart across all datasets. For
2WikiHop, the hyperbolic layer increases the EM
score from 44.36% (Euclidean) to 46.93%, reflect-
ing a performance boost of 2.57%. Similarly, for
MetaQA, the hyperbolic layer achieves an exact
match (EM) score of 28.33%, outperforming the
Euclidean layer, which achieves 22.92%, resulting
in an improvement of 5.41%.

Interestingly, the smallest improvement occurs

Parsing Hopping 2WikiHop MetaQA MLPQ PQ

Euclidean Euclidean 13.39 19.20 72.59 12.04
Hyperbolic Euclidean 13.56 19.08 72.74 12.04
Euclidean Hyperbolic 13.40 24.74 73.48 23.04
Hyperbolic Hyperbolic 13.65 24.72 73.40 22.51

Table 5: Exact match scores on test set for T5 with the
additional Euclidean/hyperbolic layer for both prompts.

Data Model 2WikiHop MetaQA MLPQ PQ

Dev Euclidean 32.43 13.89 78.74 12.76
Dev Hyperbolic 34.22 17.09 79.64 27.42

Test Euclidean 10.24 12.08 70.36 11.90
Test Hyperbolic 10.70 15.10 72.12 22.02

Table 6: Exact match scores for hopping stage when
applying the additional layer without soft prompts.

in MLPQ, where the hyperbolic layer increases
the EM score from 81.03% to 82.60%, mark-
ing a marginal gain of 1.57%. This limited im-
provement could be attributed to the already high
baseline performance achieved by the Euclidean
layer in this dataset. With less room for improve-
ment, the hierarchical modeling advantages of the
hyperbolic layer are less pronounced. Notably,
MLPQ’s predominantly linear knowledge-graph
structure—with over 80% of nodes having an out-
degree of one (see Figure 6)—constrains the ben-
efits of hyperbolic space on this dataset. For the
same reason, we can also see marginal improve-
ments for the parsing prompt in Table 4. This con-
trasts with datasets like MetaQA and PQ (for the
hopping prompt in Table 3), where a lower baseline
provides more opportunities for substantial gains.
More importantly, given that the parsing task is
independent of the knowledge graph structure, it
might not inherently benefit from the hierarchical
properties of the hyperbolic space.

Table 5 compares all configurations of hyper-
bolic and Euclidean layers for the parsing and hop-
ping stages. The results show that in most cases
the use of hyperbolic space for the hopping stage
gives the highest performance improvements. This
finding is expected as the hopping stage is influ-
enced by the knowledge graph hierarchies, which
are better captured in hyperbolic space. Notably,
while the Euclidean-hyperbolic configuration for
parsing-hopping stages achieves the best perfor-
mance in most cases, the hyperbolic-hyperbolic
configuration follows closely, with only a marginal
difference (ranging from 0.02 to 0.47 EM points).
This suggests that while hyperbolic hopping sig-
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Figure 3: Curvature ablation for random walk training
showing exact match score on dev sets. Initializing
the curvature with or around δ-hyperbolicity gives the
highest EM score.

2WikiHop MetaQA MLPQ PQ

Random Walk Dataset (Hopping Prompt)

δ 0.22±0.012 0.25±0.015 0.25±0.013 0.28±0.017

c 0.44 0.33 0.33 0.26

Parsing Dataset (Parsing Prompt)

δ 0.29±0.017 0.33±0.018 0.29±0.020 0.28±0.019

c 0.25 0.19 0.25 0.26

Table 7: Mean δ-hyperbolicity and curvature values for
random walks and parsing prompt data.

nificantly improves the performance, the choice
of space for the parsing stage could also have a
relatively small impact.

Table 6 presents the results of the additional Eu-
clidean and hyperbolic layers on the random walk
dev set without the use of soft prompts. The results
demonstrate that the hyperbolic layer consistently
outperforms the Euclidean layer, achieving higher
scores on all datasets. This indicates that the perfor-
mance observed is not dependent on soft prompt-
ing, as the hyperbolic layer exhibits superior results
even in its absence.

