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Abstract

Entailment trees are essential for enhancing
interpretability and transparency in tasks like
question answering and natural language un-
derstanding. However, existing approaches of-
ten lack logical consistency, as they rely on
static reward structures or ignore the intricate
dependencies within multi-step reasoning. To
address these limitations, we propose a method
that integrates natural logic principles into rein-
forcement learning, enabling dynamic reward
computation to guide entailment tree genera-
tion. Our approach ensures logical consistency
across reasoning steps while improving inter-
pretability and generalization. Experiments
on EntailmentBank demonstrate significant im-
provements over state-of-the-art methods, high-
lighting the effectiveness of natural logic in
structured reasoning.

1 Introduction

In recent years, the generation of entailment
trees (Dalvi et al., 2021; Yuan et al., 2024; Song
et al., 2024) and the application of reinforcement
learning (Liu et al., 2022; Chen et al., 2024) for
knowledge selection have garnered considerable
attention within the domain of automated reason-
ing. These methodologies aspire to model the struc-
ture and inference of knowledge, playing a crucial
role in applications such as natural language un-
derstanding (Dalvi et al., 2021), automated the-
orem proving (Yang et al., 2022), and question
answering (Hong et al., 2023). However, extant
approaches frequently encounter a significant limi-
tation: the lack of global logical constraints that di-
rect the reasoning process. Whether incrementally
constructing the entailment tree (Dalvi et al., 2021;
Bostrom et al., 2022; Hong et al., 2023) or utilizing
reinforcement learning (Liu et al., 2022; Chen et al.,
2024) to select pertinent knowledge, these methods
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sent1: chocolate is usually a solid

sent3: melting means a substance changes from a 
solid into a liquid by increasing heat energy

sent2: matter in the solid phase has definite shape 

sent4: matter in the liquid phase has variable shape
sent5: chocolate melts in the sunlight

Hypothesis: the shape of the chocolate 
changes when the chocolate melts

sent6: chocolate is a kind of substance
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Figure 1: Example tree from EntailmentBank. Given
a hypothesis h (a declarative sentence derived from a
question-answer pair) and a set of facts (or corpus), the
objective is to produce a structured explanation that
clearly outlines the reasoning process from the facts to
the hypothesis.

often lack a comprehensive framework that guaran-
tees logical consistency throughout the reasoning
process. Consequently, the model is vulnerable
to deviating from the correct reasoning pathway,
which may result in inaccuracies that compromise
the overall correctness of the final output.

To address this issue, we propose a novel ap-
proach, NLDR, which uses Natural Logic-based
Dynamic Rewards to facilitate entailment tree con-
struction. Unlike prior methods that rely on fixed
reward structures (Chen et al., 2024; Liu et al.,
2022), our approach employs entailment scores
derived from natural logic as dynamic rewards to
guide the model’s reasoning process. These dy-

17372



namic rewards enable the model to assess the logi-
cal consistency of each reasoning step, providing
feedback that steers it towards the optimal reason-
ing path while helping to avoid local optima.

One of the primary strengths of natural
logic (Lakoff, 1970; MacCartney and Manning,
2009; Angeli et al., 2016) is its ability to capture a
wide range of logical relationships inherent in natu-
ral language. By leveraging these relationships, our
methodology provides nuanced logical guidance
throughout the process of entailment tree gener-
ation. Figure 1 illustrates an example of how a
hypothesis and a set of facts lead to the structured
explanation of a reasoning process. As illustrated
in Figure 1, our method constructs an entailment
tree by progressively combining relevant facts to
reach the hypothesis. At each step of reasoning, the
model selects a set of premises from the candidate
sentences and generates an intermediate conclusion.
The logical consistency of this inference is evalu-
ated using natural logic operations (e.g., entailment,
alternation, contradiction), and the resulting logical
relation is fed into a deterministic finite automaton
(DFA) to determine whether the step contributes
to a valid reasoning path. The natural logic-based
dynamic reward is computed from this evaluation
and used to guide the reinforcement learning pro-
cess. This mechanism enables the model to receive
fine-grained feedback at each reasoning step, en-
suring that the constructed entailment tree adheres
to a globally consistent logical structure rather than
only optimizing for the final output. Employing
entailment scores derived from natural logic as re-
ward values enables the model to assess the logical
consistency of each reasoning step, ensuring that
the reasoning trajectory remains both precise and
consistent. This dynamic reward mechanism also
allows the model to evaluate the logical soundness
of intermediate steps. Moreover, the incorpora-
tion of natural logic-based rewards enhances the
interpretability and transparency of the reasoning
process, as these rewards directly reflect clear and
explainable logical relationships.

