Systematic Generalization in Language Models Scales with Information
Entropy

Sondre Wold, Lucas Georges Gabriel Charpentier, Etienne Simon
Language Technology Group
University of Oslo

Abstract

Systematic generalization remains challenging
for current language models, which are known
to be both sensitive to semantically similar per-
mutations of the input and to struggle with
known concepts presented in novel contexts.
Although benchmarks exist for assessing com-
positional behavior, it is unclear how to mea-
sure the difficulty of a systematic generaliza-
tion problem. In this work, we show how one
aspect of systematic generalization can be de-
scribed by the entropy of the distribution of
component parts in the training data. We for-
malize a framework for measuring entropy in a
sequence-to-sequence task and find that the per-
formance of popular model architectures scales
with the entropy. Our work connects systematic
generalization to information efficiency, and
our results indicate that success at high entropy
can be achieved even without built-in priors,
and that success at low entropy can serve as
a target for assessing progress towards robust
systematic generalization.

1 Introduction

Human language is characterized by its combina-
torial properties in syntax and semantics (Hadley,
1994). For example, when someone knows what
it means for Person A to see Person B, they can
readily generalize to what it means for Person B
to see Person A, without having been exposed to
examples where Person B is used in the subject
position (Fodor and Pylyshyn, 1988). This type
of bidirectional systematic generalization has long
been considered a key feature of human language
understanding (Chomsky, 1957), and is closely re-
lated to the compositionality of natural language
semantics, a contentious but widely studied topic
in both formal semantics (van Bethem et al., 1991)
and NLP (McCurdy et al., 2024).

Early critics of connectionism, such as Fodor and
Pylyshyn (1988), argued that systematic general-
ization was incompatible with continuous represen-

Accuracy

e i e
S N = O 0 =
T R N T B

0 1 2 3
Entropy

Figure 1: Systematic generalization increases with the
entropy of the training data for popular sequence-to-
sequence models, even without built-in priors.

tations. More than thirty years since this critique
was initially presented, researchers still agree that
achieving robust compositional behavior in neural
networks remains an open problem, as shown by a
recent survey by McCurdy et al. (2024). Research
continues to demonstrate that current models strug-
gle with systematic generalization (Lake and Ba-
roni, 2018; Hupkes et al., 2020; Dziri et al., 2024;
Wold et al., 2024; Mirzadeh et al., 2024).

Some of the limitations of current models can be
alleviated by implementing compositional priors,
either in the architecture (Gordon et al., 2019) or
through the training procedure (Lake and Baroni,
2023), but it remains unclear whether architectural
constraints cause the limitations or whether they
arise due to distributional properties of the data
used for training.

In this paper, we ask the following question:
Can neural networks display systematic out-of-
distribution generalization without any built-in pri-
ors? To answer this, we take a data-centric ap-
proach. Specifically, we show how the degree of
systematic generalization of common architectures
relates to the information entropy of the distribution
of component parts found in the training data.

Contrary to previous work, we find that popu-

1807

Findings of the Association for Computational Linguistics: ACL 2025, pages 1807-1819
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Entropy

H= H=
100% 100%
75% 75%
50% 50%
25% 25%
V1 V2 V3 V4 V1 V2 V3 V4
verbs verbs
H=0 H=1
100% 100%
75% 75%
50% 50%
25% 25% II
0% —— 0% ——
VU1 V2 U3 Vg V1 V2 V3 V4
verbs verbs

H=15 H=2
100% 100%
75% 75%
50% I 50%
25% 25%
) B 2] HEEN
V1 V2 V3 V4 V1 V2 V3 V4
verbs verbs
H=1.58 H=2
100% 100%
75% 75%
50% 50%
25% III 25%
oo _ . NHEN
V1 V2 U3 V4 V1 V2 V3 V4
verbs verbs

Systematic generalization

Figure 2: A schematic overview of the two approaches to increasing the entropy level. Top: Vertical scaling by
distribution mixing. Bottom: Horizontal scaling by incrementing the support of the distribution.

lar sequence-to-sequence models used in NLP are
capable of systematic generalization, even with-
out built-in architectural priors. However, this is
only the case when the training dataset contains
high entropy. On a series of sequence-to-sequence
datasets based on a modified version of the SCAN
(Lake and Baroni, 2018) grammar, we show that
model performance scales with the entropy of the
training dataset, as illustrated in Figure 1, thereby
creating a link between systematic generalization
and information efficiency.

In summary, our contributions are: (i) We de-
velop and formalize a framework for studying sys-
tematic generalization based on information en-
tropy; (ii) We experiment with two different ap-
proaches to increasing entropy, and we compare the
performance of four different model architectures
for these two settings; and (iii) we show that neu-
ral networks achieve systematic out-of-distribution
generalization when the entropy of the training dis-
tribution is high, independently of the number of
unique samples seen during training.

2 Background

Systematic generalization is typically described as
a robust mode of composition, where a system is
able to combine parts of its training data in a way
that enables generalization to novel combinations.
As such, systematic generalization relates to com-

positionality, a topic which has both a long tradition
and multiple formal definitions, most prominently
in formal semantics (van Bethem et al., 1991; Pagin
and Westerstahl, 2010). These definitions, however,
often prove too restrictive when working with natu-
ral languages. As a result, researchers frequently
introduce problem-specific relaxations, leading to
ambiguity over time regarding the exact meaning
of terms such as systematic generalization and com-
positionality.

