
Findings of the Association for Computational Linguistics: ACL 2025, pages 17633–17653
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

FANNO: Augmenting High-Quality Instruction Data with
Open-Sourced LLMs Only

He Zhu1, Yifan Ding3, Yicheng Tao2, Zhiwen Ruan2, Yixia Li2
Wenjia Zhang1,4, Yun Chen3, Guanhua Chen2*

1 Peking University, 2 Southern University of Science and Technology
3 Shanghai University of Finance and Economics, 4 Tongji University

Abstract

Instruction tuning stands as a crucial advance-
ment in leveraging large language models
(LLMs) for enhanced task performance. How-
ever, the annotation of instruction datasets
has traditionally been expensive and labori-
ous, often relying on manual annotations or
costly proprietary LLMs. Recent works ex-
plore approaches to synthesize data with open-
sourced LLMs but require high-quality human-
crafted seed data. In this work, we introduce
FANNO, an end-to-end framework to synthe-
size high-quality instruction data with open-
sourced LLMs and sampled unlabeled docu-
ments, eliminating the necessity for seed data.
Starting from diverse pre-screened documents,
the framework synthesizes complex and diverse
high-quality instruction and response pairs in
different stages. We propose a tagging-based
prompt method to generate diverse and com-
plex seed data and a UCB-based approach to
augment more instruction data with the seed
data. A novel Think Different prompt is pro-
posed to address the distributional limitations
of the seeds, further boosting the data diver-
sity. Experiments prove that the FANNO can
generate diverse and complex high-quality data
even with a opensource small teacher model.
The synthesized instruction data demonstrates
performance that is comparable to, or even sur-
passes, baseline annotation methods with pro-
prietary LLMs or open-sourced LLMs while
requiring fewer instruction data samples.

1 Introduction

Large language models (LLMs) have made signifi-
cant contributions across numerous fields like math
reasoning and open-end question answering (Zheng
et al., 2024a; Wang et al., 2024a; Wettig et al., 2024;
Fan et al., 2023). Instruction tuning (Ouyang et al.,
2022) enhances the model’s abilities to follow user
instructions even in unseen tasks (Li et al., 2023b;

*Corresponding authors: chengh3@sustech.edu.cn

Bai et al., 2023). The instruction data is expected
to have high quality in terms of correctness, com-
plexity, and diversity (Zhou et al., 2023; Liu et al.,
2023a). However, the human-annotated instruction
data is prohibitively expensive when human experts
are incorporated (Ouyang et al., 2022; Chiang et al.,
2023) or the data has suboptimal quality when col-
lected via crowd-sourcing (Srivastava et al., 2022;
Conover et al., 2023). Previous studies explore ap-
proaches to synthesize high-quality instruction data
with either proprietary LLMs (Wang et al., 2022;
Xu et al., 2023) or open-sourced LLMs (Li et al.,
2024b; Lou et al., 2024). While effective, existing
methods often require access to expensive APIs
or hand-crafted seed datasets, imposing significant
financial and operational barriers to widespread
use. When synthesized with open-sourced LLMs
(Zheng et al., 2024c; Yehudai et al., 2024; Press
et al., 2023), the data quality is less satisfactory
as demonstrated by the benchmark performance of
finetuned LLMs (Zheng et al., 2024b; Lin et al.,
2024; Dubois et al., 2024; Wang et al., 2024b).
These LLMs have a limited ability to follow instruc-
tions and provide insufficient control over the com-
plexity and diversity of the synthesized data. For
example, simply prompting open-sourced LLMs
to generate diverse instructions (Wang et al., 2022;
Xu et al., 2023) still produces data that closely re-
sembles the original seed data.

In this work, we develop FANNO (Free AN-
NOtator), an end-to-end instruction data synthe-
sis framework with sampled unlabeled documents
and open-sourced LLMs only that enhances con-
trol over data quality. This framework methodi-
cally breaks down the annotation process into three
distinct stages: document pre-screening, instruc-
tion generation, and response generation. The pre-
screening stage enhances the diversity of raw doc-
uments in both topic and structure, acting as an
effective probe for eliciting high-quality data from
LLMs. The instruction generation stage generates

17633

high-quality instructions through two steps: seed
instruction generation and instruction augmenta-
tion. In the seed instruction generation phase, a
tagging-based prompt is used to generate candidate
seeds across various task types and difficulty levels,
while in the instruction augmentation phase, the
UCB algorithm autonomously selects high-quality
instructions while maintaining an exploratory com-
ponent for newly generated instructions. The pro-
posed Think Different strategy further overcomes
the distributional limitations of the initial seeds,
enhancing the data diversity. Empirical evidence
on different benchmarks confirm the efficacy of
FANNO framework on two small LLMs. The gen-
erated dataset is virtually indistinguishable from
instruction datasets like Alpaca-GPT4, marking a
significant stride in instruction data development.1

2 Related Work

Instruction Data Generation Two main ap-
proaches have been explored for instruction data
creation: (1) Human Annotation, which lever-
ages human expertise to design prompts and col-
lect multi-task datasets spanning various cate-
gories (Srivastava et al., 2022; Conover et al.,
2023). While producing high-quality data, man-
ual annotation is effort-intensive and costly, es-
pecially for devising complex textual instructions.
(2) LLM-based Synthetic Data Generation Re-
cent research increasingly favors harnessing the cre-
ative capabilities of LLMs, such as GPT-4 (OpenAI,
2023), over human input for creating instruction-
following datasets (Geng et al., 2023; Chiang et al.,
2023). ALPACA (Taori et al., 2023) and ALPACA-
GPT4 (Peng et al., 2023) have also used more
powerful LLMs to enhance data quality. Another
line of research involves generating task instruc-
tions from “seeds” and filtering (Wu et al., 2023).
For example, WIZARDLM (Xu et al., 2023) em-
ployed an instruction evolution paradigm to in-
crease seed instruction complexity and diversity,
while SELF-INSTRUCT (Wang et al., 2022) used
human-annotated instructions as demonstrations
to guide LLMs in the instruction evolution pro-
cess. OSS-Instruct (Wei et al., 2024) generates
diverse instruction data for code by utilizing open-
source code snippets. LLM2LLM (Lee et al., 2024)
selects difficult data for labeling with a teacher
model. Genie (Yehudai et al., 2024) uses four man-

1Our code is publicly available at https://github.com/
sustech-nlp/FANNO

ually labeled ‘doc, instruction, response’ pairs as
in-context learning examples to generate new QA
pairs. Mammoth2 (Yue et al., 2024) proposes to
extract question-answer pairs already existing in
the web-crawled data. Humpback (Li et al., 2024b)
generates instructions using vast amounts of unla-
beled web text. These datasets are costly in terms
of labor or proprietary model expenses. In con-
trast, FANNO maintains high instructional quality
autonomously, utilizing open-source models effi-
ciently with just a 7B model size.

Data Quality Enhancement Related works in
the field of enhancing data quality have focused on
several key aspects, such as instruction difficulty,
diversity, and correctness. HUMPBACK (Li et al.,
2024b) and KUN (Zheng et al., 2024c) utilize the
language model’s capability in combination with
tailored prompts for data filtering. In Addition,
initiatives like GENIE (Yehudai et al., 2024) and
MODS (Du et al., 2023) utilize specialized open-
source LLMs for data filtering tasks. DEITA (Liu
et al., 2023b) utilize fine-tuned large models to
score the data for quality assessment. Moreover,
efforts like ORCA-MATH (Mitra et al., 2024) and
REFLECTION-TUNING (Li et al., 2023a) employ
collaborative approaches with multiple LMs and
self-reflection to enhance data quality.