The principal contributions of this work are de-
lineated as follows:

• We present a logic-guided dynamic reward
mechanism, wherein the entailment scores de-
rived from natural logic are employed as re-
wards to direct the reasoning process, thereby
ensuring logical consistency and enhancing
the generation of entailment trees.

• We extend the scope of reinforcement learn-
ing to encompass not only step selection but
also intermediate generation, thereby permit-
ting the model to assess and refine the logical
soundness of the reasoning process at every
stage, rather than solely at the final conclu-
sion.

2 Related Work

2.1 Entailment Tree Generation

Entailment trees, first introduced by Dalvi et al.
(2021), provide a structured framework for mod-
eling multi-step logical reasoning in NLP tasks,
particularly question answering (QA). These trees
illustrate how hypotheses logically follow from a
series of substantiated premises. Since then, sev-
eral methods have emerged to enhance entailment
tree generation, including approaches by Bostrom
et al. (2022) and Ribeiro et al. (2022), which fo-
cus on reconstructing entailment trees from nat-
ural language inputs. Advances have also been
made in integrating entailment trees with neuro-
symbolic reasoning (Tafjord et al., 2022; Weir and
Van Durme, 2022), enabling more interpretable and
flexible models. Recent work, such as that by Yang
et al. (2022) and Sprague et al. (2022), has further
expanded this research by introducing methods for
handling incomplete data and enhancing the relia-
bility of logical deductions.

Additionally, reinforcement learning (RL) has
been integrated into entailment tree generation to
refine and optimize the reasoning process. Meth-
ods like RLET (Liu et al., 2022) and SEER (Chen
et al., 2024) use RL to direct reasoning and im-
prove the transparency and interpretability of an-
swers. Other studies, such as those by Hong et al.
(2023) and Nathani et al. (2023), have explored
Monte Carlo methods and multi-faceted feedback
to enhance the reliability of multi-step reasoning.
Despite these advancements, challenges remain in
developing dynamic and adaptive reward functions
that effectively assess the logical consistency of
reasoning steps. Our research addresses these chal-
lenges by introducing a dynamic reward mecha-
nism informed by natural logic, ensuring the rea-
soning process remains both logically consistent
and aligned with the correct solution.

2.2 Natural Logic

Natural Logic (Van Benthem, 1988; Sanchez, 2016;
Van Benthem, 1995; Nairn et al., 2006; MacCart-
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Relation: Name Example Set Theoretic Definition

”: Equivalence mistake ” error x “ y
Ď: Forward Entailment sunflower Ď flower x Ă y
Ě: Reverse Entailment flower Ě sunflower x Ą y
N: Negation usual N unusual x X y “ H ^ x Y y “ U
ë: Alternation sunflower ë rose x X y “ H ^ x Y y ‰ U
⌣: Cover mammal⌣ nonhuman x X y ‰ H ^ x Y y “ U
#: Independence banana # luck All other cases

Table 1: A set R of seven logical relations proposed by
MacCartney and Manning (MacCartney and Manning,
2009).

ney and Manning, 2009; Icard, 2012; Angeli et al.,
2016; Shi et al., 2021) is a reasoning framework
grounded in the syntax of natural language, offer-
ing a direct alternative to traditional formal systems
like first-order logic. Tracing its origins back to
Aristotle’s syllogisms (Rose, 1965), natural logic
eliminates the need for translating natural language
into formal representations, enabling inferences
to be drawn directly from linguistic surface struc-
tures. A major milestone in natural logic was the
introduction of a set of seven logical relations by
MacCartney and Manning (2009): L “ t”,Ď
,Ě,N,ë,⌣,#u. These relations, detailed in Ta-
ble 1, capture diverse logical interactions between
linguistic expressions, thereby expanding the ex-
pressive capacity of natural logic. Another corner-
stone of this framework is the principle of mono-
tonicity (MacCartney and Manning, 2009; Valen-
cia, 1991; Van Benthem et al., 1986; Icard III and
Moss, 2014), which delineates how logical relation-
ships are affected by linguistic context. In upward
monotonic contexts, logical relationships are pre-
served, whereas in downward monotonic contexts,
they may be inverted, as shown in Table 2.

The natural logic proof process (MacCartney and
Manning, 2009; Angeli and Manning, 2014; Feng
et al., 2020; Shi et al., 2025) can be understood as
a structured sequence of steps. Initially, text spans
are aligned between sentence pairs to identify cor-
responding elements. Subsequently, the logical
relations between these aligned spans are then de-
termined, followed by the application of contextual
monotonicity to adjust these relationships. Ulti-
mately, the aggregated logical relations are used to
infer the overall relationship between the sentence
pair.