Despite there being some ambiguity regarding
the formal definitions, recent work shows that there
is high agreement among researchers on the follow-
ing, more informal definition of what constitutes
compositional behavior:

Definition 1 (CB) “When a model receives an in-
put I that humans conceive as composed of com-
ponent parts, if the model produces correct outputs
for those parts (in isolation or in other combina-
tions), then it will also produce a correct output for
I (McCurdy et al., 2024, p. 9324).”

This definition, however, does not consider the
conditions from which a system learns to produce
these outputs. Consequently, compositional be-
havior differs from compositional generalization.
While the former can be assessed through normal
benchmarks, the latter requires information about
the distribution the model generalizes from.

Although generalization is a loosely defined term

1808

in machine learning research, it generally refers to
how well a model performs on a held-out dataset
after being trained on data that has some distribu-
tional relationship with the held-out data (Hupkes
et al., 2023). When training and test distributions
are similar, we refer to this as in-distribution, and
when they differ, we typically refer to this as out-
of-distribution. Naturally, the classification of a
generalization problem as in-distribution or out-of-
distribution depends on which aspects of the distri-
bution are considered. In this work, we focus on
systematic generalization as an out-of-distribution
problem, where the differences in the distribution
of component parts and their combinations between
the training and test data are the relevant aspects.

2.1 Systematic Generalization

Following earlier works, we will refer to the sys-
tematic generalization abilities of a model as the
systematicity of that model. Our view of system-
aticity is based on Hadley (1994), who in contrast
to earlier work by Fodor and Pylyshyn (1988) dis-
tinguished between degrees of systematicity. In the
following paragraphs, we present and define these
degrees under the assumption that we are consid-
ering a system tasked to generalize from a training
corpus to a held-out test corpus:!

Definition 2 (Weak systematicity) A system dis-
plays weak systematicity if the system requires that
all component parts that occur in the training data
also occur at every permissible syntactic position.
Even if the model succeeds at a test set that con-
tains novel samples, none of the components in
these samples occur at a novel syntactic position,
essentially making the problem in-distribution with
respect to the systematic properties of the data.

Definition 3 (Strong systematicity) Now, a sys-
tem displays strong systematicity if it (i) displays
weak systematicity, meaning that it can generalize
in-distribution, and (ii) it can process novel embed-
ded sentences containing previously learned com-
ponent parts that occur in syntactic positions where
they do not appear in the training data, neither
in embedded sentences nor in non-embedded sen-
tences, and (iii) a significant fraction of the possible
combinations of component parts and their permis-
sible syntactic position should be left out, based on

"Hadley (1994) also discusses an intermediate degree
between weak and strong systematicity, so-called quasi-
systematicity, but we leave this out for brevity, as it does
not relate directly to our use case.

the observation that humans learn grammars based
on largely incomplete data Pinker (1989). In this
context, an embedded sentence can be thought of
as a syntactic constituent in the overall sentence.
For example, if a system can process the following
novel sentence Mathilde knows Sigurd and Sig-
urd knows Olav, which has the sentences Mathilde
knows Sigurd and Sigurd knows Olav as embedded
sentences, without having seen the name Mathilde
previously used in the subject position in a sen-
tence with constituents nor in a sentence with no
constituents, then it is strongly systematic w.r.t to
how it can generalize to the novel use of the name
Mathilde. On the other hand, if the system can only
process this novel sentence if it has seen Mathilde
being used in the same syntactic position, for ex-
ample in the sentence Mathilde knows Olav, then
it is not strongly systematic.

Systematic generalization in embedded sen-
tences. In this work, we focus on a relaxed ver-
sion of strong systematicity as defined in Defini-
tion 3. We relax requirement (ii) from the origi-
nal definition so that we only work with samples
that have embedded sentences. As we show in the
following section, this makes it easier to quantify
the level of systematicity required for a given gen-
eralization problem, which is the main focus of
this work. Furthermore, we also relax (ii) so that
it allows component parts of the test set to occur
at the same syntactic position in some embedded
sentence in the train set, but not in an embedded
sentence that occurs at the same position in the
overall sequence.

In order to compare models with and without
compositional priors from the literature, we base
our experiments on the SCAN grammar (Lake and
Baroni, 2018). This grammar has few permissible
syntactic positions for each part of speech, making
the original requirement from Hadley (1994) too
restrictive with respect to the overall sample size
needed by neural networks. In the following sec-
tion, we formalize our framework and elaborate on
these choices.

3 Measuring Systematicity

In this work, we demonstrate that sequence-to-
sequence models can generalize to embedded sen-
tences where component parts occur at novel syn-
tactic positions in the overall sequence. For our
experiments, we construct datasets where each
dataset sample contains an input sequence x € X

1809

and an output sequence y € Y, based on a mod-
ified version of the SCAN grammar. We discuss
the specifics of this dataset generation procedure,
including details about the context-free grammar
that generates x, in Section 3.5. In this section, we
define a framework for measuring the degree of sys-
tematicity displayed by a systematic generalization
problem.

3.1 Task Description

Throughout this paper, x comprises two sentences
conjoined by a conjunctive phrase.> Consequently,
2 can be modeled as a triple, with a conjunction
¢ € C, and the two embedded sentences ey, ex €
¥* as arguments, © = (ej, ¢, e3). The component
parts of both embedded sentences are drawn from
the same vocabulary ¥ = V U A, where V is a set
of verbs and A is a set of adverbial phrases, e.g.:
JUMP, RUN € V, TWICE € A, and AND € C. There
exists a deterministic procedure for transforming
x into y:

©(RUN TWICE AND JUMP) = RUN RUN JUMP.

The goal of the described task is to learn a
function f that approximates ¢, which requires
modeling the conditional distribution of output se-
quences given input sequences in the training data,
i.e. p™in(y | x). See Table 1 for more examples
generated by our modified SCAN grammar.

