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Abstract

This paper investigates the effect of dialectal
prompting, variations in prompting script and
model fine-tuning on subjective classification
in Arabic dialects. To this end, we evaluate the
performances of 12 widely used open source
LLMs across four tasks and eight benchmark
datasets. Our results reveal that specialized
fine-tuned models with Arabic and Arabizi
scripts dialectal prompts achieve the best re-
sults, which provides new findings on the fine-
tuning of LLMs for low-resource languages.

1 Motivations

Large Language Models (LLMs) have gained sig-
nificant attention for their ability to perform vari-
ous NLP tasks, including text classification. Stud-
ies have demonstrated that these models achieve
high accuracy on a wide range of classification
tasks by leveraging prompt engineering and cus-
tomized prompts (Brown et al., 2020; Sun et al.,
2023; Bareiß et al., 2024). However, the results for
subjective classification remain a challenge. For ex-
ample, Zhang et al. (2024) have shown that LLMs
perform poorly in classifying highly subjective con-
tent, such as irony and emotions, where contextual
subtleties play a crucial role. Fine-tuning these
models on large affective datasets has been shown
to improve performance for tasks involving nu-
anced emotional understanding (Liu et al., 2024).

Additionally, studies indicate that LLMs tend
to perform better when prompts are either in En-
glish or translated to English compared to when
they are in the target language of the testset (Perak
et al., 2024; Ondrejová and Šuppa, 2024; Nguyen
et al., 2024; Cahyawijaya et al., 2024; Bareiß et al.,
2024). This is particularly salient for low-resource
languages such as dialectal Arabic and its regional
variants, where similar declines were observed (Ab-
delali et al., 2024; Ahuja et al., 2023; Koto et al.,
2024; Zhang et al., 2023; Abdelaziz et al., 2024).

Improvements have, however, been observed with
code-mixed prompts in few-shot settings, i.e., in-
structions in English and examples in MSA (Ahuja
et al., 2023).

When it comes to subjective text classification
in Arabic, three main challenges remain: (1) Task-
specific transformer fine-tuned models consistently
outperform LLMs when prompted in zero or few-
shot settings (Zhang et al., 2023), (2) The results
when using native language prompts in MSA vs.
English were not conclusive (e.g., increase in sub-
jectivity detection but decrease in sentiment analy-
sis (Abdelali et al., 2024)), and (3) LLMs struggle
with more nuanced subjective tasks like detecting
sarcasm and emotions (Abdelali et al., 2024).

In this paper, we aim to address these challenges
by investigating, for the first time as far as we know,
the effectiveness of dialect-specific prompting in
improving subjective text classification in Arabic.
Our work makes contributions in both advancing
prompt engineering methodologies and studying
the effects of linguistic variation in prompt design,
focusing on the following dimensions:

1. Dialectal prompting. We explore how LLMs
respond to prompts written in Maghrebi (Alge-
rian, Tunisian) and Levantine dialects, compar-
ing performances with prompts in English and
MSA.

2. Variations in prompting script. Code-switching
may impact LLMs performances. We therefore
vary prompts’ scripts, exploring Latin, Arabic,
and newly Arabizi (Yaghan, 2008), the informal
Arabic chat alphabet in which words are written
in their transliterated form using Latin charac-
ters and numerals (e.g., "a3tini" (give me)).

3. LLMs fine-tuning. We compare fine-tuned vs.
non fine-tuned versions of 12 open source LLMs
while varying their sizes and the training process
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in terms of training strategy (instruction vs. chat-
tuned), language (Arabic vs. multilingual) and
specialization (affective vs. general-purpose).

4. Robustness and generalization. We design ex-
periments to assess how well fine-tuned mod-
els generalize across dialects, tasks, and scripts,
shedding light on the impact of linguistic varia-
tion on model adaptability.

Our results provides new findings on fine-tuning
LLMs for low-resource languages: (a) Fine-tuned
models with dialect prompts written in Arabic
script and Arabizi achieve the best, (b) Arabic-
centric models demonstrate stronger efficiency, (c)
LLMs achieve strong performances outperforming
fine-tuned Bert-like smaller models, (d) Transfer
learning of fine-tuned models across datasets/tasks
as well as switching to a different dialect at infer-
ence time, significantly degrade performance. Our
models are available to the research community.1

2 Methodology

2.1 Classification tasks
We explore 4 subjective tasks of various complex-
ity, selecting publicly available datasets for each
task where instances from various length are writ-
ten either in MSA only, a specific dialect, or mix-
ture of MSA and/or different dialects. We consider
a wide range of Arabic dialects from different re-
gions: North Africa (Algerian (Dz), Tunisian (Tn)),
Levantine (Lv), and Gulf (Gl). Our datasets are as
follows (see Appendix A for a detailed description,
including the train/test split):

(1) Sentiment analysis (SA): OCAMSA (Rushdi-
Saleh et al., 2011), Sem17MSA+Mixed(Rosenthal
et al., 2017), Twifil-sentDz (Moudjari et al., 2020),
and TSACTn (Medhaffar et al., 2017).

(2) Emotion recognition (EM): Twifil-emoDz

(Moudjari et al., 2020), Sem18MSA+Mixed (Mo-
hammad et al., 2018).

(3) Irony detection (ID): IDATMSA+Mixed

(Ghanem et al., 2019).
(4) Crisis management (CM): FloodLv+Gl

(Alharbi and Lee, 2019).

In order to study the impact of dialect prompt-
ing in LLMs performances, we further analyzed
the distribution of script in our datasets (cf. Ap-
pendix A.2). Arabic scripts are a majority on all

1https://huggingface.co/DialectPrompting/
Dialectal_LLMs

datasets, except for OCAMSA where data is mixed
with Latin scripts coming from English movie ti-
tles. Maghrebi dialect datasets contain instances
exclusively written in Latin characters. In Table 2
from the same Appendix, we also analyzed the fre-
quency of MSA samples relying on the ALDi score
(Keleg et al., 2024) where 0 ≤ ALDi < 0.1 indi-
cating that an instance is expected to be in MSA,
otherwise it is likely in dialect. All ALDi scores
are > 0.1 with FloodLv+Gl having the smallest
scores. After a manual check, we observed that
these scores may not reflect the real percentage of
dialect, in particular when the inputs are in Arabizi.
We provide examples and discussion on this issue
in the Limitation Section and Appendix A.2.

2.2 Experimental Settings
Models. See Appendix B.1:

• Transformers. We employ three models that
have been pre-trained on MSA and social media
content from various dialects: AraBERTv2 (An-
toun et al., 2020), CAMeLBERT (Inoue et al.,
2021), and DarijaBERT (Gaanoun et al., 2024).

