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Abstract

Recent advances in mechanistic interpretabil-
ity have highlighted the potential of automat-
ing interpretability pipelines in analyzing the
latent representations within LLMs. While
this may enhance our understanding of in-
ternal mechanisms, the field lacks standard-
ized evaluation methods for assessing the va-
lidity of discovered features. We attempt to
bridge this gap by introducing ¥ FADE: Fea-
ture Alignment to Description Evaluation,
a scalable model-agnostic framework for au-
tomatically evaluating feature-to-description
alignment. FADE evaluates alignment across
four key metrics — Clarity, Responsiveness,
Purity, and Faithfulness — and systematically
quantifies the causes of the misalignment be-
tween features and their descriptions. We apply
7 FADE to analyze existing open-source fea-
ture descriptions and assess key components
of automated interpretability pipelines, aiming
to enhance the quality of descriptions. Our
findings highlight fundamental challenges in
generating feature descriptions, particularly for
SAEs compared to MLP neurons, providing
insights into the limitations and future direc-
tions of automated interpretability. We re-
lease ¥ FADE as an open-source package at:
https://github.com/brunibrun/FADE.

1 Introduction

Understanding the latent features of machine
learning models and aligning their descriptions
with human-comprehensible concepts remains a
crucial challenge in Al interpretability research.
Recent advances have made significant strides
in this direction, by introducing automated
interpretability methods (Bills et al., 2023; Bykov
et al., 2024; Choi et al., 2024) that leverage larger
language-capable models to describe the latent
representations of smaller models (Bykov et al.,
2023; Templeton et al., 2024; Dreyer et al., 2025).

“These authors contributed equally.

This facilitates inspection of ML models, enabling
a deeper understanding of models’ behavior
which enhances our ability to identify or mitigate
harmful responses and biases (Lee et al., 2024;
Gandikota et al., 2024). A key insight from these
investigations is the highly polysemantic nature
of individual neurons — they rarely correspond to
single, clear concepts. This discovery has led to the
development and adoption of sparse autoencoders
(SAEs) (McGrath et al., 2024; Bricken et al.,
2023; Rajamanoharan et al., 2024), which are
intended to decompose polysemantic representa-
tions by separating neuron activations into more
interpretable components. While SAEs offer a
promising approach for feature decomposition,
their reliability remains an open question. Recent
research reveals significant variability in the way
SAEs capture the underlying learned features
(Heap et al., 2025; Paulo and Belrose, 2025), thus
highlighting the need for a holistic framework for
the evaluation of feature-to-description alignment.
To the best of our knowledge, there is an absence of
widely accepted quantitative metrics for evaluating
the quality and effectiveness of open-vocabulary
feature descriptions. Different methodologies
rely on custom evaluation criteria which makes it
challenging to conduct meaningful, generalizable
comparisons across techniques. Additionally, exist-
ing evaluation approaches typically optimize for a
single metric (Bills et al., 2023; Choi et al., 2024)
which may not capture the full complexity of a
feature’s behavior and leaves open questions about
whether the model truly encodes the hypothesized
concept rather than simply correlating with the
measured feature. With our work, we contribute as
follows:

[1] We present a robust automated evaluation
framework designed for broad applicability
across model architectures and their SAE
implementations. ¥ FADE combines four metrics
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Figure 1: Visualization of the ¥ FADE pipeline for three features and their corresponding feature descriptions.

that allow quantitative analysis of different aspects
of alignment between features and their generated
descriptions.!

[2] Through systematic empirical analysis, we
provide insights into how various components
of the autointerpretability pipeline — such as the
number of layers, sample sizes, and architectural
choices — affect the quality of feature descriptions.

[3] We release a set of feature descriptions, pre-
sented as part of this work for Gemma-2-2b and
Gemma Scope SAEs along with their evaluations.

2 Related Work

Evaluating the alignment between features and
their descriptions has become increasingly impor-
tant with the rise of automated interpretability ap-
proaches. While manually inspecting highly ac-
tivating examples remains a common method to
validate interpretations and demonstrate automated
interpretability techniques (Bills et al., 2023; Tem-
pleton et al., 2024), more scalable tools are needed
for thorough quantitative evaluation. Many auto-
mated or semi-automated approaches have been
proposed, generally falling into activation-centric
and output-centric methods.