3.2 Component Distributions

Since we are interested in systematic generaliza-
tion, we also need to define the distribution of com-
ponent parts in e; and ez, and we are specifically
interested in the case where the distribution of e;
and ey is different in the training and test data, but
they share a similar distribution when marginalized
over position, which in this case refers to which
side of the conjunctive phrase they appear in.

In SCAN (Appendix A), e; and es always con-
tain one verb in V' and zero or more adverbial
phrases from A that control how many times that
verb should be repeated, and in what direction it
is executed. To create a systematic generalization
problem that adheres to the definition given in Sec-
tion 2.1, it is necessary to set the support of e; and
ez to be different in the training and test distribu-
tions. For simplicity, we limit our study to focus
on the setting where the support of the verbs V' is
different between the two distributions. This means

’In contrast to the original SCAN, we do not have sen-
tences without a conjunctive phrase.

100% 100%
> 5% = 15%
= 50% g: 50%
59 25% III 59 25%
o) o) HHEE
verbs verbs

Figure 3: Example of distributions of verbs for e; (left)
and ey (right).

that we can create a generalization problem by re-
stricting a verb v; to never occur in e but to occur
in ey for p'™@™", as illustrated by Figure 3.

For p'' we invert the distribution of e, making
it a degenerate distribution with single-point sup-
port for the verb that is not in e; for ptrai“, while e5
has the same distribution as in p"". When gener-
alizing from p™" to p'®! in this scenario, a model
will be exposed to all verbs in all permissible syn-
tactic positions in some embedded sentence, but vy
will never be seen in e; during training, while e; in

p'®st always contains v;.

100%
S 75%
£ 50%
S o

58 25%

0%~ " ———

V1 V2 U3 V4

verbs

Figure 4: Probabilities in the degenerate case for e

3.3 Systematicity as Entropy

The main contribution of this work is to demon-
strate that the difficulty of generalizing from p"™"
to p'** in the scenario described above depends on

the entropy H of the distribution of verbs in es for
ptrain.

HI (V) = = 37 5087 (1) logy p3" (v),
veV

where V is the verb random variable and V' is
the set of all verbs. For brevity, we will refer to
HU2in(V) as H. When the verbs in e have a degen-
erate distribution, as shown in Figure 4, the entropy
is zero, and when e is distributed uniformly, as
shown in Figure 3, the entropy is at its maximum.
Decreasing H within this interval increases the dif-
ficulty of the systematic generalization problem.
Note that even at maximum entropy, the general-
ization problem is still out-of-distribution, as the
restricted verb is never seen in e;. In Section 4, we

1810

show empirically that the performance of neural
network architectures scales with H on this type of
generalization problem.

The degenerate case. We note that H = 0 consti-
tutes a special case in the described framework. If
e is described by a degenerate distribution, then in-
stances of eo will always contain the same vy € V.
Now, if |C| = 1, there is no way of decoupling
the semantics of the conjunctive phrase and vy, as
these will always appear together in X. In this case,
we argue, no system will be able to generalize from
P to p'®st Consequently, it is necessary to set
|C| > 1 for evaluating performance at H = 0.

3.4 Increasing Entropy

In this work, we experiment with two different ap-
proaches to increasing H, as illustrated in Figure 2.
In the following sections, we formalize these ap-
proaches, and in Section 4 we demonstrate how the
performance of neural architectures scales for each
type of increment.

3.4.1 Distribution Mixing

Let U be a uniform distribution with support over
V' \ {v1}, and let D be a degenerate distribution
over V with single-point support for vy. Our first
approach consists in defining a family of distribu-
tions parametrized by A mixing ¢/ and D:

PEIN(V) = MU + (1 — M\)D,

Then, the entropy H is at the minimum when A = 0
and at the maximum when A = 1 — 1/|V|, which
is equal to a uniform distribution over V. Conse-
quently, increasing H can be achieved by tending
A towards 1 — 1/|V|. This approach to increasing
H is also illustrated in the top part of Figure 2.

3.4.2 Incremental Support

In our second approach, we define another fam-
ily of distributions, all uniforms over increasingly
larger supports S; C V:

fmp=5CcSC--CSy =V

The uniform distribution over the smallest support
S is equivalent to the degenerate distribution D.
As ¢ increases, H increases logarithmically until
reaching maximum entropy at i = |V'| where we
have the uniform distribution over V. This ap-
proach to increasing H is also illustrated in the
bottom part of Figure 2.

3.5 Data Generation

As posited in the previous sections, the quantifica-
tion of systematic generalization requires informa-
tion about the distribution of parts and combina-
tions observed during training. This level of gran-
ularity is generally intractable when dealing with
real-world corpora. Without this information, how-
ever, it is difficult to control for statistical patterns
that permit a non-compositional solution. Studies
on systematicity typically overcome this problem
by studying synthetic languages where the distri-
bution can be known a priori. This is also the
approach taken in this work.

To generate datasets samples (z,y) € X x Y
we define a context-free grammar (CFG) based on
the SCAN grammar (Lake and Baroni, 2018). An
overview of the complete vocabulary can be found
in Appendix A, while Table 1 shows examples from
our generated data. Importantly, we set |V| to 8, as
opposed to the original four verbs, thereby increas-
ing the number of possible sequences generated
by the grammar. We also remove the turn oper-
ators, as they are more syntactically constrained
than other verbs, as was already done in Gordon
et al. (2019). As previously stated, all instances of
x contain embedded sentences e; and es.