• Non fine-tuned LLMs. We use 12 LLMs from
three families: (a) General-purpose multilin-
gual LLMs: SOLAR10.7B (Kim et al., 2023),
Mistral7b, Mistral-Instruct7b(Jiang et al., 2023),
LLaMA38b (Dubey et al., 2024) and LLaMA3-
Instruct8b, (b) Arabic-centric LLMs: Jais-
family1p3b (Sengupta et al., 2023), AceGPT8b

(Huang et al., 2024) and AceGPT-chat8b, and (c)
Specialized affective models: EmoLlama7b (Liu
et al., 2024), EmoLlama-chat7b and EmoLlama-
chat13b.

• Fine-tuned LLMs. These 12 models have also
been fine-tuned with QLoRA (Quantized Low-
Rank Adaptation) (Dettmers et al., 2024).

Prompts. Given a task and to avoid bias, all
LLMs share the same zero-shot prompts2 and pa-
rameters (see Appendix C and B.2, resp.). We
utilize role-playing by assigning roles to LLMs
(Liu et al., 2023) and direct the models to generate
a single response based on the provided labels only
to limit hallucination. As LLMs may have differ-
ent output formats, we consider a class correct if
it exactly corresponds to task categories. When
the model is unable to confidently assign a label,

2Experiments with few-shot and in-context mixing
(Shankar et al., 2024) were not conclusive.
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we implemented two strategies: assigning a "neu-
tral" label when it is included in the task annotation
scheme, and resorting to a random false label, as
suggested by Zhang et al. (2023), otherwise.

We also vary the languages and scripts:

• English Prompts: Instructions are written in En-
glish, with English labels, and examples are ran-
domly sampled from the task dataset following
(Abdelali et al., 2024; Koto et al., 2024).

• Arabic Prompts: English instructions are trans-
lated into MSA following (Ahuja et al., 2023;
Zhang et al., 2023). We use ChatGPT then manu-
ally checked the translations by a native speaker,
while examples are kept unchanged (i.e., same
language as in the target task).

• Dialectal Prompts: Arabic instructions as well
as labels are manually translated into a dialect
d = {Lv, Dz, Tn} written either in Arabic (ar)
or Arabizi (abz) scripts. For Lv, we experiment
with ar and abz, however and given that Dz and
Tn are two Magherbi dialects, we explore Dz
prompting with abz script to capture its distinct
code-mixed nature while Tn with ar. This is also
motivated by the very similar preliminary results
obtained when prompting LLMs in Dz and Tn
using Arabic script. In the following, the notation
ds indicates a prompt written in a dialect d using
script s ∈ {ar, abz}.

Impact of fine-tuning and prompting variations.
We design four experimental settings to evaluate
the impact of dialectal and script variation on model
generalization:

• In-dataset: All inputs are from a distribution
present during training/testing. This is the stan-
dard within-dataset baseline.

• In-datasetDA: A variant of the above where di-
alectal instances are isolated based on their ALDi
scores, teasing apart MSA samples to better as-
sess the effectiveness of our prompting strategies
on dialect-specific data.

• Cross-dataset transfer: It focuses on eval-
uating task-level generalization across datasets
with different dialects/scripts, without any ex-
posure to the test distribution. Therefore, a
model trained on one dataset is tested on an-
other—within the same task but differing in
dialect and/or script—without additional fine-
tuning on the target data.

• Fine-tuning transfer: This setting exam-
ines the ability of LLMs to generalize when the
prompting conditions at inference time differ
from those seen during fine-tuning. It helps an-
swer whether switching the prompting language
(e.g., from Tunisian to MSA or Arabizi) degrades
performance, and whether adaptation to one vari-
ant enhances or constrains generalization.

3 Results

To reduce randomness and enhance generalizability,
all models are evaluated on the same test set and
run three times with different seed of examples, if
any; we report the averaged macro-F1 across runs.

In-dataset results. The main findings are as
follows (cf. Table 1, together with Figure 3 as well
as Tables 11 and 7 in Appendix D.1):

(a) Dialect: Prompting with the target dataset
dialect is not always effective, likely due to
varying sensitivities of LLMs to specific dialects,
as acknowledged in a recent study (Mousi et al.,
2025). For instance, LLaMA and its derivative as
well as AceGPT excel in Gulf Arabic, while JAIS
in Levantine. Additionally, mutlilingual models
often confuse dialects (e.g., Gulf with Levantine
or MSA) and tend to switch to MSA in uncertain
cases.

(b) Script: We observe a correlation between the
dominant script in the dataset and the prompt used
(see Figure 1 in Appendix D.1). For instance, in
Twifil-sentDz , where 50% of instances use a mix
of scripts, the best results were achieved after
fine-tuning using Algerian prompting. Similarly,
in Sem18MSA+Mixed, where 83% of instances
are written in Latin script, the best results were
achieved using Levantine with Arabizi. There are,
however, two exceptions: (i) OCAMSA, where
73% of the data is mixed between Arabic and
Latin script. Best scores have been achieved with
MSA which is consistent as sentiment tags are
mostly derived from the review (and not from the
movie titles). (ii) Twifil-emoDz, where English
prompts LLaMA38b were the best. This is likely
due to these LLMs being trained on significantly
larger English datasets compared to Arabic. After
fine-tuning, Levantine with Arabizi achieved the
best results (35.81), with MSA closely behind.
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Sem17MSA+Mixed Twifil-sentDz OCAMSA TSACTn Sem18MSA+Mixed Twifil-emoDz IDATMSA+Mixed FloodLv+Gl

Best Baseline
Reported SOTA∆ 61.00 79.52 90.60 63.35 49.53 (6 classes) 59.19 (6 classes) 84.40 –
Transformer 71.22 74.46 91.00 93.90 24.23 38.06 83.75 70.87

Non Fine-tuned LLMs
Best Eng 42.18 65.25 87.92 92.86 24.77 27.44 58.45 38.05
Best MSA 50.94 68.28 90.99 67.30 24.77 21.97 39.54 31.63
Best Dialect 41.31 75.92 89.00 70.80 22.86 23.98 56.80 33.98
→ dialectscript Dzabz Lvar Lvabz Dzabz Dzabz Lvar Lvar Lvabz

Fine-tuned LLMs
Best Eng 80.36 89.59 98.00 97.98 30.66 27.78 84.54 67.04
Best MSA 81.39 86.77 99.98 98.89 30.20 33.38 87.34 67.57
Best Dialect 85.23* 87.13 99.98 99.34* 32.41* 35.81* 94.89* 67.06*
→ dialectscript Tnar Dzabz Lvar Dzabz Lvabz Lvabz Lvar Lvar

Table 1: Best baseline and best LLMs results before and after fine-tuning in terms of macro F1-score. Best score
per language/dialect are in bold while overall best performance for each dataset is highlighted in green. *: The
difference between dialect vs. MSA prompting is statistically significant at p < 0.01. ∆: Reported state of the art
results using different experimental settings (see Section 4 for a discussion).