3 Method

We formulate structured reasoning as a reinforce-
ment learning (RL) task, aiming to learn an op-
timal reasoning policy. In RL, an agent makes
sequential decisions to maximize the expected cu-

r ” Ď Ě ⌣ ë N #
δprq ” Ě Ď ë ⌣ N #

Table 2: The projection function δ projects an input re-
lation r into a different relation under downward mono-
tonicity.

mulative rewards through interactions with an en-
vironment. Here, the language model π serves
as the agent’s policy. The reasoning process be-
gins from an initial state s0. At each step t, the
agent observes the current state st, receives a re-
ward rt, selects an action based on π, and transi-
tions to the next state st`1. This process continues
until a terminal state is reached. The reasoning
process terminates when the model either gener-
ates an intermediate conclusion whose semantic
similarity to the final hypothesis exceeds a prede-
fined threshold (BLEURT(intn,h) > 1) or reaches
a predefined maximum reasoning depth (set to
20) without further valid inference steps. A tra-
jectory ξ “ ts0, a0, s1, a1, . . . , snu represents the
sequence of states and actions throughout the inter-
action. The RL objective is to optimize the policy
π to maximize the expected cumulative reward. At
each reasoning step t, we define the state st as a
tuple consisting of three components: the hypoth-
esis hyp, the set of reasoning steps taken so far
Tt, and the set of available candidate sentences Ut.
Formally, we express the state as: st “ th, Tt,Utu.

3.1 Reinforcement Component

Policy We represent our policy π with a genera-
tive model that can directly sample actions from
the space Apstq. This design enables the pol-
icy to explore a much wider range of promising
actions (i.e., allowing arbitrary combinations of
premises such as x2 & x4 & int1) during reinforce-
ment learning rather than being confined to paired
premises (Hong et al., 2022; Liu et al., 2022; Yuan
et al., 2024). To further accelerate the RL training
process, we initially use the policy π to generate
the top-k candidate actions:

ait „ πpa|stq, (1)

where the input is a linearized state st (i.e., the con-
catenation of hyp, Tt, and Ut), ait denotes the i-th
candidate actions at time step t. Subsequently, we
renormalize the probabilities over these k actions
to obtain a distribution and then sample from it to
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Dry condition can cause the metal to become orange on the surface

Moisture is the main cause of orange color on the surface of metal
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<latexit sha1_base64="vwTkdJkbTrlHwkJ0NtKiy73ewKk=">AAAC2nicjVHLSsNAFD2Nr1pfVXHlJlgUVyWR+sBV0Y3LKvYBTSlJOtWhaRKSiViKG3fi1h9wqx8k/oH+hXfGFNQiOiHJmXPvOTP3Xif0eCwM4zWjTUxOTc9kZ3Nz8wuLS/nllVocJJHLqm7gBVHDsWPmcZ9VBRcea4QRs/uOx+pO71jG61csinngn4tByFp9+8LnXe7agqh2fu2M2XHgH163S5ZubVk690XbbOcLRtFQSx8HZgoKSFclyL/AQgcBXCTog8GHIOzBRkxPEyYMhMS1MCQuIsRVnOEGOdImlMUowya2R98L2jVT1qe99IyV2qVTPHojUurYJE1AeRFheZqu4olyluxv3kPlKe82oL+TevWJFbgk9i/dKPO/OlmLQBcHqgZONYWKkdW5qUuiuiJvrn+pSpBDSJzEHYpHhF2lHPVZV5pY1S57a6v4m8qUrNy7aW6Cd3lLGrD5c5zjoLZTNPeKu6elQvkoHXUW69jANs1zH2WcoIIqeQ/xiCc8a5Z2q91p95+pWibVrOLb0h4+AMgZlwo=</latexit>

Reason : x4 & int1

<latexit sha1_base64="IR+/JcOP2U3ZtNCnKPRe4GQ4P3Y=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIviqiTiC1dFNy6r2Ac2pSTptIamSUgm0lIEd+LWH3CrXyT+gf6Fd8YU1CI6IcmZc+85M/deO/TcmOv6a0aZmp6ZncvO5xYWl5ZX1NW1ahwkkcMqTuAFUd22Yua5Pqtwl3usHkbM6tseq9m9ExGvXbModgP/gg9D1uxbXd/tuI7FiWqp+XNmxYF/NGgZpmZumdqgtdNSC3pRl0ubBEYKCkhXOVBfYKKNAA4S9MHggxP2YCGmpwEDOkLimhgRFxFyZZzhBjnSJpTFKMMitkffLu0aKevTXnjGUu3QKR69ESk1bJImoLyIsDhNk/FEOgv2N++R9BR3G9LfTr36xHJcEfuXbpz5X52ohaODQ1mDSzWFkhHVOalLIrsibq59qYqTQ0icwG2KR4QdqRz3WZOaWNYuemvJ+JvMFKzYO2lugndxSxqw8XOck6C6UzT2i3tnu4XScTrqLNaxgW2a5wFKOEUZFfIe4hFPeFYulVvlTrn/TFUyqSaPb0t5+AB0xJYh</latexit>