In our experiments, we use the standard conjunc-
tive phrases in SCAN |C| = 2. Furthermore, we
let the two conjunctive phrases take the embedded
sentences in the opposite order: if v; always occurs
in ey for ¢, then v; will always occur in e; for co.

4 Experiments

We validate our framework by evaluating the three
most common sequence-to-sequence architectures:
the Transformer, the RNN, and the CNN. We also
run a model with built-in compositional priors to
showcase how a model that encodes verb equiv-
ariance can solve the task even when H is low.
We have two main experimental settings, corre-
sponding to the two methods for increasing H de-
scribed in Section 3.4.1 and Section 3.4.2. We
also conduct a supporting experiment to control for
a potential confounding effect resulting from an
increased sample size, and an experiment that esti-
mates the influence of different position encoding
types. For all experimental settings, H = 0 consti-
tutes the most difficult generalization problem, and
H = log, |V| = 3 constitutes the easiest problem.
We average and report results from five differently
seeded runs. The following sections provide details

1811

Input sequence x

Output sequence y

squat opposite right and squat
squat twice and crawl opposite left
sprint right twice after sprint left
lunge opposite left and look thrice

RTURN RTURN SQUAT SQUAT

SQUAT SQUAT LTURN LTURN CRAWL

LTURN SPRINT RTURN SPRINT RTURN SPRINT
LTURN LTURN LUNGE LOOK LOOK LOOK

Table 1: Examples from our generated datasets, with green indicating e; and orange indicating es.

about our experimental setup.’

4.1 Models

RNN. For our RNN we use a similar configura-
tion as previous work on SCAN (Lake and Baroni,
2018; Gordon et al., 2019): a bidirectional encoder-
decoder with attention. Details on the implementa-
tion and choice of hyperparameters can be found
in Appendix B.1.

CNN. For our CNN we use the encoder-decoder
architecture from Gehring et al. (2017), which has
been proven effective on SCAN in previous work
(Dessi and Baroni, 2019). As in the RNN, this CNN
uses an attention mechanism between the encoder
and decoder. Hyperparameters can be found in
Appendix B.2.

Transformer. We use the original encoder-
decoder Transformer from Vaswani (2017). We
use this for two reasons. Firstly, this makes com-
parison with previous work on systematicity easier,
as this has been used in previous work such as
Hupkes et al. (2020) and Lake and Baroni (2023).
Secondly, recent work on machine translation has
shown that encoder-decoders outperform the more
widely used decoder-only formulation of the Trans-
former on similar parameter sizes (Pitorro et al.,
2024). As SCAN is framed and modeled as a
sequence-to-sequence task, the encoder-decoder
formulation is the most reasonable choice. We use
absolute position encodings for the two main ex-
periments, as well as Gated Linear Units as the
activation function (Shazeer, 2020). Details on the
implementation and choice of hyperparameters can
be found in Appendix B.3.

Permutation-equivariant model. Lastly, we ex-
periment with a model that has built-in architectural
priors. We use the encoder-decoder from Gordon
et al. (2019), which enforces the verb equivariance

SData generation scripts and code to reproduce our ex-
periments can be found at https://github.com/1ltgoslo/
systematicity-entropy.

found in SCAN using a cyclic group. This group
is used in the encoding of the input sequences in a
way that pools the representation of any verb with
the representation of the other verbs, even when
they are not present in the input. This is a strong
structural prior that enables the model to solve the
original SCAN splits efficiently. However, this ap-
proach is dataset-dependent, as the elements of the
cyclic group must be defined manually. We use
this model primarily as a sanity check for our ex-
periments, but also as a comparison for the other
architectures, comparing their efficiency to an ide-
alized case.

4.2 Experiment 1: Vertical scaling

For Experiment 1, p** has a degenerate distribu-
tion for e, where v; € V always occur, while e
has a uniform distribution over V. For ptrai“, e1 has
a uniform distribution over V' \ {v;}, and ey is a
mixture of a degenerate distribution at v; and a uni-
form distribution over V' \ {v; }, where we increase
the total samples drawn from the uniform while
decreasing the number drawn from the degenerate
distribution. By doing this, we increase H as de-
scribed in section Section 3.4.1. We refer to this
increase in H as vertical scaling, as the distribution
over the verbs increases towards the uniform. The
models are trained on 6 000 unique samples and
evaluated on 7 056 samples for all values of H.

4.3 Experiment 2: Horizontal Scaling

For Experiment 2, p'®*' is the same as for Experi-

ment 1. For ptrain, eq is also the same as for Exper-
iment 1, but es is a uniform distribution over an
increasing number of verbs, starting with {v; } and
ending at V, as described in Section 3.4.2. We refer
to this increase in H as horizontal scaling, as the
increase of H is achieved by adding another verb
to the support of es. The models are trained on all
grammatical combinations in >* permitted by the
support at each level of H. When H = 2, for exam-
ple, the support of the distribution of e contains
four verbs, and the training set contains all possible

1812

https://github.com/ltgoslo/systematicity-entropy
https://github.com/ltgoslo/systematicity-entropy

0.8 1

Accuracy
o
D
1

o
e
1

0.2 1

Entropy

(a) Experiment 1: Vertical scaling of entropy

0.8

<
D
L

Accuracy

o
=
1

0.2 1

Entropy

(b) Experiment 2: Horizontal scaling of entropy

Figure 5: Results from the Experiments 1 & 2. The accuracy and standard deviations are from five seeds.

pairs (z,y) € X x Y under these constraints.

To ensure a fair comparison across entropy lev-
els, we train all models for the same number of
optimization steps, so for H = 1, which has fewer
training samples than H = 3, we do more iterations
over the full data.