(c) Fine-tuning (FT) vs. non fine-tuning (N-FT): FT
LLMs outperform transformers in all tasks, except
CM and ED in Twifil-emoDz with a small decrease
of around 3%. N-FT results are in-line with state of
the art findings where English prompts performed
the best (Koto et al., 2024). FT results on the
other hand, show consistent improvement, with
dialectal prompting yielding the best performance.
Also, dialects with shared linguistic features,
such as Algerian and Tunisian, led to comparable
outcomes across models, indicating the models’
ability to leverage these similarities.

(d) Models size, language and specialization. We
observe that specialized LLMs fine-tuned on af-
fective data (i.e. EmoLlama family) do not ex-
hibit specific improvement over general-purpose
LLMs. When comparing pre-training strategies,
instruction-tuned models, particularly Llama3-
inst8b outperformed other non Arabic-centric mod-
els across nearly all datasets, with Emollama-
chat13b closely following in two datasets. When it
comes to Arabic vs. multilingual LLMs, language-
specific AceGPT achieves best results in almost all
datasets beating JAIS, the other Arabic LLM. Even
without fine-tuning, prompting in MSA exhibits
better performances than English, while dialects
are the more productive prompts after fine-tuning.

In-datasetDA results. Table 8 in Appendix D.2
shows that when a dataset contains a high percent-
age of MSA, as seen in TSACTn (ALDi > 0.1), per-
formance drops significantly with a lost 62.94% in
F-score, while FloodLv+Gl experienced a 19.75%
decline. Conversely, when the MSA proportion is
lower, the impact of ALDi-based filtering is min-
imal, and in some cases, even beneficial. For in-

stance, Twifil-sentDz saw a slight improvement of
0.2% after removing texts with ALDi=0. Addition-
ally, the presence of dialectal texts can also enhance
classification performance on MSA instances, as
observed in most cases, whereas for OCAMSA, the
inclusion of dialect samples did not impact the re-
sults.

Cross-dataset results. We measured transfer
learning of our best models across SA and ED tasks
(the two others containing one dataset each). For
SA (see Table 9 Appendix D.2), models perform
best when prompted in the same script. For in-
stance, in Sem17MSA+Mixed, the top-performing
model used Tunisian, while the best transfer learn-
ing results were achieved with Levantine. Levan-
tine prompts generally yield stronger results, as
Arabic-centric models tend to perform better on
non-Maghrebi Arabic.

For ED (see Table 10 in Appendix D.2), we
observe the same tendency. For example, in
Sem18MSA+Mixed, the best model was prompted
in Levantine Arabizi, while the strongest transfer
learning occurred with Algerian Arabizi. Algerian
and Tunisian dialects exhibit strong mutual trans-
ferability. In TwiFil, the best-performing Algerian
model showed optimal transfer when prompted in
Tunisian Arabic, and vice versa.

Fine-tuning transfer results. Models fine-
tuned on a specific dialect exhibit varying lev-
els of robustness when tested on different dialects
(see yellow cells in Tables 9 and 10 in Appendix
D.2). In particular, models initially trained on
larger data from MSA and Levantine/Gulf exhibit
greater adaptability when fine-tuned on other re-
gionally specific dialects (e.g., Tunisian, Algerian
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Arabizi), see for e.g., the Sem17 (Tnar) model that
achieved the highest performance in SA, followed
by the Twifil-sent (Dzabz) model —both built on
AceGPT8b.

A similar trend is observed in ED, demonstrating
superior generalization, therefore maintaining a
competitive score comparable to the best in-dataset
fine-tuning.

4 Discussions

Comparison with state of the art. We acknowl-
edge that while dialectal prompting improves per-
formance over MSA prompting, the magnitude of
these improvements varies across dialects. Overall,
the improvements range from 1% (Twifil-sentDz)
to 7% (IDATMSA+Mixed) as shown in the first
line of Table 1. Our results beat SOTA models
for Sem17MSA+Mixed, Twifil-sentDz , OCAMSA,
TSACTn and IDATMSA+Mixed.

For the other datasets, it is important to men-
tion that direct comparison with reported results
is unfair as we are using different experimental
settings due to differences in the main task (e.g.,
Sem18 emotion shared task is a multi-label classifi-
cation and not a multiclass classification), num-
ber of classes (e.g., the latest reported results
(Moudjari et al., 2021) on Twifil-emoDz (resp.
Sem18MSA+Mixed) multiclass task use a set of 6
emotion classes and not the whole set composed of
10 (resp. 11) classes as we do here), or evaluation
setting (e.g., in the Flood corpus, the train/test split
is done by crisis events vs. random in our case). To
allow a better comparison, we therefore designed
similar baseline transformer models that we fine-
tuned on each dataset following the same train/test
split ratio across datasets.

Additionally, we conducted statistical signif-
icance testing to assess the impact of dialectal
prompting compared to MSA prompting. Results
reveal that dialect-specific prompting significantly
outperforms MSA prompting (at p < 0.05) on
six out of eight datasets, providing strong empiri-
cal support for incorporating dialectal variation in
prompt design.

Mixed dialectal data. Our findings reinforce the
advantage of using dialectal Arabic for prompt-
ing, especially when fine-tuned to align with the
dataset’s dominant script. We have however to
consider cases where datasets are composed of
mixed dialectal data. In this case, selecting a single
dominant dialect for prompting can be challenging.

However, most dialects share a substantial overlap
with MSA, which serves as a linguistic backbone
for many Arabic dialects.