Activation-centric methods focus on measuring
how well a feature’s activations correspond to its
assigned description. One prominent approach is a
simulation-based scoring, where an LLM predicts
feature activations based on the description and
input data, and the correlation between predicted

'We release # FADE as an open-source Python package
available at https://github.com/brunibrun/FADE, and in-
clude example notebooks as well as some of the feature evalu-
ations presented in this work.

and real activations of a feature is measured (Bills
et al., 2023; Bricken et al., 2023; Choi et al., 2024).
While elegant, this approach can be computation-
ally expensive and tends to favor broad, high-level
explanations. A related and conceptually more
straightforward way to measure how well the de-
scription explains a feature’s behavior is to try to di-
rectly generate synthetic samples using the descrip-
tion and compare the resulting activations between
concept and non-concept samples (Huang et al.,
2023; Kopf et al., 2024; Gur-Arieh et al., 2025;
Shaham et al., 2025). However, generated datasets
are typically small (on the order of 5-20 samples
(Huang et al., 2023; Gur-Arieh et al., 2025)) and
often constrained to rigid syntactic structures or
focus only on the occurrence of particular tokens,
making them less effective for evaluating abstract
or open-ended language concepts (Huang et al.,
2023; Foote et al., 2023). Another strategy is rating
individual samples from a natural dataset for how
strongly they express a concept and compare those
ratings to the feature’s activations (Huang et al.,
2023; Paulo et al., 2024; Templeton et al., 2024). A
common limitation of activation-centric methods
is that they primarily assume activations to be pos-
itively correlated with the concept, thus ignoring
negatively encoded features (Huang et al., 2023;
Kopf et al., 2024).

Output-centric methods instead assess how fea-
ture activations influence model behavior. Some
approaches measure the general decrease in perfor-
mance of the model after ablating the feature (Bills
et al., 2023; Makelov et al., 2024), while others use
steering-based interventions, where an increase in
generated outputs containing the concept is used as
a proxy for feature alignment (Paulo et al., 2024;
Gur-Arieh et al., 2025).
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There is a growing need for frameworks that in-
tegrate multiple perspectives to provide a compre-
hensive assessment of feature-to-description align-
ment across different interpretability methods. For
instance, prior work (Bills et al., 2023; Menon
et al., 2025; Gur-Arieh et al., 2025) has shown that
while activation-centric and output-centric mea-
sures often correlate, they do not necessarily im-
ply a causal relationship. Some studies focus ex-
clusively on SAEs (McGrath et al., 2024; Paulo
et al., 2024), while others analyze MLP neurons
(Bills et al., 2023; Choi et al., 2024). Develop-
ing an architecture-agnostic framework for feature-
description evaluation is essential for enabling ro-
bust quantitative comparisons across interpretabil-
ity approaches. Although efforts have been made
to integrate multiple evaluation perspectives (Paulo
et al., 2024; Gur-Arieh et al., 2025), these remain
fragmented and are often too narrowly scoped to
handle open-ended language descriptions.

Our work addresses these limitations by intro-
ducing a more comprehensive evaluation frame-
work that combines activation- and output-centric
metrics while explicitly considering interpretability
for open-ended language descriptions.

3 Evaluating Feature Explanations

Our primary objective is to establish a comprehen-
sive framework that automatically evaluates feature
descriptions across a variety of feature types with-
out human intervention. Our framework encom-
passes four distinct metrics: Clarity, Responsive-
ness, Purity, and Faithfulness, which we consider
necessary and sufficient for assessing the align-
ment between a feature and its description. In our
opinion, such a comprehensive evaluation frame-
work is necessary to ensure that features encode
the ascribed concept in a robust way. As feature
descriptions are often generated by optimizing for
a single metric, such as maximizing the activations
of specific neurons, they do not necessarily gen-
eralize well to other quantifiable aspects, such as
Faithfulness (Bills et al., 2023; Choi et al., 2024).
We base our approach on four key assumptions.
First, we adopt a () Binary Concept Expression
model, whereby a concept is either present in a
text sequence or absent. Second, we assume 2)
Concept Sparsity, i.e. that a given concept appears
only rarely in natural datasets, though a sufficiently
large dataset will contain some representative ex-
amples. Third, we assume Q) Feature Reactivity,

meaning, when a feature encodes a concept, its
activations are significantly stronger on samples
that express the concept. This will be valid espe-
cially for SAEs, since by construction, for most
samples, their activations are zero. This is a strong
assumption, as it also implies that a feature should
activate strongly only for a single concept. Note,
however, that this does not require strict monose-
manticity (Bricken et al., 2023). In our framework
a feature might encode multiple, even entirely unre-
lated topics, as long as its feature description fully
describes all of them. Unlike traditional monose-
manticity, which assumes features should directly
align with a single human-interpretable category,
our framework evaluates interpretability based on
whether the feature description accurately reflects
the feature’s truly encoded concept, rather than
enforcing human-aligned conceptual boundaries.
Assumption (D and Q) allow us to interpret the
activations of a feature as output of a “classifier”
of the encoded concept, which can then be easily
evaluated. For our metrics, we expect a feature
to encode the concept linearly in its activations.
Finally, we assume &) Causality — a feature is ex-
pected to causally influence the model’s output so
that modifying its activation will lead to predictable
changes in the generation of concept-related con-
tent. These four assumptions will not always hold
but are necessary simplifications for now.