3 Method

3.1 Overview of FANNO Framework

The FANNO framework aims to annotate correct,
complex, and diverse instruction data with open-
sourced LLMs given the sampled unlabeled docu-
ment text. As depicted in Figure 1, FANNO consists
of three pivotal stages: document pre-screening, in-
struction generation, and response generation. Un-
like previous works (Wei et al., 2024; Yehudai et al.,
2024) that generate the instruction and response at
the same time within a single turn, FANNO propose
to output them separately in different stages for
better quality (see more discussion in Section 4.2).

Stage 1: Document Pre-Screening The unla-
beled documents are sampled from a web-scale cor-
pus or in-house text data. The documents are first
segmented and deduplicated before being filtered
based on quality, complexity, and diversity. The
LLM-based filter is applied to address ambiguous
content, privacy concerns, and advertisements (see
Appendix D.1), thus improving the data quality.
The length-based filter selects complex documents

17634

https://github.com/sustech-nlp/FANNO
https://github.com/sustech-nlp/FANNO

Figure 1: Overview of FANNO framework. (1) Document Pre-Screening: We process the unlabeled text data with
filters and community detection algorithm. (2a) Seed Instruction Generation: FANNO generates seed instructions
from pre-screened documents with diverse task types and difficulty levels through a tag pool. (2b) Instruction
Augmentation: New instructions are augmented conditioned on the documents and few-shot examples selected
from the seed instructions with the UCB algorithm. (3) Response Generation: The responses to instructions are
generated directly by the teacher LLM.

inspired by the observation that text length corre-
lates well with the complexity (Shen, 2024; Dubois
et al., 2024; Liu et al., 2023a). The fast commu-
nity detection algorithm (see Algorithm 1 in the
appendix) further enhances the diversity of data by
clustering the documents according to document-
level embeddings (Reimers and Gurevych, 2019)
and maintaining the representatives. More details
are provided in Appendix B.2.

Stage 2: Instruction Generation The instruc-
tions are generated based on the pre-screened doc-
uments with the teacher model. To remove the
requirements for human-crafted seed instruction
data, FANNO proposes two distinct phrases for in-
struction generations: Stage 2(a): seed instruc-
tion generation and Stage 2(b): instruction aug-
mentation. The seed instructions are generated
with the tagging-based method (see Section 3.3) to
enhance the data complexity and diversity. Then
more diverse instruction data are augmented with
the iterative UCB (Robbins and Monro, 1951, Up-
per Confidence Bound) method (see Section 3.2).
Both generated instructions are filtered with the
LLM-based method (see Table 8 in the appendix)

to ensure the data quality. Appendix B.3 shows the
detailed process.

Stage 3: Response Generation Different from
previous work (Li et al., 2024b), which directly
applies the sampled document as a response to the
generated instruction, FANNO directly prompts the
teacher LLM to generate the response to each gen-
erated instruction. Inspired by the assumption that
instruction tuning aims to activate the instruction-
following abilities of LLMs instead of learning new
knowledge (Zhou et al., 2023), we sample the docu-
ments from open-sourced pretraining dataset. Thus
the teacher LLM is expected to answer the synthe-
sized questions directly with its inherent knowl-
edge.

The key challenge to instruction data synthesis
is to improve the correctness, complexity, and di-
versity of the generated data (Zhou et al., 2023;
Liu et al., 2023a). In the FANNO framework, the
instruction is generated conditioned on the sampled
document, which alleviates the hallucination prob-
lem and improves the correctness. The seed instruc-
tions are created with the requirements of different
complexity levels, and more instructions are en-

17635

riched with complex in-context examples selected
with the UCB method (explained below). These
methods improve the complexity of the generated
data. Next, we will detail strategies to enhance
the data diversity with the UCB-based method
(Section 3.2) and the prompt-based method (Sec-
tion 3.3).

3.2 UCB-Based Diversification Strategy

During the stage of instruction augmentation, the
FANNO framework iteratively applies UCB (Rob-
bins and Monro, 1951, Upper Confidence Bound)
method to score and select high-quality instructions
as in-context examples instead of randomly sam-
pling (Wang et al., 2022). Various metrics can serve
as data quality proxies, including reward models
(Liu et al., 2023a), prompt-based intent extractors
(Lu et al., 2023), or statistical measures like in-
struction/response length. Through experimental
validation (see Section 5.6), we selected response
length as the quality metric, as longer responses sta-
tistically indicate more complex instructions with
better activation effects (Zhao et al., 2023). Given
a seed instruction xs, its UCB score is calculated
as UCB(xs) = x̄s + C

√
2 lnN
ns

, where x̄s is the
seed’s average quality which is represented by the
response token length, N is the total iterations (i.e.
number of samples synthesized so far), and C is
a constant. The score encourages the selection
of high-quality seed instructions that are less fre-
quently chosen. The constant C is used to balance
exploration and exploitation. In each iteration, we
select k seeds with the highest UCB scores. The
detailed process can be found in Appendix B.3. Ab-
lation studies show that the UCB bootstrap method
generates higher-quality data compared to random
sampling, as demonstrated in Figure 4.

3.3 Prompt-based Diversification Strategies

The FANNO framework proposes two prompt-
based strategies to enhance data diversity, which
are illustrated below.

Tagging-Based Diversity-Enhanced Method
The FANNO generates seed instruction data based
on the pre-screened documents, eliminating the re-
quirement of human-crafted seed data. To produce
a set of diverse and complex instructions as the
initial seeds, FANNO designs the prompt from two
perspectives to enhance the data diversity: Task
Types and Difficulty Levels, for which we have
manually created the corresponding tags (see Ap-

pendix D.4). For each document, we traverse all
combinations of tags of task types and instruction
difficulty levels to generate seed instructions by
p(s|d, tty, tdf), where s is the generated seed in-
struction, d is the sampled document, tty, tdf are
the tag selected from different task types and dif-
ficulty levels, respectively. The tagging-based di-
versification method enhances the control over the
diversity of generated data as it provides detailed
corresponding requirements on its complexity and
task type.

Prompt Strategy to Encourage Diverse Think-
ing Following common practices (Wang et al.,
2022; Xu et al., 2023), FANNO uses in-context ex-
amples to augment more instructions from seed
data. Unlike conventional methods that use the
examples as positive examples, our strategy views
these examples as negative examples and asks the
teacher LLM to propose different instructions. As
shown in Table 13, our Think Different strategy ex-
tends the conventional prompt by inserting “Please
think differently” in the prompt, meanwhile trans-
forming the label from “### Example” to “###
Counterexample”. The proposed method encour-
ages the teacher LLM to generate more diverse
instructions by regarding the in-context examples
as counterexamples, thus eliminating the probabil-
ity of similar generations. The effectiveness of this
method is further discussed in Section 5.3.

4 Experiments

4.1 Experiment Setup
Unlabeled Data The web-scale FALCON RE-
FINED WEB corpus2 (Penedo et al., 2023) includes
text data from various domains. The first 500k doc-
uments of the corpus are used as our unlabelled
data.

Dataset Annotation Details We choose LLaMA-
3.1-TULU-3-8B (Lambert et al., 2024) as the
teacher model for data annotation in main experi-
ments. The model stella_en_400M_v53 is used to
extract text embeddings for clustering and filtering.
Our annotated dataset FANNO contains 10k high-
quality instruction-response pairs. We use greedy
decoding with temperature 0 to generate the an-
notation results. All prompts used are detailed in
Appendix D.