Maghrebi dialects. They are among the least
represented, as they incorporate more Amazigh
and French words. Despite this, they are quite
similar which benefits fine-tuning. For example,
in TSACTn, using Algerian prompts yielded the
best results. Similarly, in Sem17MSA+Mixed, MSA
performed best before fine-tuning, but post-fine-
tuning, Tunisian showed greater consistency, fol-
lowed by Algerian, especially using AceGPT. This
suggests that fine-tuning amplifies dialect-specific
nuances, enabling the model to better adapt to
unique characteristics of dialectal data. Notably,
Maghrebi data within the dataset, which might
have been misclassified when using MSA. This
is illustrated in the following example from Twifil-
emoDz:
Cg. @ Q�
 	« Cg. A« PA 	� Q�
 	« Aª 	̄ A 	K A�JJ
 	ªÓ A�JJ
 	« A 	JJ
 �®�



@ ÑêÊË @ Q�
	mÌ'@ I. J
m.�'
 ú
G. P

(May God bring goodness. O Allah, grant us
abundant, life-giving, beneficial, and non-harmful
rain—soon, not delayed.),
where the model prompted in ENG/MSA predicted
"Sadness", possibly influenced by the expressions
of supplication. However, the gold label is "Trust",
reflecting a hopeful, faith-driven tone common in
religious invocations. When prompted in dialect,
the model correctly predicted "Trust", indicating
that dialectal input facilitated better alignment with
the culturally embedded emotional cues of the text.

5 Conclusion

This study examined the ability of 12 open source
LLMs to handle Arabic dialects in both Arabic and
Arabizi scripts to improve subjective text classifica-
tion. We highlighted the impact of Arabic-centric
LLMs fine-tuning and prompt design on models
performances, showing that dialectal prompts gen-
erally outperformed MSA and English prompts af-
ter fine-tuning. Transfer learning, on the other hand,
demonstrated limited effectiveness. While models
pre-trained on MSA and Levantine/Gulf showed
some ability to adapt to other regionally specific
varieties (e.g, Maghrebi), their performances re-
mained significantly lower compared to in-dataset
configuration.

We believe our study will open the door to future
directions in prompting LLMs for low-resource
languages, beyond English or translated prompts.
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Limitations

This work advances the development of more in-
clusive NLP models by addressing the challenges
posed by under-represented Arabic dialects. We
however believe that its implications extend be-
yond a single language. Indeed, the challenges we
addressed (dialectal variation, script differences,
and cross-linguistic adaptability) are prevalent in
other morphologically rich and diglossic languages,
such as Hindi-Urdu. Future research will focus on
evaluating language-centric LLMs, expanding the
scope to include a broader range of dialects, beyond
Arabic. This will provide deeper insights into the
impact of script variations and code-switching on
LLM performance, further enhancing their adapt-
ability.

We utilized various open-source large language
models in our experiments. It is important to ac-
knowledge that these LLMs can exhibit biases
and may encounter issues concerning token limit.
Therefore, a critical approach should be adopted
when interpreting the experimental outcomes.

Given the very good scores achieved by OCA
and TSAC datasets, we conducted a contamination
check using the Contamination Database.3 Even
if we do not find any evidence of overlap with our
evaluation datasets, potential data contamination
remains and should be acknowledged. Indeed, lim-
ited transparency in pre-training datasets and the
lack of studies on Arabic dataset contamination
leave room for uncertainty which encourages fur-
ther research in Arabic datasets contamination.

A final limitation is related to the blurred dis-
tinction between MSA and dialects and across di-

3https://huggingface.co/spaces/CONDA-Workshop/
Data-Contamination-Database

alects, as MSA linguistic expressions often appear
in daily speech. Our study relied on publicly avail-
able datasets that do not explicitly separate MSA,
dialects, or non-Arabic samples, which may have
caused some misrepresentations. Moreover, the
ALDi metric proved unreliable for highly dialectal
texts. Developing better metrics for Arabic dialects
identification is a timely direction to explore in the
future.

Ethics Statement

The data used for conducting the experiments are
composed of texts taken from datasets publicly
available to the research community.

Very few instances from the datasets we consider
(in particular those for emotion and irony detec-
tion) may contain offensive or abusive language. In
these cases (less than 0.5%), and to comply with
the policies, LLMs generally refrain from gener-
ating any response prioritizing safe and respectful
interactions, therefore the neutral class is assigned
by default.
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A Subjective Datasets

A.1 Detailed Description

We detail below the datasets used in this study.
OCAMSA (Rushdi-Saleh et al., 2011): An MSA

movie reviews dataset containing 500 reviews split
into 250 positive and 250 negative instances col-
lected from different Arabic web pages and blogs
and automatically annotated using author’s rating.

Sem17MSA+Mixed (Rosenthal et al., 2017): The
dataset was used in the SemEval2017 Task 4, sub-
task A on identifying the overall sentiment of a
tweet. The corpus is split into train and test sets
containing respectively 3, 355 and 6, 100 tweets.
The corpus does not target a given dialect.

Twifil-sentDz and Twifil-emoDz(Moudjari et al.,
2020): This is the largest Algerian dataset of about
11,000 tweets where each tweet has been manually
annotated by crowd-sourcing for sentiment analy-
sis (Twifil-sentDz) (positive, negative and neutral
using a majority vote), as well as emotion (Twifil-
emoDz) relying on a taxonomy of 10 emotions
(Happiness, Anger, Disgust, Fear, Sadness, Sur-
prise, Trust, Love, Anticipation, and Neutral).

TSACTn (Medhaffar et al., 2017): A Tunisian
Sentiment Analysis Corpus of about 17k Facebook
comments manually annotated into 8, 215 positive
and 8, 845 negative.

Sem18MSA+Mixed (Mohammad et al., 2018):
The SemEval-2018 Task 1 Affect in Tweets about
predicting emotion intensity. We make use of the
Emotion Classification (E-C) task dataset4 which
contains tweets collected in 2017 and manually
annotated into 11 emotions categories (Anger, An-
ticipation, Disgust, Fear, Joy, Love, Optimism, Pes-
simism, Sadness, Surprise, and Trust).

IDATMSA+Mixed (Ghanem et al., 2019): It con-
tains tweets about different political issues and
events related to the Middle East that was held
during the years 2011 to 2018. Tweets are written
with formal Arabic (MSA) and different Arabic
language varieties: Egypt, Gulf, Levantine, and
Maghrebi dialects. Each tweet has been manually
annotated into Ironic or Not-Ironic.

FloodLv+Gl (Alharbi and Lee, 2019), an Arabic-
Twitter-Corpus-for-Flood-Detection The corpus in-
cludes 4,037 human-labeled Arabic Twitter mes-
sages for four high-risk flood events that occurred
in 2018: Jordan floods, Kuwait floods, Qurayyat
floods and Al-Lith floods. The selected events took
place in different areas of the Arab world: Jordan,
Kuwait, northern Saudi Arabia and western Saudi
Arabia, respectively. The tweets were labeled based
on relatedness to the crisis and information type
(Other useful information, Affected individuals,
Caution and advice, Donations and volunteering,
Infrastructure and utilities damage, Not applicable,
Sympathy and emotional support).