3.1 Evaluation Framework Components

Our evaluation framework consists of three main
components: A subject LLM, that contains the fea-
tures we want to evaluate, a natural dataset, that
ideally should be close to the LLM training data
distribution and is sufficiently large to contain all
the concepts, of which the descriptions we want
to evaluate, and an evaluating LLM, an open- or
closed-source LLM that is used for automating the
evaluation process. The evaluating LLM is used
for “human-like” inference tasks, such as rating
the strength of concept expression in samples and
creating synthetic concept data.

3.2 Evaluation Metrics

Clarity evaluates whether a feature’s description
is precise enough to generate strongly activating
samples. We assess this by prompting the evalu-
ating LLM to generate synthetic samples based
on the feature description (see prompts in Ap-
pendix D.2.1). Unlike Gur-Arieh et al. (2025),
which generates non-concept sequences artificially,
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(a) Feature: 7657, Feature Description: references to “U” and
“U.S.” indicating discussions of policies and systems

[..] U.S. Grant photo portrait [..]
[..] While itis known from U.S. Pat [..]
[..] Positive staining of UCH-L1 was mainly located [..]

(c) Feature: 10647, Feature Description: “activation of specific
quoted terms and roles”

[..] bandwidth usef, and the definition of [..]
[..] entered the proverbial lionfs den and two [..]
[..] 1 call the adjunct hustle}f she said, and [..]

(b) Feature: 1776, Feature Description: “commonality of the word
‘each’ and it's variants indicating inclusivity and comparison”

[..] sheets that tend to stick to each other.
[..] they impose penalties in other areas [..]
[..] intersect and influence each other.

=

(d) Feature: 128, Feature Description: “belt”

[..] with one National Championship and [..] under his belt.
[..] 50 marathons under his belt, Moseley kept [..]
[..] great films under his belt, it wasnt [..]

Figure 2: ¥ FADE can highlight different problems that arise with description generation. (a) The description for
feature 7657 catches its main concept, low Purity indicates that this feature is clearly polysemantic. (b) Feature
1776 strongly reacts to the word “each”, but also to many other general, unrelated words, resulting in lower Clarity
and Purity. (c) Description for feature 10647 is expressed too broad, resulting in low Responsiveness and Purity. (d)
Feature 128 encodes the concept “under someone’s belt”. However, the derived description “belt”, is not clear or
specific enough to be useful for generating synthetic data that would activate the feature, but it is still closely related
to the concept, therefore Responsiveness and Purity are high.

we sample them uniformly from the natural dataset
to avoid unnatural biases (i.e. by asking the evalu-
ating LLLM not to think about pink elephants). If a
feature is well explained by its description, the syn-
thetic concept samples should elicit significantly
stronger activations than non-concept samples. We
quantify this separability using the absolute Gini

coefficient
ZA ZA llac>an)
9. ac€EAcan€An 1
[ Acllo - [ Anllo

where A, and A, are the sets of concept and non-
concept activations, respectively. Since this metric
focuses on linear separability rather than precision,
it remains robust even when concept samples oc-
casionally appear within the natural dataset. A
low Clarity score indicates that either the descrip-
tion is not precise enough to be useful, or might
simply be unfitting for the feature, resulting in sim-
ilar activations for both concept and non-concept
samples. For example, in Figure 2, feature (d) re-
sponds to “having something under one’s belt,” yet
is inaccurately described as “belt”. Conversely, a
high Clarity score confirms that we can effectively
generate samples that elicit strong activations in
the feature, although it does not guarantee that the
feature is monosemantic or causally involved.

Gabs(Ac, An) =

1

Responsiveness evaluates the difference in acti-
vations between concept and non-concept samples.
We select samples from the natural dataset based on
their activation levels, drawing both from the high-
est activations and from lower percentiles (details

in Appendix D.1). Following an approach similar
to Templeton et al. (2024), we prompt the evaluat-
ing LLM to rate each sample on a three-point scale
to indicate how strongly the concept is present (0 =
not expressed, 1 = partially expressed, 2 = clearly
expressed). By discarding the ambiguous (partially
expressed) cases, we effectively binarize samples
into concept and non-concept categories. We com-
pute the Responsiveness score again using the abso-
lute Gini coefficient. A low Responsiveness score
indicates that activations of concept-samples are
similarly strong as non-concept samples, while a
high score indicates that, in natural data, samples
with strong activations reliably contain the concept.

Purity is computed using the same set of rated
natural samples as Responsiveness, but with a dif-
ferent focus: it evaluates whether the strong activa-
tions are exclusive to the target concept. In contrast
to (Huang et al., 2023), who measure recall and
precision for a single threshold, we measure the
Purity using the Average Precision (AP)

AP(AC,An):Z(T]‘ 7’)“]‘71)-17]’ (2)

J

where r; is the recall and p; is the precision com-
puted at threshold j, for each possible threshold,
based on A. and A,,. The AP penalizes instances
where non-concept samples also trigger high acti-
vations. A Purity score near one thus indicates that
the feature’s activations are highly specific to the
concept, whereas a score near zero suggests that
top activations occur for other unrelated concepts
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as well. This is, for example, the case in poly-
semanticity, where a feature responds to multiple
unrelated concepts.