2https://huggingface.co/datasets/tiiuae/
falcon-refinedweb

3https://huggingface.co/dunzhang/stella_en_
400M_v5

17636

https://huggingface.co/datasets/tiiuae/falcon-refinedweb
https://huggingface.co/datasets/tiiuae/falcon-refinedweb
https://huggingface.co/dunzhang/stella_en_400M_v5
https://huggingface.co/dunzhang/stella_en_400M_v5

Setup #Convs
Base model: Llama3-8B-base Base model: Mistral-7B-v0.3-base

AlpacaEval 2.0 Arena-Hard AlpacaEval 2.0 Arena-Hard
LC(%) WR(%) WR(%) LC(%) WR(%) WR(%)

Existing synthesized data (require human†/proprietary LLM∗ or ultra-large LLM‡ for annotation)

LIMA† 1k 3.16 3.46 4.61 2.95 3.15 1.71
Alpaca∗ 52k 3.31 1.78 0.65 1.05 0.72 0.32
Alpaca-cleaned∗ 51.8k 6.93 3.74 2.96 2.54 1.56 0.74
Alpaca-gpt4∗ 52k 6.63 3.81 2.84 3.16 2.14 0.60
WizardLM∗ 70k 7.53 4.57 3.28 2.79 1.73 1.65
MUFFIN∗ 68k 2.67 1.83 0.85 1.06 0.78 0.36
SkillMix∗ 4k 22.40 21.25 23.76 10.15 10.12 10.68
Magpie‡ 10k 14.55 13.09 19.33 5.97 5.87 5.31
Humpback‡ 10k 0.81 1.22 2.79 0.73 1.08 1.41

Synthesized data with the same teacher LLM as FANNO

Self-Instruct 10k 18.90 16.70 22.72 7.15 6.82 7.31
MUFFIN 10k 12.86 10.20 10.31 3.46 3.07 2.1
OSS-Instruct 10k 17.78 17.40 24.42 6.06 6.42 6.84
Genie 10k 2.51 1.99 1.97 0.75 0.46 0.39
FANNO 10k 30.13 30.11 31.62 16.42 18.12 17.2

Table 1: Comparison of different instruction datasets on AlpacaEval 2.0 and Arena-Hard benchmarks. LC and WR
denote Length Control and Win Rate respectively. The underlined numbers highlight the best performance among
existing methods, while bold numbers indicate our method achieves the best overall performance.

Baselines We compare the instruction data syn-
thesized with FANNO framework with other in-
struction data which are annotated with proprietary
LLMs, including Alpaca-52k (Taori et al., 2023),
Alpaca-Cleaned4, Alpaca-GPT4 (Peng et al., 2023),
LIMA (Zhou et al., 2023), WizardLM-70k (Xu
et al., 2023), and Muffin (Lou et al., 2024). We
also compare FANNO with other annotation meth-
ods, including OSS-Instruct (Wei et al., 2024), Ge-
nie (Yehudai et al., 2024), Humpback (Chen et al.,
2024) and Magpie (Li et al., 2024b) (randomly
sampled 10k from Magpie-500k-Pro).

Please refer to Appendix A for more details
about the baselines.

Base Model and Finetuning Setup We com-
pare FANNO against baseline datasets on finetuning
LLaMA-3-8b-base model (Touvron et al., 2023)
and Mistral-v0.3-7b-base (Jiang et al., 2023). We
perform supervised instruction tuning using a fully
finetuning method. Please refer to Appendix C for
detailed configurations.

Benchmarks We evaluate each finetuned model
on the following these benchmarks. Both bench-
marks use GPT-4o as the evaluation model to re-
duce costs.

4https://huggingface.co/datasets/yahma/
alpaca-cleaned

• AlpacaEval 2.0 Benchmark (Li et al., 2023b;
Dubois et al., 2024) is an automated evaluation
framework based on a annotation model(GPT-4).
By comparing responses generated by two different
models for the same set of 805 prompts, AlpacaE-
val computes the pairwise win rate, automating the
evaluation process.
• ArenaHard-Auto (Li et al., 2024a) is an auto-
matic evaluation tool that uses GPT-4-Turbo to eval-
uate 500 challenging queries against GPT-4-0314
baseline. It achieves strong correlation with human
preferences.

4.2 Main Results

As shown in Table 1, we compare FANNO with vari-
ous baseline methods on AlpacaEval 2.0 and Arena-
Hard benchmarks. The results demonstrate that
FANNO consistently outperforms existing meth-
ods across different base models and evaluation
metrics. For LLama3-8B-base model, FANNO

achieves 30.13% and 30.11% on AlpacaEval 2.0’s
Length Control (LC) and Win Rate (WR) met-
rics respectively, significantly outperforming ex-
isting methods that rely on proprietary LLMs for
annotation, such as Alpaca (6.93% LC, 3.74%
WR) and WizardLM (7.53% LC, 4.57% WR). No-
tably, FANNO even surpasses SkillMix (22.40%
LC, 21.25% WR), which represents the best perfor-

17637

https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/yahma/alpaca-cleaned

Figure 2: Left: Instruction length distribution of FANNO; Right: Top 50 common verbs and their corresponding
nouns of FANNO. We compare FANNO with Alpaca-Cleaned, for which the detailed results are in Figure 6 and 8.

mance among existing methods. When comparing
with methods using the same teacher LLM, FANNO

demonstrates substantial improvements over Self-
Instruct (18.90% LC, 16.70% WR), OSS-Instruct
(17.78% LC, 17.40% WR) and other baselines.
Similar patterns are observed on the Arena-Hard
benchmark, where FANNO achieves 33.12% WR,
significantly higher than baselines. The superior
performance extends to the Mistral-7B-v0.3-base
model as well. FANNO achieves 16.42% LC and
18.12% WR on AlpacaEval 2.0, and 17.2% WR on
Arena-Hard, consistently outperforming all base-
line methods by a large margin. This demonstrates
the effectiveness and robustness of our framework
across different base models. These results are par-
ticularly noteworthy given that FANNO uses only
10k instruction-response pairs, while some base-
lines like Alpaca and WizardLM use 52k and 70k
pairs respectively. The strong performance with
a smaller dataset highlights the high quality and
efficiency of our annotation framework.

4.3 Ablation Studies

To comprehensively evaluate the effectiveness of
our method, we conduct additional ablation studies
using MMLU (Beeching et al., 2023) with Mistral-
7B-instruct-v0.3 (Jiang et al., 2023) as the teacher
model and LLaMA2-7B-base as the student model.
We choose these earlier models to ensure fair eval-
uation and avoid potential data contamination, as
newer models may have been exposed to test data
during pre-training (Wei et al., 2023).

We conduct ablation studies to identify the key
components of FANNO, including the pre-screening
stage (PSR), the Tag in seed instruction genera-
tion (TG), and the Think Different (TD) and UCB-
selection (UCB) strategies in instruction augmen-
tation. As shown in Table 2, all components are

ID Configuration Open LLM Leaderboard Avg.ARC HS MMLU TQA
Pre-screening
(0) (1) w/o PSR 54.44 78.66 44.69 46.02 55.95
Instruction Ablation
(1) (7) w/o TG&TD&UCB 55.46 78.51 46.00 45.85 56.44
(2) (7) w/o TG 55.46 78.45 45.03 50.12 57.27
(3) (7) w/o TD 54.69 79.18 45.92 50.19 57.50
(4) (7) w/o UCB 55.63 79.43 44.84 51.16 57.77
Response Ablation
(5) FANNO (OD) 55.46 78.31 44.99 45.68 56.11
(6) FANNO (RAG) 55.03 78.46 47.02 46.26 56.69
(7) FANNO 55.63 79.45 46.84 51.01 58.23

Table 2: Ablation results from the lm-evaluation-harness
(Gao et al., 2023). (0) Basic framework: (1) without
pre-screening (PSR); (1) FANNO without Tag (TG),
Think Different (TD) and UCB-selection (UCB); (2)
FANNO without Tag in seed instruction generation; (3)
FANNO without Think Different; (4) FANNO without
UCB-selection; (5) Response generation with the orig-
inal document (OD); (6) Response generation with re-
trieved document (RAG); (7) The complete version of
FANNO, for which the response are directly generated
without document.

essential for FANNO. Specifically, removing the
Tag, Think Different, and UCB-selection strate-
gies results in performance declines of 0.96, 0.73,
and 0.46 points, respectively, while removing all
of these components leads to a total performance
decline of 1.79 points. Additionally, further remov-
ing the pre-screening stage results in a performance
decline of 0.49 points.