Reason : x1 & x2

Entailment 

int2

Figure 2: Overview of the proposed NLDR framework for entailment tree generation.

select the action at for the current reasoning step:

π1pait|stq “ πpait|stqřk
i“1 πpait|stq

,

at „ π1pa|stq. (2)

Reward To this end, we propose a natural logic-
guided reward function that assigns different re-
wards for correct steps. We utilize Llama 3.1-
8b-Instruct model (AI@Meta, 2024) to perform
semantic chunking and the DeBERTa (He et al.,
2023) model to predict NatOps. Here, NatOps
refers to the set of natural logic operations, such
as equivalence, forward entailment, negation, and
alternation, as defined in MacCartney and Manning
(2009). These operations are used to assess the log-
ical relationships between aligned spans and form
the foundation for computing dynamic rewards.

3.2 Natural Logic Guided Reward
During this phase, NLDR constructs a proof rep-
resented as a sequence of logical relations R “
tr1, r2, . . . , rnu. These relations are subsequently
passed as input into a deterministic finite automaton
(DFA), which generates an interpretable reasoning
trace. For example, as illustrated in the bottom-
right of Figure 2, a reasoning trace might take the
form “svalid

NÝÑ sinvalid
”ÝÑ sinvalid

”ÝÑ sinvalid”.
The details of the natural logic reasoning process
are outlined below:

Chunking and Alignment The first step in the
reasoning pipeline involves segmenting the hypoth-
esis hi and factp into discrete chunks. Unlike

traditional syntactic chunkers, which rely heavily
on pre-defined linguistic rules, our approach lever-
ages the capabilities of instruction-tuned large lan-
guage models (LLMs) to perform semantic chunk-
ing. Specifically, the hypothesis and fact are fed
into the LLM with a prompt instructing it to split
the text into smaller, independently verifiable units.
We perform the chunking by prompting an LLM
to “Split the text into smaller chunks that can be
inferred by natural logic”. Each chunk is expected
to encapsulate a single, atomic piece of information
that can be mapped directly to evidence in the sub-
sequent stages. We then use constrained decoding
to ensure the desired output format.

After chunking, the next critical task is aligning
the spans between the hypothesis and the gener-
ated fact. Span alignment is conceptualized as an
optimal matching problem, where we aim to es-
tablish the best possible correspondence between
spans from the hypothesis and those from the fact.
To solve this problem, we utilize the Hungarian
algorithm (Crouse, 2016), which efficiently finds
a global optimal alignment. This step ensures ac-
curate pairwise associations, a prerequisite for reli-
able logical relation prediction.

Logical Relation Prediction With aligned span
pairs tpb1, b̃1q, . . . , pbn, b̃nqu, the next step is to pre-
dict the logical relation between each pair. We
leverage a fine-tuned DeBERTa model to compute
the probabilistic distribution prn over the set of nat-
ural logical relations L for each aligned pair:

prn “ softmaxpDeBERTapbn, b̃nqq, (3)
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where n denotes the number of aligned span pairs
between the hypothesis and the intermediate. For
each pair pbn, b̃nq, the DeBERTa model outputs a
probability distribution over the set of natural logic
relations.

These predicted logical relations are further re-
fined through contextual monotonicity projection,
which adjusts the initial predictions based on the
monotonicity properties of the context. To imple-
ment this, we fine-tune a monotonicity classifier
following the approach described by Rozanova et
al. (Rozanova et al., 2021). The classifier predicts
whether a given logical relation should be upward
or downward within the specific contextual settings.
This process yields a projected set of logical rela-
tions with updated probabilities:

p̂k
1

n “ pkn1
`
δpkq “ k1˘ , (4)

where δpkq represents the monotonicity projection
function, and k1 refers to the projected label of the
original relation k under contextual monotonicity.
The sequence of projected logical relations is then
used to guide the state transitions within the DFA,
facilitating the final reasoning outcome.

Deterministic Finite Automaton The Determin-
istic Finite Automaton (DFA) acts as a lightweight
yet powerful mechanism for interpreting the se-
quence of logical relations. It transitions through
a predefined set of states based on the projected
logical relations, ultimately arriving at a final clas-
sification. Unlike previous methods such as Nat-
uralLI (Angeli and Manning, 2014), which em-
ploy three states (entailment, contradiction, and
unknown), our approach simplifies the DFA to op-
erate with only two states: entailment and contra-
diction. This design choice reduces complexity,
enhances computational efficiency, and aligns bet-
ter with the requirements of downstream answer
selection tasks.