Faithfulness addresses the causal relationship be-
tween a feature and the model’s output. In other
words, it tests whether direct manipulation of the
feature’s activations can steer the model’s output
toward generating more concept-related content.
To evaluate Faithfulness, we take random samples
from the natural dataset and have the subject LLM
generate continuations while applying different
modifications to the feature’s activation. For neu-
rons, we multiply the raw activations by a range of
factors, including negative values, so that we do not
impose a directional bias on how the concept is en-
coded. For SAE features, of which the activations
are more sparse, we first determine the maximum
activation observed in the natural dataset (Temple-
ton et al., 2024) and then scale this value by the
different modification factors. After generating the
modified continuations, the evaluating LLM rates
how strongly the concept appears in each output.
We quantify the strength of this causal influence by
measuring the largest increase we were able to steer
the model in producing concept-related outputs

max(max(R) — Rp, 0)
1—-Ro

Faithfulness(R) = (3)

where R is a vector capturing the proportion of
concept-related outputs for each modification fac-
tor, and Ry denotes the base case in which the
feature is “zeroed out” (i.e., multiplied by zero). A
Faithfulness score of zero implies that manipulat-
ing the feature does not increase the occurrence of
concept-related outputs, while a score of one indi-
cates that for some modification factor the concept
is produced in every continuation.

3.3 “FADE Evaluation Framework

v FADE is designed to work with a wide variety
of Subject Models, including most HuggingFace
Transformers (Wolf et al., 2020) as well as any fea-
ture implemented as a named module in PyTorch.
Moreover, it is extensible: interpretability tools
such as SAESs or various supervised interpretability
techniques can be integrated with minimal effort,
provided they implement some basic steering func-
tionality. In addition, we offer an interface for
a diverse set of evaluating LLLMs, whether open-
weight or proprietary, with support for frameworks
such as vLLM, Ollama, OpenAl, and Azure APIs.

4 Experiments

In this section, we apply ¥ FADE to assess the
alignment of features and their descriptions gen-
erated via various state-of-the-art automated inter-
pretability methods (Choi et al., 2024; Lieberum
et al., 2024). Our goal is to demonstrate that the
proposed framework provides a robust, multidimen-
sional measure of feature-to-description alignment.

Experimental Setup As a natural dataset for the
evaluations we use samples drawn from the test par-
tition of the Pile dataset (Gao et al., 2020), prepro-
cessed as shown in Appendix B, giving us approxi-
mately 5 million samples. As evaluating LLM we
use the OpenAl model gpt-40-mini-2024-07-18
unless stated otherwise. Prompts for the eval-
vating LLM as well as details on the hyperpa-
rameters can be found in Appendix D.2. We
run the experiments on 103 randomly chosen fea-
tures from a single layer of a model: layer 20
for Gemma-2-2b (Riviere et al., 2024), layer 20
of Gemma Scope SAEs (Lieberum et al., 2024),
and layer 19 of L1lama-3.1-8B-Instruct (Dubey
et al., 2024) (see Appendix C.1 for details). The
evaluation results have a high variance, which is
caused by both the inherent difficulty of interpret-
ing some features as well as the quality of the as-
cribed feature descriptions. Therefore the mean
values are reported only where they help interpret
the distribution of the metrics. For all of the pre-
sented tables we demonstrate the full distributions
as kernel-density estimations with bandwidth ad-
justment factor 0.3 in Appendix E.1.

Automated interpretability approach Feature
descriptions, which we refer to as MaxAct*, are
generated based on samples of the train partition of
the Pile dataset, that demonstrate maximum activa-
tion on the feature, similarly to methods utilized in
(Bills et al., 2023; Paulo et al., 2024; Rajamanoha-
ran et al., 2024). The minor differences between
MaxAct and MaxAct* are prompts, optimized on
qualitative analysis provided via ¥ FADE, and
preprocessing steps of the dataset. The auto-
mated interpretability pipeline is described in Ap-
pendix C.1.

4.1 Depth and Reliability of Evaluations

Limitations of single-metric approaches We
compare ¥ FADE with simulated-activation-based
metrics (Bills et al., 2023; Templeton et al., 2024;
Choi et al., 2024), that, while computationally effi-
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cient, fail to fully capture the feature-to-description
alignment, potentially overlooking critical issues
like polysemanticity. To illustrate this, we analyze
feature descriptions of L1lama-3.1-8B-Instruct
generated in (Choi et al., 2024). As shown in
Figure 3, despite high simulated-activation scores,

v FADE identifies many features with low Purity.
Moreover, comparing the average results across all
subsampled features with the top 10% of features
based on the simulated-activation metric, we find
only a marginal gain in Clarity and Responsiveness,
while the Purity worsens. Via MaxAct*, we gen-
erate descriptions with slightly lower Clarity but
significantly higher Responsiveness and Purity. We
attribute this to the Explainer Model in (Choi et al.,
2024) being fine-tuned on descriptions optimized
for the simulated-activation metric, which aligns
more closely with Clarity but neglects Responsive-
ness and Purity.