6.2 Curvature Ablation

One hyperparameter of the hyperbolic layer is the
curvature, which can be initialized arbitrarily. Fig-
ure 3 presents the results of the curvature ablation
study with different initializations. A key takeaway
from this study is that initialization plays a crucial
role in model performance. Specifically, setting the
curvature based on the relative δ-hyperbolicity (see
Section 3.3) of each dataset, as shown in Table 7,
yields the best (or very close to it for PQ) across
all datasets. In contrast, while smaller curvatures
such as 0.1 and 1.0 still yield competitive results,
increasing the curvature beyond 1.0 leads to a no-

Figure 4: Average inference time per batch (=8) on
the test data. The hyperbolic layer causes a negligible
increase in inference time over the Euclidean layer.

Hopping 2WikiHop MetaQA MLPQ PQ

First relation 100 100 81.25 100
Second relation 100 100 69.01 99.46

Table 8: Percentage of cases where the geodesic dis-
tance in hyperbolic space between the source entity and
its relations is larger than the Euclidean distance.

table degradation in EM scores. For instance, with
a curvature of 10.0, the EM scores drop drastically
to 2.21% for 2WikiHop and 0.22% for MetaQA,
demonstrating that inappropriate curvature values
can severely impact model effectiveness. These
findings suggest that hyperbolic models benefit
from curvature settings that reflect the structure
of the data. Since hyperbolic space expands expo-
nentially, setting the curvature to match a dataset’s
δ-hyperbolicity allows the model to better reflect
hierarchical relationships, thereby improving multi-
hop reasoning accuracy. In contrast, Euclidean
space lacks this adaptability, making it less effec-
tive when reasoning over complex data in knowl-
edge graphs.

6.3 Computational Analysis
Another crucial aspect of this study is the computa-
tional complexity associated with hyperbolic layers.
Despite improved performance, adding a hyper-
bolic layer introduces negligible time and memory
overhead as shown in Figure 4. This observation is
significant because it demonstrates that hyperbolic
layers can achieve superior performance without
significantly increasing the computational cost of
the model. This makes hyperbolic layers a practi-
cal and efficient choice for tasks involving graph-
structured data, such as multi-hop reasoning.

6.4 Embedding Distances
To investigate how the distance between the source
entities and their relations compare to each other in
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Figure 5: Embeddings for 15 input samples from the
MetaQA dataset, each structured as "source entity; first
relation; second relation" in Euclidean versus Poincaré
layer. The Euclidean embeddings use Euclidean dis-
tance while the hyperbolic embeddings use geodesic
distance. Due to the exponential growth of the hyper-
bolic space, entities and relations can be more spread
out as the paths become longer.

the Euclidean and hyperbolic layers, we looked into
their embeddings in these layers. Table 8 presents a
comparison between hyperbolic and Euclidean em-
beddings in terms of their geodesic and Euclidean
distances. Specifically, it reports the percentage
of cases where the geodesic distance in hyperbolic
space is larger than the Euclidean distance for the
Euclidean embeddings. The comparison is con-
ducted for both the first and second relational hops
with respect to the source entity.

For 2WikiHop, MetaQA, and PQ datasets, it is
evident that the hyperbolic relation embeddings
consistently exhibit a greater distance from the
source entity in comparison to the Euclidean em-
beddings, as evidenced by almost 100% of the
cases. However, MLPQ demonstrates a notable
decrease in these percentages for both the first
(81.25%) and the second (69.01%) relational hops.
This behavior can be attributed to the structural
characteristics inherent in the MLPQ knowledge
graph. The fact that over 80% of its nodes have an
out-degree of 1 (only one out-going relation as seen
in Figure 6) indicates that MLPQ is predominantly
a linear knowledge graph rather than a hierarchical
one. The hyperbolic space is particularly beneficial
for tree-like structures, where distances expand ex-
ponentially with branching. However, in a mostly
linear graph, entities and relations are more evenly
spaced out, meaning that Euclidean space can cap-
ture these relationships almost just as effectively.