The probability of the DFA’s final outcome is
determined by aggregating the probabilities of the
projected logical relations along the reasoning path.
Specifically, the final outcome’s probability is com-
puted as the product of the individual relation prob-
abilities:

ŷi “
nź

i

p̂k
1

n (5)

3.3 Optimization
To address the challenges of training instability
and sample inefficiency in reinforcement learn-

ing (Zhou et al., 2023; Roit et al., 2023), we em-
ploy the proximal policy optimization (PPO) algo-
rithm (Schulman et al., 2017) to optimize the policy
π, parameterized by θ. The policy loss function is
formulated as follows:

Lπ “ Etrmin
´
rtpθqÂt, clip

`
rtpθq, 1 ´ ϵ,

1 ` ϵ
˘
Ât

¯
` cHpπ1

θqs,
(6)

where rtpθq is the importance sampling ratio given
by:

rtpθq “ π1
θpat|stq

π1
θold

pat|stq . (7)

Here, π1 represents the probabilities normalized
by Equation (2), and θ, θold denote the parameters
of the new and old policies, respectively. The hy-
perparameter ϵ defines the clipping range, which
stabilizes training by preventing excessively large
policy updates. Additionally, c is the entropy co-
efficient, and Hpπ1

θq is the entropy bonus, which
promotes sufficient exploration:

Hpπ1
θq “ ´π1

θpat|stq log π1
θpat|stq. (8)

Furthermore, Ât denotes the estimated advantage
function for state st, computed as:

Ât “ rt ` γV pst`1q ´ V pstq, (9)

where rt is the reward calculated by Equation (5),
V pstq and V pst`1q are the state-value functions,
and γ is the discount factor.

To ensure accurate return estimation and guide
the policy towards effective updates, we train the
critic by minimizing the squared advantage func-
tion:

LV “ Et

”
pÂtq2

ı
. (10)

4 Experiments

4.1 Dataset

We used the EntailmentBank dataset (Dalvi et al.,
2021), which contains 1,840 expert-annotated en-
tailment trees. Each tree represents the reasoning
process for deriving a hypothesis from a question-
answer pair in the ARC dataset (Clark et al., 2018),
with leaf nodes sourced from the WorldTreeV2 cor-
pus (Xie et al., 2020). Table 3 summarizes the
dataset statistics. Following Dalvi et al. (2021), we
define three progressively challenging explanation
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Train Dev Test All

Questions 1313 187 340 1840
Entailment Steps 4175 597 1109 5881

Table 3: Summary statistics for the EntailmentBank
dataset splits.

tasks: (a) constructing a valid entailment tree us-
ing only relevant sentences, (b) generating the tree
with both relevant and some irrelevant sentences,
and (c) creating the tree using the complete corpus.
The goal is to generate entailment trees that trace
reasoning from facts to the final hypothesis.

4.2 Baselines
We compare our approach with several state-of-the-
art methods in entailment tree generation. Entail-
mentWriter (Dalvi et al., 2021) generates entire
trees and intermediate conclusions in a single pass
using a sequence-to-sequence model, available in
T5-11B and T5-Large versions. RLET (Liu et al.,
2022) uses reinforcement learning for iterative,
single-step reasoning to guide tree generation. Met-
Gen (Hong et al., 2022) iteratively refines reason-
ing steps with multiple modules. NLProofs (Yang
et al., 2022) uses an independent verifier to en-
sure logical soundness in proof step generation.
FAME (Hong et al., 2023) employs a Monte Carlo
planning approach for strategic action selection.
SEER (Chen et al., 2024) uses reinforcement learn-
ing with fixed reward structures for guiding tree
generation. METGEN+Rhetorical (Zhang et al.,
2024) bridges reasoning types with rhetorical rela-
tions, and METGEN+LMPM (Yuan et al., 2024)
incorporates external memory to store logical pat-
terns for pre-training. SPEH (Song et al., 2024)
introduces step feasibility perception and error han-
dling for iterative tree generation. We use publicly
available models and default settings for a fair com-
parison across methods.

4.3 Metrics
Entailment tree evaluation involves two steps. First,
nodes from the predicted tree (Tpred) are aligned
with the gold tree (Tgold) based on sent˚ labels and
Jaccard similarity for intermediate nodes. In the
second step, we evaluate the generated tree along
three dimensions, following prior work (Dalvi et al.,
2021; Hong et al., 2022; Yang et al., 2022):

• Leaves: This aspect examines the accuracy
of the leaf facts utilized in the predicted tree.