Better models provide better evaluations As
the evaluating LLM is one of the most computa-
tionally expensive components of our framework,
selecting a model that balances performance and
cost is critical. Larger models generally achieve
better performance, but at significantly higher com-
putational costs. To determine a minimal feasi-
ble model size and capability required for effec-
tive evaluation, we conduct a quantitative analysis
of concept-expression ratings across various open-
weight and proprietary models, using GPT-40 as
a baseline due to its superior benchmark perfor-
mance (OpenAl, 2024). We evaluate models using
Neuronpedia (Lin, 2023) feature descriptions for
the Gemma Scope SAEs, generated via the MaxAct
method (Rajamanoharan et al., 2024). By compar-
ing deviations in concept strength ratings between

Model Class 0 Class 1 Class 2 Valid
GPT-40 243,233 24,766 19,716 100

Llama-3.2-1B 63.8 22.1 20.9 8.8

Llama-3.2-3B 714 9.9 70.3 72.2
Llama-3.1-8B 82.0 14.6 85.6 82.8
Llama-3.3-70B 4q 88.7 31.5 92.6 88.3
GPT-40 mini 93.4 44.8 79.3 88.6

Table 1: Concept rating procedure for different eval-
uating LLLMs. The GPT-40 baseline shows the num-
ber of occurrences per class. The other models show
their alignment with the GPT-4o rating in percent. The
“Valid” column shows the percentage of samples that
were correctly classified. Class 0 represents no align-
ment with the concept, class 1 a partial alignment and
class 2 means the samples clearly exhibit the concept.

GPT-40 and other models, we assess their relative
performance (see Table 1).

Our findings reveal a clear trend: larger, more ca-
pable models consistently yield better evaluations.
The open-weight Llama-3.3-70B-Instruct
(AWQ 4-bit quantized) performs comparably
to the proprietary GPT-40 mini, a widely used
model in autointerpretability research (Choi
et al., 2024; Lin, 2023). While Class 1 (partial
alignment) is the most error-prone, smaller models,
such as L1lama-3.2-3B-Instruct, remain viable
for the more critical Class 0 (no alignment)
and Class 2 (strong alignment). However, for
optimal performance, models smaller than
Llama-3.1-8B-Instruct are likely insufficient.

Generating feature descriptions for SAEs is
more challenging than for MLP neurons To
compare MLP neurons and SAE features, we ana-
lyze Gemma-2-2b and Gemma Scope SAEs. While
Gemma-2 outperforms Gemma Scope SAEs in av-
erage Clarity (see Table 4), the Clarity score dis-
tribution reveals a left-skewed peak for SAEs, as
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self.buttonbox.set_layout(Gtk.ButtonBoxStyle.END) self.help_button =
Gtk.Button(stock=Gtk.STOCK_HELP) self.help_button.connect('clicked’,
on_help__clicked) self.buttonbox.add(self.help_button)
self.buttonbox.set_child_secondary(self.help_button, True)
Self.help_button.show() def cancel(self): if (self._need_cancel_confirmation()
and not yesno(_("If you cancel this dialog all changes will be " "lost.

<bos>null : bizinfo.trim(); } public Long getCreatorld() { return creatorld; }
public void setCreatorld(Long creatorld) { this.creatorld = creatorld; } public String
R getCreatorName() { return creatorName; } public void SétCreatorName(String
creatorName) { this.creatorName = creatorName == null ?

<bos>import match_log_fileclass LinesCounter: def __init__(self, start=0):
self.lock = threading.Lock() self.value = start self.time_of_last_count = None
def increment(self): # logging.debug('Waiting for lock’) self.lock.acquire() try: #
logging.debug(’Acquired lock’) self.value = self.value + 1 self.time_of_last_count
= timetime() finally: selflock.release() def add(self, count: int): #
logging.debug('Waiting for lock') self.lock.acquire() try: # logging.debug('Acquired
lock’) self.value = self.value + count self.time_of_last_count = time.time() finally:

<bos>But in the meantime, we need to Make sure that the well-being of miscarrying
women does not become collateral damage in the war on abortion.

<bos>As we grieve, life continues on around us; we need to ake adjustments and
function inspite of our struggles.

<bos>| think you need to be prepared for the ebb and flow and just make sure you
have realistic expectations.

<bos>Yes, she can choose to have a career, but if being a wife and mom are
important to her too, shell want to make that a priority as well.

<bos>Here are some points to consider:1.

<bos>The SnowMaster is unique for seven reasons:l.

<bos>Some key points that Klaas touched on in his talk were the following:L) The
idea of letting a soil decide what it wants to grow.

<bos>And heres why:1.

<bos>We believe this housing project will create a negative impact on our
community for the following reasons:1) It changes the charm and existing
characteristics of the First Hill neighborhood.

<bos>Few things to note:1.