We also conduct an ablation study on the re-
sponse generation stage to explore whether docu-
ments are necessary for generating responses. We
experiment with three variants: using the original
document (OD), the retrieved document (RAG),
and no document at all during the response gener-
ation stage. The results indicate that using either
the original or retrieved document leads to signif-
icant performance declines. As discussed in Sec-
tion 3.1, the user queries are expected to be directly
answered by the teacher LLM. However, the extra

17638

Figure 3: Quality and Complexity Comparison between
FANNO and Alpaca-Cleaned

information provided by the original document or
retrieved document might contain interference and
biased information that leads to different responses.
The conflict between the inherent LLM knowledge
and external document knowledge might harm the
performance. Since the annotated data is used for
instruction tuning where no documents are pro-
vided, it is better to exclude the document informa-
tion during the response generation process.

5 Analyses

5.1 Data Statistics

We provide the data statistics of FANNO from the
perspectives of length, diversity, quality, and com-
plexity. We also report the statistics of the best-
performing baseline dataset, Alpaca-Cleaned, for
comparison.

Length To study the distribution of the length
of instructions, we tokenize each instruction com-
bined with input and count the words within it
as its length. Figure 2 left illustrates the distribu-
tion of instruction length for FANNO, while that
of Alpaca-Cleaned is in Figure 6 of Appendix E.1.
The results show that FANNO instructions are more
balanced than Alpaca-Cleaned, and the mean value
of lengths is higher than that of Alpaca.

Diversity Following (Wang et al., 2022), we ana-
lyze task diversity by examining verb-noun struc-
tures. Figure 2 and Figure 8 show that FANNO

has more unique verb-noun pairs than Alpaca-
Cleaned (0.58 vs. 0.31). The pairs in FANNO

(e.g., assemble-team, create-command) are also
more complex than Alpaca-Cleaned’s simpler pairs
(e.g., rewrite-sentence, generate-list), indicating
FANNO’s greater diversity and complexity.

Quality and Complexity To evaluate the qual-
ity and complexity of instruction-response pairs,
we utilize Deita-quality-scorer model and Deita-
complexity-scorer model (Liu et al., 2023b) as an
evaluator to score our instructions. Figure 3 shows
the quality and complexity comparison between
FANNO and Alpaca-Cleaned, of which the result
shows that FANNO instructions possess a more bal-
anced complexity distribution and higher average
quality.

5.2 UCB-Based Strategy Improve Instruction
Complexity and Diversity

UCB Bootstrap is employed to stabilize the process
of instruction improvement. We monitor the diver-
sity and complexity of instructions across different
iterations and compare it with a random selection
strategy. For diversity, we measure it with the num-
ber of noun-verb pairs following Wang et al. (2022).
For complexity, we measure it with averaged in-
struction length, as well as the complexity score
using the Deita-complexity-scorer model in Liu
et al. (2023b).

As depicted in Figure 4, we observe a sharper
increase in both the average complexity and diver-
sity scores as the iteration progresses compared
with the ablation method (without UCB, namely
random sampling), demonstrating the effectiveness
of UCB-based strategy. By prioritizing the explo-
ration of longer and newly generated instructions
for few-shot examples of instruction generation,
UCB facilitates the annotation of more challenging
and creative instructions.

5.3 Think Different Improves Instruction
Diversity

To gain a comprehensive understanding of the role
of Think Different in promoting diversity, we eval-
uate its impact using four metrics: (1) Number
of unique noun-verb pairs, (2) Number of unique
intent tags following Lu et al. (2023), (3) Aver-
aged instruction length and (4) The Length Dis-
tribution Index (LDI). LDI measures the length
distribution shift between the generated instruction
dataset and the original seed dataset, calculated via
KL divergence. We begin with 175 instruction en-
tries sourced from the self-instruct seed set 5 and
extend this to a collection of 5k instruction samples
using different approaches.

As shown in Table 3, Think Different effectively

5https://github.com/yizhongw/self-instruct

17639

https://github.com/yizhongw/self-instruct

Figure 4: Diversity (left) and complexity (right) of the annotated datasets as iterations increase.

ID Method NV pairs Intent Tags Avg Len LDI
(1) Seed 143 248 37.45 –
(2) Think Different 755 2141 138.85 17.21
(3) (2) − ‘CE’ 53 859 84.32 13.03
(4) (2) − ‘PTD’ 55 779 47.96 12.21
(5) Self-instruct 60 916 83.01 13.43
(6) wizardlm 997 1299 135.47 15.54

Table 3: Diversity comparison of instruction genera-
tion methods. ‘CE’ and ‘PTD’ denote the strategy of
transforming the label from “### Example” to “###
Counterexample” and prepending “Please think differ-
ently” in the prompt, respectively.

annotates a new instruction dataset that is more
diverse than the seed dataset. It also surpasses
baseline annotation methods such as Self-Instruct
and WizardLM in enhancing data diversity. Addi-
tionally, it outperforms the two variants of Think
Different: one that removes the ‘### Counter Ex-
ample’ (CE) and the other that omits the ‘Please
Think Differently’ tag (PTD) in the prompt. This
underscores the significance of these components
in enhancing the teacher model’s ability to synthe-
size high-quality, diverse instruction data.

Type Average Diversity Average Quality
Complexity (Unique NV Pairs) Token Length (Dieta Score)

HC (175) 2.04 211 17.46 3.72
Syn (750) 2.60 674 51.03 4.80

HA (10k) 3.11 2955 95.94 5.27
SA (10k) 3.01 2976 100.79 5.30

Table 4: Comparison of Different Data Types.
HC: Human-Crafted, Syn: Synthetic, HA: Human-
Augmented, SA: Synthetic-Augmented. Numbers in
parentheses indicate sample sizes.

5.4 Analysis of Human-Crafted and Synthetic
Instruction Data

To investigate the effectiveness of synthetic instruc-
tion generation, we conducted a comparative anal-
ysis between human-crafted and synthetic instruc-

tion data. Using the evaluation methodology de-
scribed in Section 5.3, we assessed data quality us-
ing the Instagger and Dieta frameworks. The com-
parison involved two seed datasets: 175 human-
crafted instructions from Self-instruct (Wang et al.,
2022) and 750 synthetic instructions generated dur-
ing FANNO’s SeedGen phase. Both datasets were
then expanded to 10k samples using the InsAug
method, with results shown in Table 4.

The analysis reveals several notable findings.
First, synthetic instructions demonstrate compara-
ble quality to human-crafted ones, while achieving
higher diversity (674 vs 211 unique NV pairs) and
complexity (2.60 vs 2.04) scores, validating the
effectiveness of our SeedGen approach. After aug-
mentation to 10k samples, both approaches show
substantial improvements across all metrics, with
synthetic-augmented data showing marginal advan-
tages in terms of token length (100.79 vs 95.94)
and quality score (5.30 vs 5.27). These results sug-
gest that FANNO can effectively generate diverse
and high-quality instruction data without heavily
relying on human annotations.

5.5 Scaling Analysis

Following the same experimental setup, we eval-
uate FANNO’s scaling behavior by training mod-
els with varying amounts of instruction-response
pairs. As shown in Table 5, FANNO demonstrates
consistent performance improvements as the train-
ing data size increases. Specifically, on both
Alpaca-Eval2.0 and Arena-Hard benchmarks, mod-
els trained with larger datasets achieve better perfor-
mance, with the 20K variant showing the strongest
results. These findings suggest that FANNO can
effectively leverage increased training data to en-
hance model capabilities.