4.4 Effect of Number of Unique Samples

As H describes the relative distribution of verbs in
e, it is possible to construct datasets of varying
sizes that have the same H. This can be achieved
by increasing the total volume of unique samples
while maintaining the same relative distribution.
To verify that performance scales with H indepen-
dently of the number of unique samples seen during
training, we create datasets that have the same en-
tropy as in the previous experiments, but where
we vary the number of total unique samples. We
experiment with three different sample sizes: 3 000,
4000, and 6 000, using the vertical scaling setting.
All models run for the same number of optimiza-
tion steps for all sample sizes.

4.5 Effect of Positional Embedding Type

In our experiments, there is an intuitive connection
between the generalization from p" to p'®t and
the ability to encode verb equivariance. This is ex-
emplified by Gordon et al. (2019), which achieves
high performance on the original SCAN tasks pre-
cisely by enforcing verb equivariance in the model
architecture explicitly.

As the verbs always occur on the first token posi-
tion of e; and e9, positional information is central

to our experiments. To estimate the effect of po-
sitional information, we show how the choice of
positional encoding scheme affects performance in
the vertical scaling setting. In addition to the orig-
inal absolute position embeddings from Vaswani
(2017), we experiment with embeddings that en-
code relative positional information through dis-
entangled attention (He et al., 2021) and rotary
position embeddings (RoPE; Su et al., 2024). In
this experiment, we focus on the Transformer. De-
tails on hyperparameter selection can be found in
Appendix B.4

4.6 Results and Discussion

The results of Experiment 1 and Experiment 2 can
be found in Figure 5. We observe a clear positive
relationship between performance and H for both
experiments, demonstrating that systematic gener-
alization scales with entropy. Unsurprisingly, the
permutation-equivariant model, which has a strict
compositional prior, solves both tasks at all entropy
levels. This shows that the task is solvable even
at H = 0 when enforcing such a prior, but that
vanilla architectures generally require much higher
entropies for this type of generalization.

In Experiment 1, the Transformer outperforms
both the RNN and CNN across all levels of H. In
Experiment 2, the performances of all models are
statistically similar, falling within one standard de-
viation of each other, but with the CNN performing
the best on average in the reported runs.

We also observe that for the Transformer, a re-
duction in the support of the distribution is more

1813

1 -
0.8 -
g 0.6 -
=
>
8 4.
<‘: .
— 3000
0.2 — 4000
— 6000
O .
I T T 1
0 1 2 3

Entropy

(a) Effect of unique sample size on the Transformer

—— Rotary
—— Relative
0871 __ Absol.
g 0.6 -
—
=
B 04-
< .
0.2
O -
[T T 1
0 1 2 3
Entropy

(b) Effect of positional embedding type for the Transformer

Figure 6: The result of the supplemental experiments. The accuracy and standard deviations are from five seeds.

detrimental to the performance than a step towards
the degenerate distribution: At H = 2, the Trans-
former has close to 100% accuracy for Experiment
1, but for the same level of H in Experiment 2, it
achieves around 80% accuracy. This is not the case
for the RNN and CNN, where we observe the oppo-
site: The increase in support that increases H from
1 to 2 in Experiment 2 gives a higher performance
increase than what the same increase in H does for
Experiment 1.

We argue that these results indicate that the
Transformer is more information-efficient than the
RNN and CNN under full support, but that the mod-
els are similar under lacking support. In practice,
this means that the Transformer is quicker to gen-
eralize to novel uses of component parts, as long
as the overall syntactic pattern—constituted by the
conjunctive phrase in our experiments—is frequent
in the training data. This interpretation aligns with
the findings of Loula et al. (2018), showcasing how
our framework can provide a theoretical explana-
tion for previous results.

We note that even though all models can general-
ize under high entropy for both experiments, their
performance is subpar for low entropy, e.g. H = 1.
This indicates a rather high lower bound on the en-
tropy required for systematic generalization, both
for vertical and horizontal scaling, and it shows that
all models are unable to meet requirement iii from
Definition 3. Furthermore, our results show that
systematic generalization remains an open prob-
lem when there is no prior, and it remains unclear
whether or not it is possible to build a model that
performs well on low entropy without architectural

priors as in Gordon et al. (2019) or priors in the
training procedure as in Lake and Baroni (2023).

4.6.1 Supplemental results

In Figure 6a, we show the results of varying the
number of unique samples at each level of H. We
observe that the positive relationship between per-
formance and H is independent of the number
of unique samples. The Transformer performs
similarly when trained on 3 000 to 6 000 unique
samples. During hyperparameter selection (Ap-
pendix B), we also observe that performance does
not scale with model size. This indicates that
achieving higher accuracy on lower levels of H
is not achievable by scaling the number of unique
data samples or model size for the same architec-
ture.

In Figure 6b, we report the performance of differ-
ent positional encoding types. Although all encod-
ing types achieve near-ceiling performance at high
entropy, absolute encoding performs better for all
levels of H. From our task formulation in Section 3,
it is clear that positional information is crucial for
solving the tasks. We attribute the efficiency of
absolute encodings to the fact that the positional
information of the verbs is independent of the re-
mainder of the sequence. This invariance has to be
learned by the other embedding types, making the
absolute variant more information-efficient.

5 Previous Work

In this work, we base our experiments on a ver-
sion of the SCAN grammar from Lake and Baroni
(2018). The original grammar has been studied in

1814

other works, such as Loula et al. (2018); Dessi and
Baroni (2019); Gordon et al. (2019), and there has
also been work on the related PCFG SET dataset
from Hupkes et al. (2020).