Figure 6: Distribution of out-going relations (out-
degree) for each dataset. As the proportion of nodes
with a degree of 2 or higher goes up, the complexity of
the dataset also increases.

Since MLPQ lacks significant tree-like expansion,
its hyperbolic distances are not consistently larger
than Euclidean distances, leading to significantly
lower percentages compared to the other datasets.

The results confirm that for tree-like knowledge
graphs, the hyperbolic geodesic distance typically
exceeds the Euclidean distance. This outcome is
expected due to the exponential expansion of hy-
perbolic space. Unlike Euclidean space, where
distance scales linearly, hyperbolic space exhibits
exponential growth, allowing entities and relations
to be more sparsely distributed (Figure 5), which,
in turn, makes it easier for the model to find rele-
vant paths.

Such geometric properties yield a better theo-
retical justification for the performance gains seen
in hyperbolic models. By allowing for increased
spatial separation between entities along a path, hy-
perbolic space lessens interference between rival
paths and improves the model’s capability to learn
effective reasoning multi-hop chains. This has a sig-
nificant impact in scenarios where disambiguation
between relation paths proves central—something
Euclidean space has difficulty with given its linear
growth and reduced ability to represent hierarchi-
cal branching. Hence, the benefit is not simply in
numeric improvements, but rather in how the ge-
ometry changes the landscape of the embedding to
better reflect the nature of reasoning problems.

6.5 Dataset Difficulty

Depending on the knowledge graph, datasets can
have different levels of difficulty. Figure 6 presents
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the proportion of nodes in each dataset with their
out-going relations (out-degree) in their knowledge
graphs. The MLPQ dataset is comparatively sim-
pler, with over 80% of its nodes having an out-
degree of 1. This characteristic significantly re-
duces the complexity of navigating the graph, as
there is typically only one possible path from a
given source node. In contrast, the MetaQA is more
challenging, with only 50% of its nodes having an
out-degree of 1 while more than 40% possess an
out-degree of 2 or higher. The presence of multiple
paths increases ambiguity, making traversal more
complex and negatively impacting the performance,
particularly in the random walk stage.

7 Conclusion and Future Work

We carried out a rigorous and careful investigation
of using hyperbolic versus Euclidean representa-
tions in multi-hop reasoning and showed some of
the advantages of the former compared to the latter.

Our experiments also confirm that initializing
the curvature using the relative delta hyperbolic-
ity of the dataset provides a robust and effective
starting point for learning, ensuring that the model
captures the hierarchical relationships within the
data with greater accuracy. We also provided evi-
dence for the hyperbolic geometry showing more
effectiveness when the dataset has more hierarchi-
cal characteristics. These findings underscore the
importance of understanding the structural proper-
ties of the data when selecting appropriate model
architectures. In addition, our findings open several
promising avenues for future research.

Given that the number of outgoing relations for
each node in different knowledge graphs is not
equal in many cases, future work could investigate
a general manifold structure as well as other hyper-
bolic spaces for multi-hop reasoning.

While our current framework focuses on
encoder-decoder models in a closed-book QA set-
ting, future work should investigate the generaliz-
ability of hyperbolic representations across broader
architectures and tasks. First, extending our ap-
proach to decoder-only language models would
help assess the geometric advantages in other gener-
ative models. Second, applying hyperbolic reason-
ing layers to open-book QA tasks, where models
retrieve and integrate external evidence, would clar-
ify the interaction between geometric embedding
space and retrieval-based reasoning. Finally, ex-
amining our method on a wider variety of datasets

and QA formats—including multi-lingual, noisy,
or longer-hop reasoning datasets—will be critical
to understanding the full scope of its effectiveness
and limitations.