17640

Size AE2.0 LC(%) AH WR(%) Average

5K 29.2 26.8 28.0
10K 30.13 31.62 30.88
20K 31.7 32.8 32.25

Table 5: Performance scaling with different training
data sizes. AE2: AlpacaEval 2.0, AH: Arena-Hard.

5.6 Analysis of Different Quality Metrics for
UCB Selection

To explore how different reward signals affect the
UCB algorithm’s performance and identify the
most suitable quality metric, we conducted exper-
iments comparing three approaches: (1) Instruc-
tion token length x̄s = |xs|inst, (2) Response to-
ken length x̄s = |ys|resp, and (3) Instagger-based
metric x̄s = |Ts|, which uses the number of ex-
tracted intent tags to measure instruction complex-
ity, where a higher tag count indicates stronger in-
tent and better quality. Results demonstrate that re-
sponse token length achieves the best performance
across both benchmarks, substantially outperform-
ing instruction length, while the Instagger-based ap-
proach shows intermediate performance. We there-
fore selected response length as our quality met-
ric. This choice aligns with prior findings (Shen,
2024; Zhao et al., 2024), as longer responses sta-
tistically represent higher difficulty, richer infor-
mation content, more human-like characteristics,
and overall superior quality, making them an effec-
tive proxy for instruction quality assessment in our
UCB framework.

6 Conclusion

The development of instruction data has been hin-
dered by the high cost and labor-intensive na-
ture. In this paper, we introduced FANNO, an au-
tonomous and low-cost end-to-end framework that
addresses these challenges by streamlining the an-
notation process with open-sourced LLMs. FANNO

efficiently generates datasets of high quality, di-
versity, and complexity through a structured pro-
cess involving pre-screening, instruction genera-
tion, and response generation. This unified process
eliminates the need for pre-existing annotated data
or costly API calls, advancing the instruction data
development. Empirical experiments validate the
efficacy of FANNO, underscoring the framework’s
potential to democratize access to high-quality in-
struction datasets.

Quality Metric AE2.0 LC(%) AH WR(%) Average

Instruction Length 27.45 28.39 27.92
Response Length 30.13 31.62 30.88
Instagger-based 29.87 30.91 30.39

Table 6: Performance comparison of different quality
metrics for UCB selection. AE2.0: AlpacaEval 2.0, AH:
Arena-Hard.

Limitations

While FANNO has demonstrated outstanding perfor-
mance, several limitations must be acknowledged.
The responses are not entirely dependent on the
document, leading to the introduction of certain
hallucinations in the fine-tuning data. This sug-
gests that the model’s reliance on the provided con-
text needs to be strengthened to improve factual
consistency. The simplistic approach of equating
instruction length with its value is rather crude. The
true value of an instruction is influenced by vari-
ous factors such as difficulty, quality, and novelty.
Future work will aim to develop a more nuanced
understanding and evaluation of instruction value.
The quality of generated instructions is contingent
upon the capabilities of both the generator and the
evaluator. This process is sensitive to the teacher
model and the prompts used, indicating a need for
designing prompts that are specifically tailored to
the model. Addressing these limitations will be a
focus of our future work.

Acknowledgements

This project was supported by National Natural
Science Foundation of China (No. 62306132) and
Guangdong Basic and Applied Basic Research
Foundation (No. 2025A1515011564). The pa-
per was also supported by the Key Project of the
Shanghai Municipal Education Commission’s AI-
Enabled Research Paradigm Reform and Discipline
Leap Program (Development of a Domain-Specific
Large Language Model in the Field of Urban and
Rural Planning for Enhancing Spatial Cognition
and Decision-Making Capabilities) and by the Fun-
damental Research Funds for the Central Univer-
sities (22120250239). This work was done by He
Zhu during his internship at SUSTech. We thank
the anonymous reviewers for their insightful feed-
backs on this work.

17641

References
Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,

Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Edward Beeching, Clémentine Fourrier, Nathan Habib,
Sheon Han, Nathan Lambert, Nazneen Rajani, Omar
Sanseviero, Lewis Tunstall, and Thomas Wolf. 2023.
Open llm leaderboard. https://huggingface.co/
spaces/HuggingFaceH4/open_llm_leaderboard.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. arXiv preprint arXiv:2401.01335.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Mike Conover, Matt Hayes, Matt Mathur, Xiangrui
Meng, Jianwei Xie, Jun Wan, Ali Ghodsi, Patrick
Wendell, and Patrick Zaharia. 2023. Hello dolly: De-
mocratizing the magic of chatgpt with open models.

Qianlong Du, Chengqing Zong, and Jiajun Zhang. 2023.
Mods: Model-oriented data selection for instruction
tuning. Preprint, arXiv:2311.15653.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat-
sunori B. Hashimoto. 2024. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. Preprint, arXiv:2404.04475.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya
Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M.
Zhang. 2023. Large language models for software
engineering: Survey and open problems. Preprint,
arXiv:2310.03533.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wal-
lace, Pieter Abbeel, Sergey Levine, and Dawn Song.
2023. Koala: A dialogue model for academic re-
search. Blog post.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,

and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le
Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini,
Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and
Hannaneh Hajishirzi. 2024. Tülu 3: Pushing frontiers
in open language model post-training.

Nicholas Lee, Thanakul Wattanawong, Sehoon Kim,
Karttikeya Mangalam, Sheng Shen, Gopala Anu-
manchipalli, Michael W. Mahoney, Kurt Keutzer,
and Amir Gholami. 2024. Llm2llm: Boosting llms
with novel iterative data enhancement. Preprint,
arXiv:2403.15042.

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He,
Heng Huang, Jiuxiang Gu, and Tianyi Zhou. 2023a.
Reflection-tuning: Data recycling improves llm
instruction-tuning. ArXiv, abs/2310.11716.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E. Gonzalez, and
Ion Stoica. 2024a. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. Preprint, arXiv:2406.11939.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer
Levy, Luke Zettlemoyer, Jason Weston, and Mike
Lewis. 2024b. Self-alignment with instruction back-
translation. Preprint, arXiv:2308.06259.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023b. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Faeze
Brahman, Abhilasha Ravichander, Valentina Py-
atkin, Nouha Dziri, Ronan Le Bras, and Yejin Choi.
2024. Wildbench: Benchmarking llms with chal-
lenging tasks from real users in the wild. Preprint,
arXiv:2406.04770.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang,
and Junxian He. 2023a. What makes good data
for alignment? a comprehensive study of auto-
matic data selection in instruction tuning. Preprint,
arXiv:2312.15685.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang,
and Junxian He. 2023b. What makes good data
for alignment? a comprehensive study of auto-
matic data selection in instruction tuning. Preprint,
arXiv:2312.15685.

Renze Lou, Kai Zhang, Jian Xie, Yuxuan Sun, Janice
Ahn, Hanzi Xu, Yu Su, and Wenpeng Yin. 2024.
MUFFIN: Curating multi-faceted instructions for im-
proving instruction following. In The Twelfth Inter-
national Conference on Learning Representations.

17642

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/databrickslabs/dolly
https://github.com/databrickslabs/dolly
https://arxiv.org/abs/2311.15653
https://arxiv.org/abs/2311.15653
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2310.03533
https://arxiv.org/abs/2310.03533
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2403.15042
https://arxiv.org/abs/2403.15042
https://api.semanticscholar.org/CorpusID:264288970
https://api.semanticscholar.org/CorpusID:264288970
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2308.06259
https://arxiv.org/abs/2308.06259
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2406.04770
https://arxiv.org/abs/2406.04770
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://arxiv.org/abs/2312.15685
https://openreview.net/forum?id=1vrS1zwekw
https://openreview.net/forum?id=1vrS1zwekw

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-
yang Lin, Chuanqi Tan, Chang Zhou, and Jingren
Zhou. 2023. Instag: Instruction tagging for analyz-
ing supervised fine-tuning of large language models.
Preprint, arXiv:2308.07074.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. 2024. Orca-math: Unlocking
the potential of slms in grade school math. Preprint,
arXiv:2402.14830.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The refinedweb dataset for
falcon llm: Outperforming curated corpora with web
data, and web data only. Preprint, arXiv:2306.01116.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models. Preprint, arXiv:2210.03350.