The work most similar to ours is Zhou et al.
(2023), who also studies how data-centric aspects
affect compositional generalization. In our work,
we see compositionality as characterized by a set
of primitives composed by a composition function,
and we focus on how models capture this composi-
tion function depending on properties of the primi-
tives. Their work, however, does not make this dis-
tinction, as their complexification process modify
both the composition function and the distribution
of primitives. The main distinction is hence that
our work relates compositionality to dataset-level
regularities, while they relate it to sample-level fea-
tures.

Our work is also similar to Keysers et al. (2020),
who quantifies the level of systematic generaliza-
tion using distributional information. Specifically,
they quantify the compositionality of an experi-
ment as the divergence between the distribution of
component parts and combinations in the training
and test data. Their work differs from ours since
they focus on the case where the distribution of
component parts is as similar as possible between
the training and test data, while our work focuses
on the case where the distribution of component
parts is inverted from the training to the test set for
some parts of the input.

In another domain, Wiedemer et al. (2023) ap-
proaches systematicity in an image generation prob-
lem by factorizing the latent variables of the input
image. The authors show that the support of these
variables must be the same in the training and test
distributions for any model to generalize systemat-
ically. We take a more fine-grained approach and
our results demonstrate that support alone is insuf-
ficient as a predictor of systematic generalization;
the performance also depends on the entropy, and
higher levels of entropy in the training distribution
can compensate for lower support.

There is also recent work on formalizing compo-
sitionality in terms of data complexity (Elmoznino
et al., 2024), kernel-theory (Lippl and Stachenfeld,
2025), using graph formalisms (Ram et al., 2024),
and decomposition strategies (Jarvis et al., 2023).
Our work is similar to these in the sense that we try
to formalize some properties of systematic general-
ization, which is closely tied to compositionality.

6 Conclusion

In this work, we show that systematic generaliza-
tion of sequence-to-sequence models scales with
information entropy. Through supporting exper-
iments, we also show that this relationship is in-
dependent of the number of unique samples seen
during training. Contrary to previous work, our
findings demonstrate that these models are capa-
ble of systematic generalization even without any
built-in architectural priors that incentivize com-
positional solutions. However, this requires that
the training data have high entropy w.r.t. the parts
that the target composition function operates on.
This poses a new question: Is it possible to achieve
systematicity also at low entropy without composi-
tional priors? Through our formalizations, we hope
to facilitate future work that attempts to answer this
question, providing a clear method for assessing
progress in systematic generalization research.

Limitations

Scope of our findings. In this work, we have con-
sidered an aspect of systematicity that is concerned
with embedded sentences as defined by Hadley
(1994). There is no guarantee that our findings gen-
eralize to scenarios that are different from ours, but
that still falls in under some definition of systematic
generalization.

Use of synthetic data. As is commonplace in
compositionality research, our work relies on syn-
thetic data that is generated by a CFG. This is
necessary to quantify the entropy and to get a con-
trolled experimental setup where the distribution of
component parts in the embedded sentences can be
measured precisely. This is generally not tractable
for real-world corpora. Consequently, our method
is constrained to cases where fine-grained distribu-
tional information is obtainable.

Acknowledgements

We acknowledge Sigma2—the National Infrastruc-
ture for High-Performance Computing and Data
Storage in Norway—for providing access to the
LUMI super-computer, part of the EuroHPC Joint
Undertaking, hosted by CSC (Finland) and the
LUMI consortium. We also want to thank Lilja
@vrelid, Erik Velldal, and David Samuel at the
Language Technology Group for discussions and
feedback on the manuscript.

1815

References

Noam Chomsky. 1957. Syntactic Structures. Mouton.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Roberto Dessi and Marco Baroni. 2019. CNNs found
to jump around more skillfully than RNNs: Com-
positional generalization in seq2seq convolutional
networks. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3919-3923, Florence, Italy. Association for
Computational Linguistics.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lor-
raine Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck,
Peter West, Chandra Bhagavatula, Ronan Le Bras,
et al. 2024. Faith and fate: Limits of transformers on
compositionality. Advances in Neural Information
Processing Systems, 36.

Jeffrey L Elman. 1991. Distributed representations,
simple recurrent networks, and grammatical structure.
Machine learning, 7:195-225.

Eric Elmoznino, Thomas Jiralerspong, Yoshua Ben-
gio, and Guillaume Lajoie. 2024. A complexity-
based theory of compositionality. arXiv preprint
arXiv:2410.14817.

Jerry A Fodor and Zenon W Pylyshyn. 1988. Connec-
tionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3-71.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional se-
quence to sequence learning. In International confer-
ence on machine learning, pages 1243-1252. PMLR.

Jonathan Gordon, David Lopez-Paz, Marco Baroni, and
Diane Bouchacourt. 2019. Permutation equivariant
models for compositional generalization in language.
In International Conference on Learning Representa-
tions.

Robert F Hadley. 1994. Systematicity in connectionist
language learning. Mind & Language, 9(3):247-272.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. DeBERTa: Decoding-enhanced
BERT with disentangled attention. In International
Conference on Learning Representations.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia
Bruni. 2020. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial
Intelligence Research, 67:757-795.

Dieuwke Hupkes, Mario Giulianelli, Verna Dankers,
Mikel Artetxe, Yanai Elazar, Tiago Pimentel, Chris-
tos Christodoulopoulos, Karim Lasri, Naomi Saphra,
Arabella Sinclair, Dennis Ulmer, Florian Schottmann,
Khuyagbaatar Batsuren, Kaiser Sun, Koustuv Sinha,
Leila Khalatbari, Maria Ryskina, Rita Frieske, Ryan
Cotterell, and Zhijing Jin. 2023. A taxonomy and
review of generalization research in NLP. Nature
Machine Intelligence, 5(10):1161-1174.