A.2 Dataset Statistics
Table 3 shows statistics about the datasets we con-
sider here. Classification tasks are either binary
or multiclass with a maximum of 11 classes for
emotion detection. Four datasets target only di-
alects: Twifil-sentDz , TSACTn, Twifil-emoDz , and
FloodLv+Gl, while three are a mix between various
dialects and MSA. We also consider one dataset in
MSA only: OCAMSA.

Figure 1 further analyzes the characteristics of
our datasets in terms of the used script: Arabic,
or Latin/Arabizi and mixed context in the training
sets. We observe the presence of Latin and mixed
script in all datasets, FloodLv+Gl having the highest
number of instances in Arabic script.

4https://huggingface.co/datasets/
SemEvalWorkshop/sem_eval_2018_task_1
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Dataset Sem17MSA+Mixed Twifil-sentDz OCAMSA TSACTn Sem18MSA+Mixed Twifil-emoDz IDATMSA+Mixed FloodLv+Gl

Train 21.20 19.28 32.40 27.67 51.24 19.15 38.17 16.66
Test 18.32 20.40 54.40 29.03 52.87 19.81 37.04 16.59

Table 2: ALDi scores in our datasets.

Task Dataset Source Classes Train Test

SA

OCAMSA IMDB 2 (positive, negative) 400 100
Sem17MSA+Mixed tweets 3 (positive, negative, neutral) 3,355 6,100
Twifil-sentDz tweets 3 (positive, negative, neutral) 7,144 2,069
TSACTn facebook 2 (positive, negative) 13,665 1,981

ER
Sem18MSA+Mixed tweets

11(pessimism, fear, optimism, trust, anticipation,
joy, anger, sadness, disgust, love, surprise)

4,034 1,009

Twifil-emoDz tweets
10 (happiness, anger, disgust, fear, sadness, Surprise,
Trust, Love, Anticipation, and Neutral)

3,885 1,148

ID IDATMSA+Mixed tweets 2 (ironic, non-ironic) 4,024 1,006

CM FloodLv+Gl tweets

7 (Affected individuals, Caution and advice, Donations
and volunteering, Infrastructure and utilities
damage, Not applicable, Other useful information,
Sympathy and emotional support)

3,223 806

Table 3: Datasets used in this study.

We also analyzed datasets in term of di-
alect/MSA distribution. Table 2 presents the av-
erage ALDi score for each train and test set. Man-
ual inspection revealed inconsistencies, particu-
larly with non-Arabic scripts (e.g., Arabizi), where
ALDi fails to reflect dialectal content accurately.
For instance:

• MSA example written in arabizi: "hatha al-
makan jamil jidan" (This place is very beauti-
ful) → ALDi=0.116.

• Tunsian example in Arabizi: "chbih yet-
haz wyet7at akeka 5o zina esghir hhhhhhh
mas5fo" (What’s with Zina’s little brother
acting all hyped up? Hahaha, poor thing.")
→ ALDi=0.0522, which incorrectly suggests
MSA.

These inconsistencies indicate that ALDi scores
have to be improved: If MSA was very high in
the datasets, then MSA prompts should have given
the best results, which is not the case. However,
the ALDi scores reinforce our hypothesis that fine-
tuning elevates the model’s ability to better adapt
to the unique characteristics of dialectal data.

A.3 Train/Test Split
We used the canonical train/test splits provided
by the original papers for most datasets to ensure
consistency with prior research (see Table 3). To
preserve split integrity, no additional shuffling or
resampling was performed. For datasets without

predefined splits (OCA and Flood), we applied
train/test split with stratification and a fixed seed
(125) to ensure balanced classes and reproducibil-
ity.

B Models

B.1 Models Description

We make use of the following open source models:

– AraBERTv2 (Antoun et al., 2020): is a fam-
ily of pre-trained transformer-based language mod-
els specifically designed for Arabic text based on
BERT architecture and is optimized for various
Arabic language processing tasks, such as text clas-
sification, named entity recognition, and sentiment
analysis. We tested different version, and we re-
port the best results with bert-base-arabert-v02 and
bert-base-arabert-v02-twitter(fine-tuned on 60M
Arabic tweets).

– CAMeLBERT (Inoue et al., 2021).
Another collection of pre-trained BERT-
based models tailored for Arabic NLP tasks.
The results reported here are based on
bert-base-arabic-camelbert-mix, which
was pre-trained on a diverse corpus comprising
Modern Standard Arabic (MSA), dialectal Arabic,
and Classical Arabic.

– DarijaBERT (Gaanoun et al., 2024) is a
BERT-based model designed for the Moroccan Ara-
bic dialect, “Darija.” It follows the BERT-base ar-
chitecture without the Next Sentence Prediction
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Figure 1: Distribution of Latin and Arabic scripts across datasets.

(NSP) objective. This Arabizi-specific version of
DarijaBERT was trained on 4.6 million sequences
of Darija written in Latin letters, using a dataset
sourced from YouTube comments. Notably, the
Arabizi model outperformed the other two variants
from the same family.

– AceGPT (Huang et al., 2023b) is a collection
of Arabic-centric LLMs specifically designed to
advance Arabic language understanding and gen-
eration. The models are developed using three
key strategies: (1) localized pre-training on ex-
tensive Arabic corpora, (2) localized fine-tuning
with Arabic-specific questions paired with GPT-4-
generated Arabic responses, and (3) reinforcement
learning with AI feedback (RLAIF) to enhance per-
formance. In this work, we utilize AceGPT8b and
AceGPT-chat8b, which are Arabic-focused LLMs
built upon the LLaMA-3 architecture. These mod-
els are optimized to handle both MSA and Arabic
dialects, making them well-suited for various Ara-
bic natural language processing tasks, such as text
classification, generation, and understanding.

– Jais-Family (Sengupta et al., 2023). It consists
of a series of bilingual English-Arabic LLMs devel-
oped to excel in Arabic while maintaining strong
English capabilities. These models are designed
to handle various tasks, including text generation,
comprehension, and summarization.

– LLaMA38b and LLaMA3-Instruct8b (Tou-
vron et al., 2023; AI@Meta, 2024) are part of the
Meta LLaMA 3 family, a collection of pretrained
and instruction-tuned generative LLMs. Pretrained
on over 15 trillion tokens from publicly available
sources. Instruction-tuned versions are optimized
for dialogue tasks.

– Mistral7b and Mistral-Instruct7b (Jiang et al.,
2023). Mistral7b is a 7-billion parameter dense
transformer trained on a diverse corpus. Instruction-
tuned variants of Mistral7b are further optimized
for chat-based and instruction-following tasks.