Sebastian Raschka. 2023. Finetuning llms with lora
and qlora: Insights from hundreds of experiments.
Lightning AI.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Herbert Robbins and Sutton Monro. 1951. A stochastic
approximation method. The annals of mathematical
statistics, pages 400–407.

Ming Shen. 2024. Rethinking data selection for super-
vised fine-tuning. Preprint, arXiv:2402.06094.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2022. Beyond the Imita-
tion Game: Quantifying and Extrapolating the Ca-
pabilities of Language Models. arXiv preprint
arXiv:2206.04615.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Siyuan Wang, Zhongyu Wei, Yejin Choi, and Xiang Ren.
2024a. Can llms reason with rules? logic scaffold-
ing for stress-testing and improving llms. Preprint,
arXiv:2402.11442.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng
Ni, Abhranil Chandra, and Others. 2024b. Mmlu-
pro: A more robust and challenging multi-task
language understanding benchmark. Preprint,
arXiv:2406.01574.

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu,
Lijie Wang, Haihua Yang, Biye Li, Cheng Cheng,
Weiwei Lü, Rui Hu, Chenxia Li, Liu Yang, Xilin
Luo, Xuejie Wu, Lunan Liu, Wenjun Cheng, Peng
Cheng, Jianhao Zhang, Xiaoyu Zhang, Lei Lin, Xi-
aokun Wang, Yutuan Ma, Chuanhai Dong, Yanqi Sun,
Yifu Chen, Yongyi Peng, Xiaojuan Liang, Shuicheng
Yan, Han Fang, and Yahui Zhou. 2023. Skywork:
A more open bilingual foundation model. Preprint,
arXiv:2310.19341.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding,
and Lingming Zhang. 2024. Magicoder: Empow-
ering code generation with oss-instruct. Preprint,
arXiv:2312.02120.

Alexander Wettig, Aatmik Gupta, Saumya Malik, and
Danqi Chen. 2024. Qurating: Selecting high-
quality data for training language models. Preprint,
arXiv:2402.09739.

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muham-
mad Abdul-Mageed, and Alham Fikri Aji. 2023.
Lamini-lm: A diverse herd of distilled mod-
els from large-scale instructions. arXiv preprint
arXiv:2304.14402.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Asaf Yehudai, Boaz Carmeli, Yosi Mass, Ofir Arviv,
Nathaniel Mills, Assaf Toledo, Eyal Shnarch, and
Leshem Choshen. 2024. Genie: Achieving hu-
man parity in content-grounded datasets generation.
Preprint, arXiv:2401.14367.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen.
2024. Mammoth2: Scaling instructions from the
web. Preprint, arXiv:2405.03548.

17643

https://arxiv.org/abs/2308.07074
https://arxiv.org/abs/2308.07074
https://arxiv.org/abs/2402.14830
https://arxiv.org/abs/2402.14830
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2306.01116
https://arxiv.org/abs/2210.03350
https://arxiv.org/abs/2210.03350
https://arxiv.org/abs/2210.03350
https://lightning.ai/pages/community/lora-insights/
https://lightning.ai/pages/community/lora-insights/
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2402.06094
https://arxiv.org/abs/2402.06094
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2402.11442
https://arxiv.org/abs/2402.11442
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2310.19341
https://arxiv.org/abs/2310.19341
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2402.09739
https://arxiv.org/abs/2402.09739
https://arxiv.org/abs/2401.14367
https://arxiv.org/abs/2401.14367
https://arxiv.org/abs/2405.03548
https://arxiv.org/abs/2405.03548

Hao Zhao, Maksym Andriushchenko, Francesco Croce,
and Nicolas Flammarion. 2024. Long is more for
alignment: A simple but tough-to-beat baseline for
instruction fine-tuning. Preprint, arXiv:2402.04833.

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu,
Fei Huang, Yongbin Li, and Nevin L Zhang. 2023.
A preliminary study of the intrinsic relationship be-
tween complexity and alignment. arXiv preprint
arXiv:2308.05696.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,
Heng-Tze Cheng, Ed H. Chi, Quoc V Le, and Denny
Zhou. 2024a. Take a step back: Evoking reasoning
via abstraction in large language models. Preprint,
arXiv:2310.06117.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024b.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Tianyu Zheng, Shuyue Guo, Xingwei Qu, Jiawei Guo,
Weixu Zhang, Xinrun Du, Chenghua Lin, Wen-
hao Huang, Wenhu Chen, Jie Fu, et al. 2024c.
Kun: Answer polishment for chinese self-alignment
with instruction back-translation. arXiv preprint
arXiv:2401.06477.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less
is more for alignment. Preprint, arXiv:2305.11206.

17644

https://arxiv.org/abs/2402.04833
https://arxiv.org/abs/2402.04833
https://arxiv.org/abs/2402.04833
https://arxiv.org/abs/2310.06117
https://arxiv.org/abs/2310.06117
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206

A Experiment Baselines

• Alpaca-52k (Taori et al., 2023). This dataset is developed by Stanford University using Text-Davinci-003.
It encompasses 52,002 instruction-following samples.

• Alpaca-GPT4 (Peng et al., 2023). This dataset contains English Instruction-Following Data generated
by GPT-4 using Alpaca prompts for fine-tuning LLMs. It encompasses 52,002 instruction-following
samples, the same as Alpaca-52k.

• Alpaca-Cleaned. This is a cleaned version of the Alpaca-GPT4 Dataset to address problems like
hallucinations, merged instruction, and so on. It encompasses 51,760 instruction-following samples.

• LIMA (Zhou et al., 2023).This is a dataset of 1,000 prompts and responses from a variety of sources, pri-
marily split into community Q&A forums and manually authored examples, where the outputs (responses)
are stylistically aligned with each other, but the inputs (prompts) are diverse.

• WizardLM-70k (Xu et al., 2023). This dataset employs the Evol-Instruct algorithm to enhance the
quality of instruction data. Incorporating ChatGPT during the reformulation phase ensures data fidelity.
Among its 250,000 instructions, we primarily focused on the WizardLM-7b subset, which consists of
70,000 samples.

• Muffin (Lou et al., 2024) MUFFIN’s data curation includes input sampling, instruction collection via
two methods, output annotation by ChatGPT/GP4-4, instruction filtering, and classification expansion.
This is a large dataset of 68k training instances.

• Humpback. This self-alignment method generates instruction data through reverse fine-tuning.

• Oss-instruct. A method leveraging open-source code snippets to generate diverse instruction data,
aiming to mitigate the bias in synthetic data by utilizing open-source references for more realistic outputs.

• Genie. A method for automatically generating content-grounded data involving content preparation,
task-specific generation (e.g., Q&A or summaries), and a filtering mechanism to ensure quality and
faithfulness.

• Magpie. MAGPIE is a novel method that creates large-scale training data by having aligned LLMs auto-
matically generate user prompts and responses, achieving comparable performance to official instruction
models when used to fine-tune smaller models.