Figure 5: Examples of feature descriptions, obtained via MaxAct*, demonstrating low Clarity, but medium or high
Responsiveness and Purity. Tokens are highlighted in green when the feature is activated, and in yellow if the feature
is not activated even though the concept is present. Feature 475: “Frequent presence of token ’self” indicating object
oriented programming concept”. Feature 653: “Word *make’ in different forms, expressions and concepts”. Feature

821: “Expressions indicating lists or explanations”.

depicted in Figure 4. Further analysis identifies a
cluster of features with low Clarity but moderate
to high Responsiveness and Purity. These features
have descriptions that approximate the encoded
concept but lack the precision to strongly activate
the SAE feature. Figure 5 presents the heatmap for
feature 475, whose description emphasizes the oc-
currence of the token “self.” However, the feature
does not activate on all instances of “self” (high-
lighted in yellow), indicating that a crucial aspect
of the concept is missing or remains unclear. Ad-
ditionally, the feature activates on other tokens,
further suggesting that the description is incom-
plete. This is reflected in the evaluation metrics:
Clarity of 0.005 indicates that the concept is not ex-
pressed precisely enough for the evaluating LLM
to generate synthetic data that reliably activates
the feature. A Responsiveness score of 0.93 sug-
gests that the feature does activate on natural data
aligned with the concept, while a Purity score of
0.81 reveals that although the feature is primar-
ily associated with the described concept, it also
responds to other inputs. Similar issues arise in fea-
tures 653 and 821, where the underlying concepts
appear highly specific — activating on a particular
token within a specific context. However, their

SAE Size Clarity Respon- Purity Faithfulness
siveness

MaxAct* 16K 0.57 0.78 0.69 0.17

MaxAct* 65K 0.46 0.71 0.66 0.15

Neuronpedia 16K 0.43 0.67 0.60 0.17

Neuronpedia 65K 0.29 0.64 0.56 0.13

Table 2: Comparison results for SAEs of different sizes,
see metrics distributions on Figure 6.

descriptions are overly broad, making it difficult
to generate synthetic data that reliably triggers the
feature.

This suggests that despite greater monosemantic-
ity, interpreting SAE features remains challenging
due to the difficulty in generating precise descrip-
tions. In contrast to the Clarity metric, Responsive-
ness and Purity are on average higher for SAEs, as
these metrics are less sensitive to imprecise descrip-
tions and still align with the underlying concept.
The higher Purity in SAEs aligns with our expecta-
tions of their greater monosemanticity.

Interpreting larger SAEs is more difficult We
investigate whether SAEs with a higher number
of features inherently exhibit a better alignment
with the feature descriptions. To quantify this, we
compare feature descriptions from Gemma Scope
16K and Gemma Scope 65K. We compare it based
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Layer Clarity Respon- Purity Faithfulness Model Input Clarity Respon-  Purity Faithfulness
siveness type siveness

3 0.60 0.71 0.55 0.009 Gemma-2 delimiters  0.67 0.74 0.61 0.01

12 0.44 0.54 0.43 0.016 numeric  0.67 0.76 0.64 0.01

20 0.67 0.74 0.61 0.011 Gemma  delimiters 0.57 0.78 0.69 0.16

25 0.59 0.65 0.54 0.025 Scope numeric ~ 0.59 0.80 0.72 0.17

Table 3: Evaluation results for different layers in
Gemma-2, see metrics distributions on Figure 7.

on Neuronpedia feature descriptions, as well as the
ones obtained in this work via MaxAct*. Consis-
tent with our previous finding, our results indicate
that increasing the number of SAE features does
not inherently improve the alignment of features
with their descriptions, as shown in Table 2. We
hypothesize that this stems from a finer-grained de-
composition of concepts, making it more challeng-
ing for the explainer LLM to capture and articulate
the precise concept.

Interpretability varies across layers Table 3
presents an evaluation of feature descriptions from
different layers of Gemma-2-2b. Our analysis iden-
tifies layer 12 as the most challenging to interpret.
A manual inspection of 50 randomly sampled fea-
tures confirms these results: features in layer 12
exhibit high polysemanticity. The highest scores
are observed in layer 20, with the exception of the
Faithfulness metric. However, this may be due to
the fine-tuning of the MaxAct* approach on this
layer, which introduces a bias that specifically af-
fects Faithfulness. The highest Faithfulness score
is observed in layer 25, while the lowest is found
in layer 3.

4.2 Evaluating Autointerpretability: Prompts,
Examples, and Model Size

Despite the growing number of methods proposed
in automated interpretability research, there has
been surprisingly little comprehensive evaluation
of different approaches. In this section, we present
a series of experiments that assess different com-
ponents of feature generation pipelines and demon-
strate how ¥ FADE can help in fine-tuning inter-
pretability pipelines.