– SOLAR-inst10.7b (Kim et al., 2023) The
model was trained on publicly available datasets.
It is instruction-tuned using supervised fine-tuning
on a mixture of task-oriented prompts to perform
instruction-following tasks such as question an-
swering and dialogue.

– EmoLlama7b, EmoLlama-Instruct7b and
EmoLlama-chat7b are part of the EmoLLMs
project (Liu et al., 2024), a collection of models de-
signed for comprehensive affective analysis. This
project focuses on the emotional understanding of
text, offering models that can classify sentiments,
detect emotional intensity, and predict sentiment
strength. These variants are fine-tuned on the Meta
LLaMA2 models with 234K data based on various
classification and regression tasks.

B.2 Hyper-parameters

All transformer models have been trained using
the Adam optimizer with an epsilon value of 1e−8,
a fixed batch size of 16 for training and 128 for val-
idation, a learning rate of 2e− 5, and a sequence
length of 128 tokens. This configuration is de-
signed to balance efficient optimization with stable
performance across various tasks, as the Adam op-
timizer’s epsilon parameter helps maintain stability
by preventing division by very small numbers in
the moment estimates.

The number of epochs varies across differ-
ent datasets (see Table 4): for AraBERTv2,
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OCAMSA and Sem18MSA+Mixed, the models
were trained for 7 epochs, while IDATMSA+Mixed,
Sem17MSA+Mixed, and Twifil-sentDz were trained
for 5 epochs each and TSACTn for 6. For CAMeL-
BERT, FloodLv+Gl was trained for 4 epochs, and
Twifil-emoDz for 7 epochs. This configuration en-
sures stable performance and efficient optimization
across a wide range of tasks.

LLMs non fine-tuned hyper-parameters are
shown in Table 5. To reduce the verbosity and
keep the models focused on our scheme, we set
the temperature to 0 to encourage deterministic re-
sponses. However, for the Llama models, which
do not accept a temperature of 0, we adjusted it to
0.001.

For fine-tuning, we applied Quantized Low-
Rank Adaptation (QLoRA) (Dettmers et al., 2024)
to each of the previously mentioned open-source
models (the hyper-parameters are summarized in
Table 6). The choice of QLoRA is primarily due
to its efficiency in fine-tuning large models on
resource-constrained hardware while maintaining
strong performance (we used a single GPU with
80GB of VRAM).

Each model was fine-tuned on the full training
set of each dataset, and performance was assessed
on a development set. The results are reported on
the test set.

C Prompts

Figure 2 presents the prompting formats employed
throughout our experiments, illustrating variations
across English, MSA, and several Arabic dialects in
both Arabic script and Arabizi. The first frame out-
lines the general prompt template structure applied
consistently across instruction-tuning, inference,
and evaluation stages.

We adopt a one-class-shot In-Context Learning
prompting to control hallucination, using a concise
prompting template with a single example of a sin-
gle class and a 0 temperature, as extended prompts
did not yield better results which was pointed out
in other studies (Abdelaziz et al., 2024). This
approach provided competitive performance on par
with transformers across various tasks and datasets.

We provide the best performing prompts, namely
fine-tuned one-class-shot ICL. We only illustrate
them for sentiment analysis per language/dialect
as they are the same for the emotion and irony de-
tection, the only difference being the role and task

Figure 2: Prompt Design Across Dialects.
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Dataset Sem17MSA+Mixed Twifil-sentDz OCAMSA TSACTn Sem18MSA+Mixed Twifil-emoDz IDATMSA+Mixed FloodLv+Gl

Epoch 5 5 7 6 7 7 5 4

Table 4: Epoch number for each dataset.

Parameter Value
num_return_sequences 1

top_p 1
max_new_tokens 10

temperature 0
do_sample False

Table 5: Parameters used for testing LLM models.

Parameter Value
per_device_train_batch_size 8
per_device_eval_batch_size 8
optimizer paged_adamw_32bit
learning rate 2e-4
logging_steps 1
gradient_accumulation_steps 1
epochs 1
fp16 True
Lora attention dimension (rank) 64
lora_alpha 16
lora_dropout 0.1
load_in_4bit True
bnb_4bit_quant_type nf4
torch_dtype bfloat16

Table 6: Parameters used for fine-tunning the models
with QLoRA.

description. For crisis management, we addition-
ally enhance the prompts with the definition of each
label.

D Detailed Results

D.1 Results per LLM and Tasks
Table 11 details all our results per LLMs for each
dataset, langue/dialect and its associated scripts. A
more synthetic view of the results is given in Table
7 and its corresponding plot in Figure 3 to visu-
ally compare performance drops before and after
fine-tuning, across different models and datasets.
Table 8 on the other hand gives a comparison of
the best fine-tuned model across all datasets before
and after removing MSA samples following their
ALDi scores.

It is interesting to note that fine-tuned LLMs out-
perform transformers in all tasks, except crisis man-
agement and emotion detection in Twifil-emoDz

with a small decrease of around 3%. For 6 datasets
out of 8, the best performance was obtained with

AraBERTv2, CAMeLBERT being more produc-
tive for FloodLv+Gl, and Twifil-emoDz datasets.
DarijaBert was far behind the first two models.
For example, for Twifil-emoDz F1-score=13.74
(vs. 38.06) and Twifil-sentDz F1-score=65.87 (vs.
74.46).

The results of OCAMSA and TSACTn are quite
intriguing. We believe this can be attributed to the
fact that both datasets (IMDB movie reviews and
Facebook comments respectively) contain longer
texts compared to the others, which are primarily
sourced from Twitter. The increased text length
likely provided the models with more context to
infer the class. Additionally, both datasets focus
on binary classification, which may have further
simplified the task by reducing the complexity of
decision boundaries.

Another interesting trend is observed: datasets
composed primarily of texts written in Arabic script
tend to achieve the best results when prompted
in Arabizi (e.g., TSACTn, Twifil-emoDz). We
hypothesize that this may be due to the fact that
LLMs are predominantly trained on English data,
and multilingual prompting helps bridge the gap
and enhance performance (Huang et al., 2023a).
This hypothesis is further supported by the obser-
vation that Lvabz contains English words, whereas
DZabz incorporates French, highlighting the impact
of linguistic overlap in model adaptation.

Finally, small instruction and chat-tuned LLMs
fine-tuned on specific tasks can outperform larger
models, confirming recent findings (Zhang et al.,
2023; Lu et al., 2024). This challenges the assump-
tion that performance scales smoothly with model
size, as earlier studies suggested (Black et al., 2022;
Wei et al., 2022).