B FANNO Details

B.1 Pre-screen Details

Our objective was to efficiently enhance the selection process, minimizing time spent while maximizing
quality outcomes. Initially, we employed Mistral-7b-instruct-v0.3 or LLama-3.1-TULU-3-8B to
evaluate texts for repetitive content, personal privacy concerns, specific themes, and advertising, using
prompts to guide scoring and annotation (see Table 7). For diversity assessment, we utilized a fast
community detection algorithm 1 with hyperparameters set to k = 2 and simratio = 0.7(k: the minimum
size of a community; simratio: controls the similarity threshold, Only node pairs with similarity scores
higher than this threshold are considered connected), facilitating the classification of half a million entries
within minutes. The model stella_en_400M_v5 6 is used for text embedding. For larger datasets, texts
were segmented into groups for individual community detection analyses. After the pre-screening process,
Pre-Screen Data has approximately 30k records, which is 6% of the original. This stage was designed
to balance the trade-off between processing speed and analytical precision, prioritizing efficiency over
exhaustive detail examination.

6https://huggingface.co/dunzhang/stella_en_400M_v5

17645

https://huggingface.co/dunzhang/stella_en_400M_v5

B.2 Fast Community Detection Algorithm

As Algorithm 1 has shown, the Fast Community Detection Algorithm is used to cluster the embeddings of
instructions processed by SentenceTransformer (Reimers and Gurevych, 2019), which can then represent
the diversity of instructions. Specifically, Fast Community Detection works by iteratively identifying
groups of data points (embeddings of sentences) that are closely related based on a predefined similarity
threshold, efficiently leveraging cosine similarity calculations. It prioritizes larger communities while
minimizing overlapping clusters to produce meaningful community structures.

Algorithm 1 Fast Community Detection (Reimers and Gurevych, 2019)

1: function COMMUNITYDETECTION(embeddings, threshold,min_community_size, batch_size)
2: Normalize embeddings
3: Initialize extracted_communities as empty list
4: for start_idx in range(0, length(embeddings), batch_size) do
5: Compute cosine similarity scores for batch starting from start_idx
6: Find top-k values from cosine similarity scores
7: for i in range(length(top_k_values)) do
8: if last element of i-th top-k values ≥ threshold then
9: Find top-k most similar entries for i-th element

10: while last element of top-k values > threshold and sort_max_size < length of
embeddings do

11: Increase sort_max_size if needed
12: end while
13: Add indices of entries with similarity ≥ threshold to extracted_communities
14: end if
15: end for
16: end for
17: Sort extracted_communities by size
18: Remove overlapping communities from extracted_communities
19: return extracted_communities
20: end function

B.3 Detailed Process of Instruction Generation

We show a detailed process of instruction generation below. The setup comprises a language model G
parameterized by θG for generating instructions, a critic model J parameterized by θJ for evaluating
instruction quality, as well as a document set D, a subset D′

, task-type tags TT Y , and difficulty-level tags
TDF .

1. Initialization:

S ← ∅

2. Seed Generation (SeedGen):

∀d ∈ D′
, generate s ∼ P (s|d; θG) = P (t)P (s|d, t; θG)
where t ∼ U(TT Y × TDF)
S ← S ∪ {s}

3. Instruction Augmentation (InsAug): For f rounds or until |S| reaches a desired threshold:

17646

a. Select a subset S′ ⊂ S using the UCB strategy:

UCB(s) = x̄s + C

√
2 lnN

ns

S′ = {si|si ∈ S,UCB(si) is maximized}

where x̄s is the average quality score of instruction s, N is the total number of iterations, C is a
hyper-parameter constant used to control exploration, ns is the number of times instruction s has
been selected.

b. Generate new instructions given sampled examples and filter out those that are similar to the
examples:

x′ ∼ P (x|c, S′; θG)

s.t. Sim(x′; si) < τ for all i

where τ is a similarity threshold.
c. Update S with the augmented instructions:

S ← S ∪ {x′}

B.4 Ablation of Think Different Strategy
• Noun-Verb Pairs: Inspired by previous work (Wang et al., 2022), the diversity of an instruction

dataset is represented by the total number of unique noun-verb pairs within the dataset. This serves
as a key metric for assessing linguistic variety.

• Instruction and Response Token Distribution: This evaluates the lexical diversity within the
instructions and their corresponding responses by analyzing the token distribution. A broader token
distribution indicates more lexical variety.

• Intent Tags: Following the methodology from Instagger7, the semantic diversity of generated
instructions is the total number of intent tags. This ensures coverage across a wide range of task
types and questioning styles, capturing a more diverse set of instructional intents.

C Experiment Setting Details

We use the same hyperparameters as existing supervised instruction tuning methods (Chiang et al., 2023;
Raschka, 2023). Specifically, we use a cosine learning rate scheduling strategy with a starting learning
rate of 2× 10−5 and a weight decay of 0.1 to optimize the training process. The batch size per device is
set to 128, and a gradient accumulation of 8 steps is applied, resulting in an effective batch size of 128.
The model is trained for three epochs, utilizing full-shard data parallelism (FSDP) with auto-wrapping
for LlamaDecoderLayer and bf16 precision enabled. Additionally, we apply a dropout rate of 0.1 for
regularization purposes. The warmup ratio is set at 0.03 for stabilization during early training. For the
LoRA configuration, we employ a rank of 256 and set α to 512, with an initial learning rate of 5× 10−5.
We utilize 8 NVIDIA A800 GPUs to train our model.

D Prompt Templates Used in FANNO

D.1 Text Filtering

7https://huggingface.co/OFA-Sys/InsTagger

17647

https://huggingface.co/OFA-Sys/InsTagger

Table 7: Prompts for Pre-Screen

You are act as a assistant to check useless, informal or ambiguous information. Let’s think step
by step.
The objective is to meticulously inspect the text to determine if it is useless, informal or
ambiguous text (e.g. random characters, ambiguous paragraph, broken sequence, informally organized
text, etc.)
Your response should be ’1’ (yes) if the text contains useless, informal or ambiguous information,
or ’0’ (no) if it does not, without providing any reasoning and explanation.

Document:
{doc}

Answer:

You are act as a assistant to check privacy information. Let’s think step by step.
The objective is to meticulously inspect the text to determine if it contains any privacy
information (e.g. human names, phone numbers, addresses, etc.).
Your response should be ’1’ (yes) if the text contains privacy information, or ’0’ (no) if it does
not, without providing any reasoning and explanation.

Text:
{doc}

Answer:

I want you to act as an advertisement evaluator. Let’s think step by step.
The objective is to meticulously inspect the text based on certain characteristics and decide
whether it is an advertisement or not.
Your response should be ’1’ (yes) if the text is an advertisement, or ’0’ (no) if it is not,
without providing any reasoning and explanation.

Evaluate the text considering these characteristics:

- Promotional language or sales pitch
- Mention of product or service benefits
- Call to action (e.g., "Buy now", "Subscribe")
- Pricing information or special offers
- Contact information or links for more details

<Answer Format>: 1 or 0

Text:
{text}

Answer:

17648

Table 8: Prompts for instruction generation filter

I want you to act as an instruction evaluator. Please evaluate this instruction and respond with
’0’ (bad) or ’1’ (good), without giving reasons.
Standard: A good instruction Must not involve recent or current events. Historical events are
fine.
Example1:
Instruction: Please analyze the recent COVID-19 outbreak.
Answer: 0 (Reason: recent)
Example2:
Instruction: What’s happening in China in September 2023?
Answer: 0 (Reason: in September 2023)
Example3:
Instruction: Provide an account of events from last Monday night.
Answer: 0 (Reason: last Monday night)

Instruction:
{instruction}
Answer:

I want you to act as a instruction evaluator. Please evaluate this instruction and respond with
’0’ (bad) or ’1’ (good), without giving reasons.
Standard: A good instruction must not include any private information like names, addresses, phone
numbers, etc, unless the person is historical or famous.
Example1:
Instruction: What is the name of the person who lives at 123 Main Street?
Answer: 0 (Reason: private information)
Example2:
Instruction: What is the name of the first president of the United States?
Answer: 1 (Reason: historical)
Example3:
Instruction: What is the address of the CEO of Microsoft?
Answer: 0 (Reason: private information)

Instruction:
{instruction}
Answer:

I want you to act as a instruction evaluator. Please evaluate this instruction and respond with
’0’ (bad) or ’1’ (good), without giving reasons.
Standard: A good instruction is perfectly logical, and practical, and can be fully understood by a
human.
A bad instruction, likely generated by AI, is generally vague, weird, complex, and long. It may
seem to string unrelated words, topics, and tasks together.
Example1:
Instruction: Considering the health benefits of a non-dairy diet, how does the emotional response
of individuals vary when they attend social events where dairy-based foods are served?
Answer: 0
Example2:
Instruction: Create a multidisciplinary essay that explores the and historical origins of the
dish ’Shrimp Alfredo Pasta Bake’. Discuss the various ingredients, their origins. Additionally,
translate the recipe instructions from English to Spanish.
Answer: 0

Instruction:
{instruction}
Answer:

17649

Table 7 shows the prompts for basic filtering, including filtering information with useless information,
privacy information, or advertisement.