The F1 score is calculated by comparing the
predicted leaf facts with those in the gold tree.
Additionally, we report the AllCorrect met-
ric, which indicates a perfect match. Specif-
ically, the AllCorrect score is set to 1 if
the F1 score is 1 (i.e., all predicted leaf facts
match perfectly), and 0 otherwise.

• Steps: This dimension focuses on the struc-
tural correctness of the entailment steps. We
measure accuracy using both the F1 and
AllCorrect scores. An entailment step is
considered correct if the identifiers of its child
nodes align precisely with those in the corre-
sponding step of the gold tree.

• Intermediates: Correctness of intermediate
nodes is evaluated using F1 and AllCorrect.
A predicted intermediate is considered correct
if its semantic similarity to the corresponding
gold intermediate, as measured by BLEURT-
Large-512 (Sellam et al., 2020), exceeds a
threshold of 0.28.

Finally, the Overall AllCorrect metric as-
signs a score of 1 if all leaves, steps, and inter-
mediates in the predicted tree match perfectly with
those in the gold tree. Any mismatch results in a
score of 0.

4.4 Implementation Details

Previous studies (Chen et al., 2024; Hong et al.,
2022) have consistently utilized T5-large (Raffel
et al., 2020) as the base model. For a fair compari-
son, our policy is also built with a T5-large model
with NVIDIA A100 GPUs. The pre-trained lan-
guage models are derived from Huggingface Trans-
formers (Wolf et al., 2020). For our experimental
setup, we adopt the optimal hyperparameters from
Chen et al. (2024).

5 Experimental Results and Analysis

5.1 Main Results

As shown in Table 4 and Table 5, our method,
NLDR, outperforms all baseline models on the
strictest metric, “Overall AllCorrect”, across
all three tasks.

The results in Table 4 clearly demonstrate the
performance of NLDR on Task 1 and Task 2 of
the EntailmentBank dataset, showing significant
improvements over several baseline methods. In
Task 1, NLDR achieves an absolute improvement
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Method Leaves Steps Intermediates Overall
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

Task1 (no-distractor)
IRGR (Ribeiro et al., 2022) 97.6 89.4 50.2 36.8 62.1 31.8 32.4
EntailmentWriter (Dalvi et al., 2021) 98.4 84.1 50.0 38.5 67.0 35.9 34.4
METGEN+Rhetorical (Zhang et al., 2024) 100.0 100.0 56.9 42.1 68.8 37.1 34.7
RLET (Liu et al., 2022) 100.0 100.0 54.6 40.7 66.9 36.3 34.8
METGEN (Hong et al., 2022) 100.0 100.0 57.7 41.9 70.8 39.2 36.5
SPEH (Song et al., 2024) 100.0 100.0 57.4 42.7 73.3 39.4 37.7
METGEN+LMPM (Yuan et al., 2024) 99.8 99.4 57.8 43.8 72.8 42.8 38.5
NLProofS (Yang et al., 2022) 97.8 90.1 55.6 42.3 72.4 40.6 38.9
FLD (Morishita et al., 2023) 99.0 92.7 55.5 42.2 73.4 41.3 39.2
FRVA (Fan et al., 2024) 98.2 94.0 57.8 44.4 73.5 42.4 40.3
SEER (Chen et al., 2024) 100.0 100.0 67.6 52.6 70.3 42.6 40.6
NLDR (Ours) 100.0 100.0 71.7 55.3 73.3 46.2 42.6

Task2 (distractor)
IRGR (Ribeiro et al., 2022) 69.9 23.8 30.5 22.4 47.7 26.5 21.8
EntailmentWriter (Dalvi et al., 2021) 83.2 35.0 39.5 24.7 62.2 28.2 23.2
RLET (Liu et al., 2022) 81.0 39.0 38.5 28.4 56.3 28.6 25.7
METGEN (Hong et al., 2022) 82.7 46.1 41.3 29.6 61.4 32.4 27.7
METGEN+Rhetorical (Zhang et al., 2024) 83.3 49.7 42.1 30.3 61.0 31.8 28.2
METGEN+LMPM (Yuan et al., 2024) 81.1 47.1 42.6 31.4 61.7 34.3 29.4
FLD (Morishita et al., 2023) 88.4 53.6 45.6 33.8 67.9 36.1 32.6
NLProofs (Yang et al., 2022) 90.3 58.8 47.2 34.4 70.2 37.8 33.3
FRVA (Fan et al., 2024) 91.3 60.5 48.0 35.8 71.1 39.1 34.4
SEER (Chen et al., 2024) 86.4 53.5 56.8 39.7 66.3 38.3 34.7
NLDR (Ours) 83.6 51.5 60.2 41.2 66.9 38.2 36.5

Table 4: Automatic evaluation results of Task 1 and Task 2 on the EntailmentBank test split (%). All baseline results
come from published papers.

of 2.0% over the strongest baseline, SEER. SEER’s
performance is often limited by its rigid reward as-
signments, which do not adapt to the complexities
of nuanced logical inferences. In contrast, NLDR
uses a dynamic reward mechanism based on natu-
ral logic reward, which allows the model to adapt
during the inference process. This flexibility leads
to more precise and context-sensitive entailment
tree generation, enhancing the model’s ability to
handle complex logical dependencies.