8 Limitations

Although our approach shows promising results,
it has certain limitations: First, we focus exclu-
sively on the closed-book QA setting, where no
external context is provided to the model. This lim-
itation inherently limits the amount of information
available to answer questions, as the model relies
solely on its trained knowledge. As a result, our ap-
proach may underperform compared to models that
use additional context, such as open-book (Jiang
et al., 2022; Feng et al., 2020; Xu et al., 2021)
or retrieval-augmented (Shi et al., 2024a,b; Zhang
et al., 2024b) methods, which can provide more
relevant information during inference. Second, our
experiments were conducted using a frozen model,
where only a small number of parameters in the
additional layer were fine-tuned. While this ap-
proach reduces computational cost and maintains
efficiency, it may limit the ability of the models
that require full fine-tuning for higher accuracy. In
such cases, the impact of one hyperbolic layer with
only one million trainable parameters might fade
away compared to a billion parameters.

9 Ethics Statement

In this study, we exclusively employ pre-trained
knowledge from the T5 model and the datasets uti-
lized in our experimental setup. We have solely
transformed the data as outlined in Section 5.1,
without introducing or curating additional external
knowledge sources. However, it is crucial to ac-
knowledge that the datasets may contain biased,
inaccurate, or incomplete information, which could
influence the model’s reasoning and outputs. Fur-
thermore, these datasets may inadvertently include
private or sensitive information that has not been
explicitly identified, as addressing such concerns
is beyond the scope of this study.
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A Appendix

A.1 Evidence Creation for MetaQA
The MetaQA dataset contains structured informa-
tion about questions, including the source entity,
the tail entity (answer), and the intermediate re-
lations that connect them for each question. For
instance, in the question:

"What are the languages spoken in the films
directed by [Joel Zwick]?"

The source entity is Joel Zwick, and the answer
would be Greek. Additionally, the dataset provides
the intermediate relations forming the reasoning
path from the source entity to the answer. For this
example, the intermediate relations are represented
as a path string:

Pair Relation

(movie, language) in_language
(movie, year) release_year
(movie, writer) written_by
(movie, director) directed_by
(movie, genre) has_genre
(movie, actor) starred_actors
(language, movie) in_language_reversed
(year, movie) release_year_reversed
(writer, movie) written_by_reversed
(director, movie) directed_by_reversed
(genre, movie) has_genre_reversed
(actor, movie) starred_actors_reversed

Table 9: Pair to relation mapping of the MetaQA dataset

director_to_movie_to_language.

To find the evidence, we first parse the path string
into the pairs:

• (director, movie)

• (movie, language)

Each pair represents a segment of the reasoning
path. These pairs are then mapped to their corre-
sponding relations in the knowledge graph using
the mapping defined in Table 9. For instance:

• (director, movie) → directed_by_reversed

• (movie, language) → in_language

Using the source entity, the intermediate rela-
tions, and the answer entity, we construct the com-
plete entity-relation-entity-relation-entity chain for
each question. This chain serves as the evidence
for the reasoning process.

A.2 Further Performance Comparison and
Model Efficiency on the PQ Dataset

EM Score

Ours with Euclidean 89.01
Ours with Hyperbolic 94.24
HyperMR (Wang et al., 2024) 96.2

Table 10: Comparison of our model with HyperMR on
the PQ dataset.

In Table 10, we compare the test performance of
our approach against the state-of-the-art hyperbolic
model, HyperMR, on the PQ dataset. In this case,
we incorporated reasoning paths into the training
process to ensure a fair comparison. Our results
indicate that the hyperbolic layer outperforms its
Euclidean counterpart, improving accuracy from
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Figure 7: On the left: EM score on PQ test set for our
model with Euclidean/hyperbolic layer vs HyperMR
Wang et al. (2024). On the right: Number of trainable
parameters. Even though our approach has lower per-
formance, our model only has approximately 1

10 of the
trainable parameters as their model.

89.01% to 94.24%. While our hyperbolic model
performs slightly lower than HyperMR, it achieves
this with only a fraction of the trainable parameters
(one million compared to 11 million for HyperMR)
as illustrated in Figure 7.
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