Devon Jarvis, Richard Klein, Benjamin Rosman, and
Andrew M Saxe. 2023. On the specialization of
neural modules. In The Eleventh International Con-
ference on Learning Representations.

Daniel Keysers, Nathanael Schirli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In International Conference
on Learning Representations.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational conference on machine learning, pages
2873-2882. PMLR.

Brenden M Lake and Marco Baroni. 2023. Human-like
systematic generalization through a meta-learning
neural network. Nature, 623(7985):115-121.

Samuel Lippl and Kim Stachenfeld. 2025. When does
compositional structure yield compositional general-
ization? a kernel theory. In The Thirteenth Interna-
tional Conference on Learning Representations.

Jodo Loula, Marco Baroni, and Brenden Lake. 2018.
Rearranging the familiar: Testing compositional gen-
eralization in recurrent networks. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 108—114, Brussels, Belgium. Association for
Computational Linguistics.

Kate McCurdy, Paul Soulos, Paul Smolensky, Roland
Fernandez, and Jianfeng Gao. 2024. Toward com-
positional behavior in neural models: A survey of
current views. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 9323-9339, Miami, Florida, USA.
Association for Computational Linguistics.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
Preprint, arXiv:2410.05229.

M Ott. 2019. fairseq: A fast, extensible toolkit for se-
quence modeling. arXiv preprint arXiv:1904.01038.

Peter Pagin and Dag Westerstahl. 2010. Compositional-
ity i: Definitions and variants. Philosophy Compass,
5(3):250-264.

1816

https://doi.org/10.18653/v1/P19-1381
https://doi.org/10.18653/v1/P19-1381
https://doi.org/10.18653/v1/P19-1381
https://doi.org/10.18653/v1/P19-1381
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1038/s42256-023-00729-y
https://doi.org/10.1038/s42256-023-00729-y
https://openreview.net/forum?id=Fh97BDaR6I
https://openreview.net/forum?id=Fh97BDaR6I
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=FPBce2P1er
https://openreview.net/forum?id=FPBce2P1er
https://openreview.net/forum?id=FPBce2P1er
https://doi.org/10.18653/v1/W18-5413
https://doi.org/10.18653/v1/W18-5413
https://doi.org/10.18653/v1/2024.emnlp-main.524
https://doi.org/10.18653/v1/2024.emnlp-main.524
https://doi.org/10.18653/v1/2024.emnlp-main.524
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Steven Pinker. 1989. Learnability and cognition: The
acquisition of argument structure. MIT Press.

Hugo Pitorro, Pavlo Vasylenko, Marcos Treviso, and
André Martins. 2024. How effective are state space
models for machine translation? In Proceedings of
the Ninth Conference on Machine Translation, pages
1107-1124, Miami, Florida, USA. Association for
Computational Linguistics.

Parikshit Ram, Tim Klinger, and Alexander G Gray.
2024. What makes models compositional? a theoret-
ical view. In Proceedings of the Thirty-Third Inter-
national Joint Conference on Artificial Intelligence,
pages 4824-4832.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

JFAK van Bethem, JAG Groenendijk, DHJ de Jong,
MIB Stockhof, and HJ Verkuyl. 1991. Logic, Lan-
guage, and Meaning, Volume 2: Intensional Logic
and Intensional Grammar. University of Chicago
Press, Chicago, IL.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Thadddus Wiedemer, Prasanna Mayilvahanan, Matthias
Bethge, and Wieland Brendel. 2023. Compositional
generalization from first principles. In Advances in
Neural Information Processing Systems, volume 360,
pages 6941-6960. Curran Associates, Inc.

Sondre Wold, Etienne Simon, Lucas Charpentier, Egor
Kostylev, Erik Velldal, and Lilja @vrelid. 2024. Com-
positional generalization with grounded language
models. In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 3447-3460,
Bangkok, Thailand. Association for Computational
Linguistics.

Xiang Zhou, Yichen Jiang, and Mohit Bansal. 2023.
Data factors for better compositional generalization.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
14549-14566, Singapore. Association for Computa-
tional Linguistics.

A Modified SCAN grammar

|4 A

look left

jump right

run opposite left
walk opposite right
sprint around left
crawl around right
squat twice

lunge thrice

Table 2: The verbs and adjective phrases in our modified
version of SCAN.

Our modified SCAN grammar consists of the
same parts of speech as the original, but we ex-
tend the set of verbs V' with four additional items.
We keep the original eight adjective phrases. The
verbs and adjective phrases can be seen in Table 2.
Every verb can be combined with every adjective
phrase in each embedded sequence (under no dis-
tributional constraints), combined with one of the
two conjunctive phrases from SCAN (and, after).

B Model details

All models were implemented in Pytorch (Paszke
et al,, 2019). We conducted hyperparameter
searches for each model per experiment. Below
is a list of the search space used for each. All con-
figurations used a weight decay of 1 x 10~! and a
10% dropout rate.

B.1 RNN

We use the basic sequence-to-sequence implemen-
tation from Gordon et al. (2019), which is based on
the Pytorch MT tutorial. We conduct a grid search
over the following learning rates: {1 x 1073, 1 x
1074,3 x 107} cell type: Elman RNN (Elman,
1991), LSTM (Hochreiter and Schmidhuber, 1997),
GRU (Chung et al., 2014); number of hidden units:
{64,128,256}; number of layers: {1,2,3}; and
teacher-forcing rate: {0.0,0.5}. All models ran
with an attention mechanism between the encoder
and decoder, bidirectional layers, and with no learn-
ing rate decay. Following previous work, we used
a batch size of 1.