Similarly, in Task 2, NLDR demonstrates a
1.8% improvement over SEER. The dynamic re-
ward structure of NLDR helps it more effectively
manage abstract reasoning, especially in situations
where SEER’s static rewards may fail to capture
the subtleties of the inference process. For exam-
ple, in cases involving more ambiguous or indirect
entailments, NLDR adjusts its reward function to
guide the model toward more accurate conclusions,
whereas SEER struggles with such scenarios. This
highlights NLDR’s robustness across diverse rea-
soning tasks and its ability to handle nuanced infer-
ence challenges that other methods may overlook.

When compared to the RL-based method RLET,
NLDR shows significant improvements, outper-

forming RLET by 7.8%, 10.8%, and 6.3% on Tasks
1, 2, and 3, respectively. Additionally, NLDR sur-
passes SEER by 2.0%, 1.8%, and 0.3% across the
same tasks. The key advantage of NLDR lies in
its dynamic reward function, which is grounded in
natural logic and better aligns with the logical de-
pendencies inherent in multi-step reasoning. This
ensures that each step in the entailment tree gen-
eration process remains logically consistent and
that the reward adapts to the quality of reasoning
at each stage. On the other hand, RLET relies on a
static reward structure, which can fail to account for
the complexities of reasoning across the entire tree,
leading to less accurate predictions. Furthermore,
while SEER also focuses on structured reasoning,
its static reward function may not capture the evolv-
ing nature of multi-step logical inferences, making
it less effective than NLDR in handling tasks that
require deep and flexible reasoning.

In Task 3, as shown in Table 5, NLDR also out-
performs advanced models such as GPT-4 with
Chain-of-Thought (CoT) and Tree of Thoughts
(ToT). Task 3 requires the model to maintain log-
ical consistency across multiple reasoning steps,
which can be particularly challenging for models
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Method Leaves Steps Intermediates Overall
F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

EntailmentWriter (Dalvi et al., 2021) 30.9 1.2 4.4 1.2 28.8 5.6 1.2
NLProofs (Yang et al., 2022) 43.2 8.2 11.2 6.9 42.9 17.3 6.9
FRVA (Fan et al., 2024) 44.0 8.9 11.6 7.5 43.2 17.9 7.5
IRGR (Ribeiro et al., 2022) 46.6 10.0 11.3 8.2 38.7 20.9 8.2
FLD (Morishita et al., 2023) 43.6 9.7 12.1 8.3 43.0 20.1 8.3
METGEN+Rhetorical (Zhang et al., 2024) 36.8 8.5 10.6 8.5 37.7 20.3 8.5
METGEN+T5 (Hong et al., 2022) 34.8 8.7 9.8 8.6 36.6 20.4 8.6
RLET (Liu et al., 2022) 38.3 9.1 11.5 7.1 34.2 12.1 6.9
METGEN+LMPM (Yuan et al., 2024) 35.3 9.2 10.3 9.2 37.8 20.3 9.4
GPT4-ReAct (Yao et al., 2023b) 45.8 12.9 14.1 10.5 43.5 21.5 10.5
GPT4-CoT (Wei et al., 2022) 44.1 12.1 15.4 10.8 43.1 20.6 10.8
GPT4-ToT (Yao et al., 2023a) 43.3 12.0 15.8 11.0 43.9 20.0 11.0
FAME (Hong et al., 2023) 43.4 13.8 16.6 12.4 40.6 19.9 11.9
SEER (Chen et al., 2024) 47.1 13.8 17.4 12.9 45.1 18.8 12.9
NLDR (Ours) 48.1 14.4 17.5 13.2 47.8 20.0 13.2

Table 5: Automatic evaluation results of Task 3 on the EntailmentBank test split (%). All baseline results come
from published papers.