Prompting with numerical- or delimiter-based
input Prompt construction can significantly influ-
ence the quality of the generated descriptions. We
investigate two primary approaches: passing (word,
activation) pairs and using {{delimiters}} to high-
light the most activated tokens (see Appendix C.2
for more details). Our experiments indicate that the
numerical input performs slightly better than the

Table 4: Comparison results of activations input types
via delimiters vs numerical input, see metrics distribu-
tions on Figure 8 (a).

Number of  Clarity Respon- Purity Faithfulness
shots siveness

0-shot 0.53 0.76 0.70 0.17

1-shot 0.55 0.76 0.68 0.19

2-shot 0.57 0.78 0.69 0.17

5-shot 0.60 0.79 0.72 0.16
10-shot 0.60 0.79 0.72 0.16
20-shot 0.61 0.81 0.73 0.16

Table 5: Comparison results for different number of
shots provided to the Explainer Model with the prompt
based on Gemma Scope, see metrics distributions on
Figure 8 (c).

delimiter-based prompt, which contradicts previous
research (Choi et al., 2024).

Few-shot prompting improves description qual-
ity Next we test how many examples should be
passed to the Explainer Model in the prompt. We
compare 0-shot (without examples), 1-shot, 2-shot,
5-shot, 10-shot and 20-shot prompts on Gemma
Scope. In these variations, we use the delimiter-
based prompts. The results, provided in Table 5,
demonstrate, that a larger number of examples
brings steady improvement in Clarity, Responsive-
ness and Purity. Faithfulness shows no clear trend.

Providing more samples increases evaluation
scores We test 5, 15 and 50 samples, using the
same delimiter-based prompts (see Table 6). The
results indicate, that increasing the number of sam-
ples improves description quality, though the gains
are not substantial for any of the tested number of
samples.

Better models produce better feature descrip-
tions Similarly to the experiment, comparing dif-
ferent Evaluation Models presented in Table 1, we
compare different Explainer Models and demon-
strate the results in Table 7. GPT-40 achieves the
highest scores, with Llama-3.3-70B-Instruct
(AWQ 4-bit quantized) and GPT-40 mini as close
alternatives. The smaller models struggle with
assigning reasonable feature descriptions, in par-
ticular L1ama-3.2-1B, which frequently fails to
maintain a consistent response structure (see Ap-
pendix E.1).
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Model # sam-  Clarity Respon-  Purity Faithfulness Approach Clarity Respon- Purity Faithfulness
ples siveness siveness
5 0.63 0.72 0.59 0.01 Neuronpedia 0.43 0.67 0.60 0.21
Gemma2 15 0.67 0.74 0.61 0.01 TF-IDF 0.42 0.72 0.53 0.21
50 0.69 0.77 0.62 0.01 Unembedding ~ 0.38 0.65 0.61 0.29
Gemma 5 0.56 0.77 0.67 0.17 MaxAct* 0.57 0.78 0.69 0.21
Scope 15 0.57 0.78 0.69 0.18
50 0.60 0.79 0.71 0.17

Table 6: Comparison results for different number of
activating samples provided to the Explainer Model, see
metrics distributions on Figure 8 (b).

Model Clarity Respon- Purity Faithfulness
siveness
Llama-3.2-1B 0.39 0.56 0.35 0.10
Llama-3.2-3B 0.51 0.73 0.61 0.15
Llama-3.1-8B 0.50 0.75 0.66 0.17
Llama-3.3-70B 0.54 0.78 0.70 0.19
GPT-40 mini 0.58 0.78 0.70 0.17
GPT-40 0.61 0.80 0.73 0.17

Table 7: Explainer models comparison, see metrics dis-
tributions on Figure 9.

Baselines fail in predictable ways To assess the
effectiveness of MaxAct* approach, we compare
it against established baseline methods, including
the Neuronpedia feature descriptions, a TF-IDF
(Ramos et al., 2003; Salton and Buckley, 1988)
based description approach, and an unembedding-
based method (Joseph Bloom, 2024) (see Ap-
pendix C.1 for methodological details). The results
are presented in Table 8. MaxAct* consistently out-
performs baselines in Clarity, Responsiveness, and
Purity. Notably, the unembedding method achieves
the highest Faithfulness score, a result that aligns
with our expectations and related work (Gur-Arieh
et al., 2025). Since this method explicitly considers
the output that a given feature promotes, it naturally
excels at capturing causal influence of the feature.
However, this focus on output consistency often
comes at the expense of Clarity, Responsiveness,
and Purity, as raw unembedding-based descriptions
do not incorporate any information about what ac-
tivates the feature. These findings again highlight
the necessity of a holistic evaluation framework, as
different methods optimize for different aspects of
interpretability.