D.2 Transfer Learning Results

Tables 9 and 10 present the best results
for both Cross-dataset transfer learning and
Fine-tuning transfer, with the latter high-
lighted in yellow.

We observe that when a dataset performs best
with a specific script, transfer learning from a
model fine-tuned with a different script tends to
yield lower results. For example, Twifil-sentDz

achieves its highest performance with AceGPT8b
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Sem17MSA+Mixed Twifil-sentDz OCAMSA TSACTn Sem18MSA+Mixed Twifil-emoDz IDATMSA+Mixed FloodLv+Gl

Fine-tuned ? ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓
Emollama7b Eng Eng Eng Eng Lvar Dzabz MSA MSA Eng MSA Eng Lvabz Lvabz Eng Lvabz Tnar
Emollama-chat7b Eng Dzabz Dzabz Tnar Dzabz Dzabz Lvabz MSA Eng MSA Eng Lvabz Eng Dzabz Lvabz Eng
Emollama-chat13b Eng Eng Eng Lvabz Dzabz Tnar Dzabz Lvar MSA Dzabz Eng Lvabz Dzabz Lvar Lvabz MSA∗

Llama38b Eng Eng Eng Tnar Lvabz MSA Eng Dzabz Lvabz Lvabz Eng MSA Lvar MSA Lvabz Eng
Llama3-inst8b MSA Lvabz Lvar∗ Lvar MSA∗ MSA∗ Dzabz Eng Eng∗ MSA Eng∗ Lvabz∗ Lvabz Lvar Lvabz MSA
Mistral7B Eng Dzabz Dzabz Lvar Lvar MSA Lvar Dzabz MSA Dzabz Eng Lvabz Dzabz Tnar Lvabz Lvar
Mistral-Inst7b Dzabz Dzabz Dzabz Eng Dzabz MSA Dzabz∗ Tnar Dzabz Eng Eng Dzabz Eng Eng Eng∗ Lvabz
SOLAR-inst10.7b Eng Lvabz Eng Lvar Tnar Dzabz Dzabz MSA Eng Lvabz Eng Dzabz Eng∗ Tnar Eng Lvar
AceGPT8b Eng Tnar∗ Lvar Eng∗ Lvar MSA∗ Eng Tnar Lvar Lvabz∗ Eng Eng Lvar Lvar∗ Eng Dzabz
AceGPT-chat8b MSA∗ Tnar Dzabz Dzabz Dzabz MSA∗ Eng Dzabz∗ Eng Tnar MSA MSA Eng Dzabz MSA MSA
Jais-family1p3b Eng MSA Eng Lvabz∗ MSA Lvabz∗ Lvabz∗ Lvabz∗ MSA Lvabz∗ MSA MSA Lvar Tnar MSA Eng

Table 7: Results per models showing outperforming language/script before and after fine-tuning in different colors:
Grey for English, pink for MSA, green for Algerian Arabizi, orange for Tunisian Arabic, light and dark blue for
Levantine Arabic and Arabizi respectively. Each entry represents the best performance across different prompting
methods for each model. Stars in the cells indicate best configuration per dataset.

TASK SA ER ID CM
Models/Datasets Sem17MSA+Mixed Twifil-sentDz OCAMSA TSACTn Sem18MSA+Mixed Twifil-emoDz IDATMSA+Mixed FloodLv+Gl

Best macro-F1 scores (all instances) 85.23 89.59 99.98 99.34 32.41 35.81 94.89 67.57
% of instances with ALDi>0 37.01 8.22 47.00 1.72 4.26 9.41 19.78 18.61

Best macro-F1 scores on instances with ALDi>0 84.49 89.79 100.00 99.33 31.21 35.17 93.28 64.35
% of instances with ALDi>0.1 67.24 76.62 91 99.36 31.71 42.42 43.54 65.14

Best macro-F1 scores on instances with ALDi>0.1 80.68 89.17 100.00 36.4 23.59 32.31 90.74 44.83

Table 8: Comparison of the best fine-tuned model across all datasets before and after removing MSA samples
following their ALDi scores set to two thresholds: ALDi > 0 and ALDi > 0.1 indicating that a sample is expected
to be in dialect.

Figure 3: Performance comparison of LLMs across datasets: Baseline vs. Pre- and Post-Fine-Tuning.
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Dataset Best in-dataset FT Best dialect transfer
Sem17 Twifil-Sent TSAC

Sem17MSA+Mixed 85.23 (Tnar) 43.58 (Lvar) 18.61 (MSA) 18.61 (Lvar)
Twifil-SentDz 87.13 (Dzabz) 35.13 (Lvar) 28.62 (Lvar) 17.82

TSACTn 99.34 (Dzabz) 54.48 (Dzabz) 55.61 (Dzabz) 45.93 (MSA)

Table 9: Sentiment Analysis transfer learning re-
sults. Cross-dataset: Best transfer learning vs. in-
dataset performances in terms of macro F1-scores.
Fine-tuning transfer: highlighted in yellow.

Dataset Best in-dataset FT Best dialect transfer
Sem18 Twifil-emo

Sem18MSA+Mixed 32.41 (Lvabz) 22.01 (Dzabz) 6.56 (Tnar)
Twifil-emoDz 35.81 (Lvabz) 35.13 (Lvar) 9.78 (Dzabz)

Table 10: Emotion detection transfer learning re-
sults. Cross-dataset: Best transfer learning vs. in-
dataset performances in terms of macro F1-scores.
Fine-tuning transfer: highlighted in yellow.

using Dzabz. However, in Cross-dataset trans-
fer, the best results come from TSACTn’s top-
performing model, AceGPT-chat8b with DZabz ,
showing a significant 37% performance gap
compared to Sem17MSA+Mixed’s best model,
AceGPT8b with Tnar.

Additionally, when these models encounter con-
fusion, they tend to default to the base model lan-
guage, typically MSA or Lvabz, as observed in
cases such as Sem17MSA+Mixed.