Table 8 shows the prompts for instruction generation filtering, including filtering instructions that are
time-sensitive, asking for private information, or not answerable.

D.2 Complexity and Quality Scorer

Table 9: Prompt for quality scorer

You are a helpful assistant. Please identify the quality score of the Response corresponding to

the Question.

Question:

{instruction}

Response:

{output}

Quality:

Table 10: Prompt for complexity scorer

You are a helpful assistant. Please identify the complexity score of the following user query.

Query:

{instruction}

Complexity:

As Table 9 and 10 have shown, the prompts are provided to deita-complexity-scorer and deita-quality-
scorer model (Liu et al., 2023b).

D.3 Generating Instruction Pairs
FANNO employs 2 ways to generate instruction response:

• Question, Document to Answer: model infers answer with both question and related document.

• Question to Answer: The model infers the answer directly with the question, using its own knowledge.

Table 11: Question, Document to Answer

You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while

being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous,

or illegal content. Please ensure that your responses are socially unbiased and positive in nature.

If a question does not make any sense, or is not factually coherent, explain why instead of

answering something not correct. If you don’t know the answer to a question, please don’t share

false information.

Instruction: {question}.

Paragraph: {doc}.

Response:

D.4 Seed Generation

Listing 1: Seed Generation�
1 def seed_gen(text):

17650

Table 12: Question to Answer

You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while

being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous,

or illegal content. Please ensure that your responses are socially unbiased and positive in nature.

If a question does not make any sense, or is not factually coherent, explain why instead of

answering something not correct. If you don’t know the answer to a question, please don’t share

false information.

QUESTION: {question}

Response:

2 reasoning_tag = "It should be complex and requires multiple -step reasoning to
solve."

3 critical_thinking_tag = "It demands critical thinking skills to analyze from
various perspectives and evaluate multiple solutions."

4 creativity_tag = "It necessitates creative thinking to devise innovative
solutions beyond conventional approaches."

5 interdisciplinary_tag = "It demands integrating knowledge from diverse
disciplines to address its multifaceted nature."

6 command_tag = "It should be in the style of a command or imperative. For example
, ’Write a paragraph about...’ or ’Describe the...’"

7 question_tag = "It should be in the style of a question or interrogative. For
example , ’What is the...?’ or ’How do you...?’"

8

9 nli_tag = "It is a Natural language inference question: Assessing if evidence
supports a conclusion."

10 commonsense_tag = "It is a Commonsense question: Predicting outcomes based on
everyday knowledge."

11 sentiment_tag = "It is a Sentiment analysis question: Determining emotional
response to a given scenario."

12 paraphrase_tag = "It is a Paraphrasing question: Rewording a statement while
retaining its meaning."

13 close_book_qa_tag = "It is a Close -book QA question: Answering factual queries
using pre -existing knowledge."

14 struc2text_tag = "It is a Structure to text question: Describing a process or
concept in written form."

15 summarization_tag = "It is a Summarization question: Condensing key information
from a larger text."

16 translate_tag = "It is a Translation question: Converting text from one language
to another."

17 implicit_reasoning_tag = "It is a Implicit reasoning question: Inferring reasons
behind common behaviors."

18 text_category_tag = "It is a Text categorization question: Identifying defining
characteristics of a given text type."

19

20 tags = [reasoning_tag , critical_thinking_tag , creativity_tag ,
interdisciplinary_tag]

21 classify = [nli_tag , commonsense_tag , sentiment_tag , paraphrase_tag ,
close_book_qa_tag , struc2text_tag , summarization_tag , translate_tag ,
implicit_reasoning_tag , text_category_tag]

22 types = [command_tag , question_tag]
23

24 QUESTION_TEMPLATE = """You’re proficient in crafting complex question. Generate
only one question that adheres to the provided #Paragraph #.

25 The question should meet the following criteria:
26 0. The person answering the question cannot see the #Paragraph #[SYSTEM:

IMPORTANT], so the question must not contain phrases like ’Given the
information provided ’, ’Based on the provided information ’, or similar
expressions that imply direct citations or references from #Paragraph #.

27 1. {characteristic }.
28 2. {type}.
29 3. {classify }.
30

31 ### Paragraph:
32 {text}

17651

33 ### Question:
34 """
35 prompts = [QUESTION_TEMPLATE.format(characteristic=tag , type=type , text=text ,

classify=c) for tag in tags for c in classify for type in types]
36 return prompts� �

Code 1 shows the process of generating seed with sampled tags, including task types and difficulty levels.

D.5 Think Different Prompt

Table 13: Prompt for Think Differently

You are a helpful assistant. Your task is to conceive a complex query inspired from the ### Paragraph.
Please think differently from the examples provided below in terms of expressions, question types,
and initial verbs.
Counterexample:
<Example1>: {seed1}
<Example2>: {seed2}
<Example3>: {seed3}

Paragraph:
{text}

Question:

Table 14: Updated Prompt for Think Differently

Your task is to craft a **unique and thought-provoking query** based on the paragraph below,
without resembling the style or structure of the examples provided. ### Counterexamples:
1. {seed1}
2. {seed2}
3. {seed3}
Paragraph:
{text}
Response:
My query should:
1. Be meaningful and well-structured, with proper punctuation.
2. Avoid referencing specific names, events, or phrases from the paragraph.
3. Be more complex than the examples provided.
4. {random.choice([command_tag, question_tag])}
5. Not be phrased like the following or similarly:
- "{’ ’.join(seed1.split()[:4])}"
- "{’ ’.join(seed2.split()[:4])}"
- "{’ ’.join(seed3.split()[:4])}".

So here’s my inspired query:

D.6 Self-Instruct Prompting Templates for Data Generation
Self-Instruct relies on the following prompting template in order to elicit the generation from language
models.

17652

Come up with a series of tasks:

Task 1: {instruction for existing task 1}
Task 2: {instruction for existing task 2}
Task 3: {instruction for existing task 3}
Task 4: {instruction for existing task 4}
Task 5: {instruction for existing task 5}
Task 6: {instruction for existing task 6}
Task 7: {instruction for existing task 7}
Task 8: {instruction for existing task 8}
Task 9:

Table 15: Prompt used for Self-Instruct

E Data Analysis

E.1 Quality, Length, and Diversity

Figure 5: FANNO Instruction Length
Distribution

Figure 6: Alpaca-Cleaned Instruction Length
Distribution

Figure 7: Top 50 common verbs and their corre-
sponding nouns in FANNO

Figure 8: Top 50 common verbs and their corre-
sponding nouns in Alpaca-Cleaned

Figures 5 and 6 show the word-level instruction length distribution of FANNO and Alpaca-Cleaned,
respectively. Figures 7 and 8 show the verb-noun diversity of FANNO and Alpaca-Cleaned, respectively.
Figure 3 shows the comparison of quality and complexity between FANNO and Alpaca-Cleaned.

17653