The RNN used for the experiment outlined in
Section 4.2 has a learning rate of 1 x 10~%, normal
RNN cell types, a hidden size of 128 and 2 lay-
ers (483 438 parameters), while for the experiment

1817

https://doi.org/10.18653/v1/2024.wmt-1.111
https://doi.org/10.18653/v1/2024.wmt-1.111
https://doi.org/10.18653/v1/2024.findings-acl.205
https://doi.org/10.18653/v1/2024.findings-acl.205
https://doi.org/10.18653/v1/2024.findings-acl.205
https://doi.org/10.18653/v1/2023.emnlp-main.898

outlined in Section 4.3 it has 1 layer and 64 hid-
den units (112238 parameters). Teacher-forcing
did not result in increased performance for either
experiment.

B.2 CNN

We based our implementation of the CNN from
Gehring et al. (2017) on the one found in FAIRSEQ
(Ott, 2019). We conduct a grid search over the
following learning rates: {1 x 1072, 1 x 1073, 1 x
1074,3 x 107%}; kernel size: {3,5}; number of
hidden units: {64, 128, 256}; and number of layers:
{1,2,3}; We train with a batch size of 32 and a
cosine decay on the learning rate.

The CNN used for the experiment outlined in
Section 4.2 has a learning rate of 3 x 10~%, a kernel
size of 5, a hidden size of 64 and 3 layers (298 078
parameters), and the same configuration for Sec-
tion 4.3.

B.3 Transformer

We implement the Transformer following the origi-
nal from Vaswani (2017). We conduct a grid search
over the following learning rates: {1 x 1073, 1 x
1074,3x 1074, 1 x 10_5}; number of hidden units:
{64,128,256}; and number of layers: {1,2,3};
As for the CNN, we train with a batch size of 32
and a cosine decay on the learning rate.

The Transformer used for the experiment out-
lined in Section 4.2 has a learning rate of 3 x 1074,
a hidden size of 128 and 3 layers (1796 894 pa-
rameters), while for the experiment outlined in
Section 4.3 it has 2 layers and 256 hidden units
(4763 166 parameters).

B.4 Positional Embedding

In addition to the absolute encodings used in
Vaswani (2017), we implement two other varia-
tions of positional embeddings: RoPE Su et al.
(2024) and Disentangled He et al. (2021). For all
variations, we use the same hyperparameters found
in the Transformer search (Appendix B.3). Addi-
tionally, we conduct a hyperparameter search for
the encoding-specific parameters. For RoPE we
conduct a search for the base value of the . We
tried powers of 10, from one to one million. For
Disentangled Attention we sweep over the input
length for the relative attention. We have a sepa-
rate length for the input and output encodings. We
sweep over the following values: {4, 8, 16,32,64}.
As for the Transformer, we train with a batch size
of 32 and a cosine decay on the learning rate.

For the models used for the experiment outlined
in Section 4.5, we use a RoPE 6 value of 1000, and
for the disentangled encodings we use a relative
input length of 64 and a relative output length of 4.

B.5 Permutation equivariant sequence model

For the permutation equivariant model, we use the
original implementation from Gordon et al. (2019).
We extend the cyclic group from four to eight verbs.
For the hyperparameter selction, we conducted a
grid search over the following learning rates: {1 x
1073,1 x 1074,3 x 1074, 1 x 10~°}; the number
of hidden units: {64, 128}; and RNN cell type:
Elman RNN, GRU. All settings ran with 1 layer.

The model used for the experiment outlined in
Section 4.2 has a learning rate of 1 x 10™%, a hid-
den size of 64 and the GRU cell types (= 130000
parameters), and the same configuration for Sec-
tion 4.3.

We note that the model presented in Lake and
Baroni (2023) also encodes verb equivariance and
achieves high performance on SCAN. However,
this approach relies on automatically augmenting
the training data by creating examples of the input
that have different semantics than the original gram-
mar, making our quantification of H impractical.
Consequently, we only evaluate the permutation-
equivariant model from Gordon et al. (2019).

C Computational budget

All hyperparameter sweeps and experiments ran on
AMD EPYC 7763 CPUs:
* RNN sweep: 2880 hours.
* CNN sweep: 139 hours.
* Transformer sweep: 120 hours.
* Permutation equivariant sweep: 24 hours.
* RNN training run: 600 hours.
CNN training run: 21 hours.
* Transformer sweep: 120 hours.
 Evaluation: 12 hours.
Total: 3916 core CPU hours.

D Licenses and use

The present work uses the following scientific arti-
facts:

1. We base our synthetic data on the SCAN gram-
mar (Lake and Baroni, 2018). SCAN is re-
leased under a BSD License. We do not re-
distribute or use any of the source code, nor
do we redistribute or use any of the original
data files. We implement the grammar based

1818

on the description provided in the paper. Our
code implementation of the grammar includes
the original license statement from SCAN.

2. Our use of the permutation equivariant model
from Gordon et al. (2019) uses the original
implementation. The code is released under
an MIT license. All source code files redis-
tributed with our work contain the original
license statement, as per the license require-
ment.

3. The Transformer (Vaswani, 2017) and the
CNN (Gehring et al., 2017) is implemented
by the authors in PyTorch (Paszke et al., 2019)
and do not use existing code implementations.
However, the CNN was largely based on the
implementation found in Fairseq (Ott, 2019),
which is released under an MIT license. We
do not redistribute any of the original code
files.

E The use of Al assistants

The authors used Al assistants for spellchecking
and sentence-level editing in the writing of the cur-
rent manuscript.

1819