A similar trend is observed in ED, where models
fine-tuned on datasets with a predominant script
struggle to generalize effectively when transferred
to datasets using a different script.
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Dataset Sem17MSA+Mixed Twifil-sentDz OCAMSA TSACTn Sem18MSA+Mixed Twifil-emoDz IDATMSA+Mixed FloodLv+Gl

Best Transformer/Baseline 71.22 74.46 91.00 93.90 24.23 38.06 83.75 70.87
Best open source LLM NFT 42.18 75.92 90.99 88.59 24.77 27.44 58.45 38.05
Best open source LLM NFT Lang Eng Lvar MSA Eng Eng Eng Eng Eng

Eng 43.09 79.22 76.72 62.51 20.30 21.02 78.20 60.81
MSA 40.72 76.62 69.07 94.92 26.75 17.50 75.36 62.51
Dzabz 43.01 76.75 81.97 94.35 18.27 20.02 75.68 61.82
Tnar 40.53 76.11 64.91 94.72 17.43 17.85 76.71 62.96
Lvabz 40.30 77.00 33.04 62.75 17.68 23.99 74.66 61.83

Emollama7b

Lvar 36.16 74.44 53.85 94.27 20.00 18.55 76.19 60.19
Eng 43.80 76.45 81.93 94.39 17.63 18.06 76.67 62.68
MSA 42.40 78.00 83.84 94.88 20.98 20.52 75.46 58.06
Dzabz 44.31 77.81 85.99 94.88 18.22 22.01 78.42 61.84
Tnar 43.05 78.77 79.87 93.70 17.77 18.34 76.64 61.92
Lvabz 43.83 75.54 67.36 93.78 16.21 24.32 75.15 61.46

Emollama-chat7b

Lvar 44.10 76.45 32.52 94.19 19.44 19.44 75.79 58.61
Eng 44.18 77.06 66.37 94.06 18.81 20.56 76.18 67.04
MSA 43.12 75.63 83.00 94.47 20.47 23.60 77.06 67.57
Dzabz 43.36 78.66 84.96 95.08 21.07 25.52 78.27 62.85
Tnar 43.91 79.65 87.00 94.51 18.29 23.19 77.86 64.19
Lvabz 43.59 79.86 54.43 63.13 19.08 28.21 76.66 62.30

Emollama-chat13b

Lvar 43.91 77.75 73.48 95.41 16.35 27.05 79.22 64.00
Eng 43.50 74.79 97.00 94.43 16.87 27.78 35.75 62.10
MSA 34.98 78.82 98.00 92.76 14.75 33.38 80.29 58.14
Dzabz 40.58 79.24 98.00 94.47 14.02 27.85 78.81 43.62
Tnar 43.39 79.80 34.21 93.09 17.07 31.79 75.54 61.32
Lvabz 42.96 77.84 68.75 93.00 17.98 32.60 78.76 62.02

Llama38b

Lvar 43.34 79.55 88.95 93.46 16.01 28.51 79.74 61.35
Eng 34.93 76.84 66.08 94.92 15.74 25.72 78.67 54.48
MSA 43.30 65.89 99.98 92.15 18.53 30.29 70.82 66.91
Dzabz 43.42 68.30 99.00 91.60 11.98 24.23 79.07 61.69
Tnar 43.70 60.08 99.00 93.86 17.77 23.92 78.72 16.52
Lvabz 44.22 73.94 91.99 94.06 16.11 35.81 77.17 65.96

Llama3-inst8b

Lvar 42.31 81.00 99.98 94.51 16.80 22.27 80.35 58.91
Eng 33.21 53.81 87.68 89.80 16.18 24.02 77.97 56.76
MSA 33.12 69.15 94.00 61.73 16.39 21.54 77.34 58.24
Dzabz 38.84 75.22 85.53 93.13 19.60 23.53 75.57 54.84
Tnar 35.61 73.66 34.21 22.82 15.32 19.88 77.71 63.13
Lvabz 30.80 67.36 98.00 12.28 17.64 27.73 76.44 62.64

Mistral7b

Lvar 36.83 76.03 93.94 91.02 18.24 14.43 76.01 66.57
Eng 21.76 76.30 82.22 90.63 18.71 19.10 78.22 56.06
MSA 30.47 59.86 95.43 89.80 17.50 22.90 76.27 34.24
Dzabz 35.54 75.17 84.44 91.74 17.11 26.73 77.16 60.19
Tnar 32.44 65.19 78.38 93.33 13.29 17.27 75.99 61.31
Lvabz 30.77 76.29 66.08 92.72 18.15 25.16 77.48 61.50

Mistral-inst7b

Lvar 33.58 73.72 86.61 91.49 15.89 14.70 76.47 39.33
Eng 38.94 75.74 83.77 89.95 18.50 25.81 78.42 60.82
MSA 33.95 73.97 92.98 93.45 18.03 22.42 78.44 65.69
Dzabz 37.90 78.94 97.00 91.34 17.68 27.76 78.40 66.56
Tnar 34.00 75.99 82.61 91.69 17.96 23.17 78.92 63.99
Lvabz 40.61 76.18 82.49 90.76 20.16 27.64 77.90 60.36

SOLAR-inst10.7b

Lvar 33.68 79.00 86.84 90.59 16.75 24.13 75.41 67.06
Eng 80.36 89.59 98.00 97.98 30.66 6.37 82.22 7.27
MSA 81.39 86.77 99.98 98.89 30.20 6.26 87.34 3.43
Dzabz 79.23 85.88 97.00 98.03 29.54 6.26 77.52 7.27
Tnar 85.23 85.23 99.98 99.29 30.02 6.26 77.30 3.43
Lvabz 78.36 78.50 34.21 96.21 32.41 3.59 83.66 3.43

AceGPT8b

Lvar 80.53 84.29 99.98 98.59 31.77 6.26 94.89 3.43
Eng 79.48 84.24 98.00 97.98 30.24 6.26 84.54 7.27
MSA 79.53 81.34 99.98 98.79 26.68 6.29 84.43 32.37
Dzabz 82.07 87.13 94.00 99.34 27.40 6.26 85.08 7.27
Tnar 82.48 80.50 99.98 97.78 31.87 6.26 81.09 14.36
Lvabz 81.99 78.59 88.75 94.59 19.79 3.59 81.77 3.43

AceGPT-chat8b

Lvar 79.17 85.46 99.98 98.18 27.97 6.26 82.11 3.43
Eng 13.26 20.52 32.43 43.19 1.56 6.26 34.21 7.27
MSA 18.61 14.00 32.43 33.43 1.56 6.26 34.21 3.43
Dzabz 13.26 14.00 32.43 33.43 1.56 6.26 34.21 7.27
Tnar 18.61 14.00 32.43 33.43 1.56 6.26 52.61 3.43
Lvabz 18.61 32.20 52.49 43.19 1.56 3.63 34.21 3.43

Jais-family1p3b

Lvar 18.61 14.00 32.43 33.43 1.56 6.26 34.21 3.43

Table 11: Comparative performance of models across tasks, datasets, and dialects: Best performances are highlighted
in green, worst in red, and each model’s top scores are in bold. The first section of the table presents the best results
for baseline and non-fine-tuned (NFT) models. The second and detailed section is dedicated to fine-tuned results.
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