Method Steps Intermediates Overall

NLDR (Ours) 55.3 46.2 42.6
w/o dynamic reward 52.6 42.6 40.6
w/o logic reward 52.1 43.2 41.5

Table 6: Ablation results of Task 1 on EntailmentBank
test set (%).

like GPT-4 with CoT. While GPT-4 with CoT can
perform step-by-step reasoning, it struggles when
faced with longer or more deeply nested reason-
ing chains, often losing track of earlier steps or
failing to maintain logical consistency. Similarly,
ToT, although useful for structured reasoning, faces
limitations in dynamically adapting to the specific
requirements of each reasoning step in complex
tasks. In contrast, NLDR’s dynamic reward mech-
anism allows it to adjust its approach at each step,
effectively managing the complexity of multi-step
inferences. By continuously optimizing its reward
based on the logical structure of the entailment,
NLDR achieves a 2.2% improvement over both
GPT-4 with CoT and ToT in Task 3. For tasks that
require deep logical analysis or multi-step infer-
ence, NLDR maintains higher accuracy by adapt-
ing to the evolving context, whereas GPT-4 with
CoT may struggle with complex reasoning depen-
dencies. ToT, while structured, lacks the flexibility
to adjust dynamically to the changing needs of each
inference step, which is precisely where NLDR ex-
cels.

5.2 Ablation Study

In this section, we conduct an ablation study to
evaluate the impact of different components of the

NLDR method on its performance. We systemati-
cally analyze the effect of removing the dynamic
reward mechanism and the natural logic-based re-
ward function. As shown in Table 6, we tested two
key variations.

First, the w/o dynamic reward setup disables
the dynamic reward mechanism and replaces it with
a fixed reward value (1 or -1) for correct or incor-
rect steps. The results show a significant drop in
performance, indicating that the dynamic nature of
the reward mechanism is crucial for capturing the
complex dependencies between intermediate nodes
and the root node in the entailment tree. Without
the dynamic reward, the model struggles to adjust
its reasoning process appropriately, leading to a
decrease in reasoning accuracy.

The second variation, w/o logic reward, re-
moves the natural logic-based reward function and
substitutes it with a reward signal derived from
a neural network-based model, specifically the
DeBERTa model’s entailment score. While the
DeBERTa-based reward still offers some guidance,
it lacks the fine-grained logical reasoning that natu-
ral logic provides. As a result, the model’s ability
to generate high-quality entailment trees is com-
promised, and its performance is lower compared
to the full NLDR model, which incorporates both
natural logic and dynamic rewards.

5.3 Reward Function Comparison
Experiment

To further evaluate the performance of different
dynamic reward functions, we compared NLDR
with several pre-trained language models used to
compute dynamic reward scores: DeBERTaV3 (He
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Method Steps Intermediates Overall

NLDR (Ours) 55.3 46.2 42.6
DeBERTaV3 (He et al., 2023) 52.1 43.2 41.5
Llama 3.1-8B-Instruct (AI@Meta, 2024) 54.4 42.9 41.2
DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025) 53.8 45.3 41.8

Table 7: Reward function comparison experiment of
Task 1 on EntailmentBank test set (%).

et al., 2023), Llama 3.1-8B-Instruct (AI@Meta,
2024), and DeepSeek-R1-Distill-Llama-8B (Guo
et al., 2025). The results, shown in Table 7, clearly
highlight the superiority of the NLDR method,
which utilizes natural logic-based rewards, over
the neural network-based approaches. Unlike the
neural network-based methods, the natural logic
approach provides a more precise and logically
grounded reward signal, leading to significantly im-
proved reasoning accuracy. These results demon-
strate the significant advantage of using natural
logic as a reward function for generating high-
quality entailment trees in complex reasoning tasks.

6 Conclusion

In this paper, we introduced the NLDR method,
which leverages natural logic to compute dynamic
entailment scores between intermediate nodes and
the root node in an entailment tree, offering a more
nuanced and adaptable reward function for rein-
forcement learning compared to traditional fixed-
value rewards. Our experimental results demon-
strate that NLDR not only enhances the quality
of entailment tree generation but also exhibits sig-
nificant improvements in logical consistency, rea-
soning ability, and overall model accuracy. Future
work could focus on further optimizing the reward
function design, improving model interpretability
and scalability, and exploring the application of
this approach to a broader range of natural lan-
guage inference scenarios, ultimately advancing
the development of intelligent reasoning systems.
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Limitations

While the approach presented in this paper offers
a novel integration of natural logic to dynamically

generate entailment tree rewards, there are a few
limitations. First, the model’s reliance on T5 as the
backbone architecture may limit its generalizability
to other pre-trained models. Future work could
explore how the proposed method performs with
alternative architectures. Additionally, while the
dynamic reward function more accurately reflects
logical relationships, it may still be influenced by
inherent biases in the underlying language model,
which could affect the consistency of the entailment
scores. Finally, the current evaluation is conducted
on a relatively limited set of datasets, which may
not fully capture the complexity of entailment tasks
across different domains. Expanding the evalua-
tion to a wider range of datasets would provide
a more comprehensive assessment of the model’s
robustness.
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