5 Conclusion

In this work, we presented ¥ FADE, a new auto-
mated evaluation framework designed to rigorously
evaluate the alignment between features and their
open-vocabulary feature descriptions. By combin-
ing four complementary metrics Clarity, Respon-
siveness, Purity, and Faithfulness, our approach
gives a comprehensive assessment of how a fea-

Table 8: Comparison of the quality of our feature de-
scriptions to baselines, see metrics distributions on Fig-
ure 10.

ture reacts to instances of the described concept,
an evaluation of the description itself as well as
the feature’s causal role in the model’s outputs.
Through extensive experiments across different fea-
ture types, layers, and description generation mech-
anisms, we demonstrated that methods relying on
a single metric (e.g., simulation-based approaches)
often give incomplete or misleading feature descrip-
tions. Our framework can be used to highlight both
the strengths and weaknesses of existing methods,
while it also helps in debugging and improving
these methods. We highlighted multiple results
for improving the quality of feature explanations,
such as using larger, more capable LL.Ms for the ex-
plainer and including more examples in the prompt.
We hope that the open-source implementation of

v FADE will drive further research in automated
interpretability and help make language models
more transparent and safe to use.

Limitations

Despite presenting a comprehensive and robust
evaluation framework, our work has certain lim-
itations that we want to highlight here: One key
limitation when using LLMs is the inherent biases
that can influence both rating and synthetic data
generation, thus affecting our evaluation metrics.
When rating concepts, an LLM’s inherent bias may
systematically lead to lower ratings for certain cul-
tural contexts, domains, or languages outside its
primary training distribution. Similarly, during syn-
thetic data generation, LLMs may produce less
diverse or representative data for underrepresented
domains and low-resource languages. For exam-
ple, an LLM might recognize a feature encoding a
concept in English as directly representing that con-
cept, whereas the same feature in another language
might be classified with the additional specification
of the language. This discrepancy could also lead
to unintended biases when steering models based
on these interpretations.

Similar issues may arise from biases present
in the datasets used in the evaluation procedure.
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While we used The Pile dataset due to its extensive
nature, underrepresented concepts may still lead
to less stable purity and responsiveness measures.
Although FADE can help flag such cases and en-
able us to achieve fuller coverage by identifying the
aforementioned training dataset issues, ultimately
a more balanced corpus would be beneficial.

Another limitation is related to the steering be-
havior in the Faithfulness pipeline. Our current
implementation does not explicitly verify whether
the generated sequences under modification remain
grammatically correct and semantically meaning-
ful. However, this can be mitigated in the future by
integrating KL-divergence to control the magnifi-
cation factor, used for steering the features (Paulo
et al., 2024; Gur-Arieh et al., 2025). Finally, our
Faithfulness measure is not well-suited for cap-
turing the behavior of inhibitory neurons. While a
neuron may causally suppress the presence of a con-
cept in the model’s output, our metric, by design,
is limited in detecting decreases in the activation of
sparse concepts. Moreover, current automated in-
terpretability methods, which our evaluation frame-
work is intended to support, typically do not focus
on identifying inhibitory neurons. However, if an
inhibitory feature is redefined in affirmative terms
(e.g., instead of "the feature suppresses English,"
phrased as "the feature promotes non-English lan-
guages"), our Faithfulness metric can handle such
cases appropriately. Nonetheless, a more compre-
hensive investigation into inhibitory neurons, both
in terms of automated interpretability and evalua-
tion, remains necessary.
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A Extended related work

A common approach to automatic interpretability
includes selecting data samples that strongly acti-
vate a given neuron and using these samples, along
with their activations as input to a larger LLM, that
serves as an Explainer Model and generates feature
descriptions (Bills et al., 2023; Bricken et al., 2023;
Choi et al., 2024; Paulo et al., 2024; Rajamanoha-
ran et al., 2024). Previous research has investigated
various factors influencing this method, including
prompt engineering, the number of data samples
used, and the size of the Explainer Model (see Ap-
pendix A).

Building on this approach, (Choi et al.,
2024) advanced the method by fine-tuning
Llama-3.1-8B-Instruct on the most accurate
feature descriptions, as determined by their
simulated-activation metric. This fine-tuning aimed
to improve the performance and accuracy of
description generation, ultimately outperforming
GPT-40 mini.

An output-centric approach was introduced by
(Gur-Arieh et al., 2025) in an attempt to address
another key challenge — the feature descriptions
generated via the data samples that activate the fea-
ture the most, often fail to reflect its influence on
the model’s output. The study demonstrates that
a combined approach, integrating both activation-
based and output-based data, results in more accu-
rate feature descriptions and improves performance
in causality evaluations.

Several studies perform their experiments exclu-
sively on SAEs (McGrath et al., 2024; Paulo et al.,
2024; Rajamanoharan et al., 2024; Templeton et al.,
2024), while others focus on MLP neurons (Bills
et al., 2023; Choi et al., 2024). Although (Temple-
ton et al., 2024) compares the interpretability of
SAEs to that of neurons and concludes that features
in SAE:s are significantly more interpretable, these
findings heavily rely on qualitative analyses.

Previous research consistently shows that open-
source models are effective for generating expla-
nations, with advanced models producing better
descriptions. For instance, Bills et al. (2023) report
that GPT-4 achieves the highest scores, whereas
Claude 3.5 Sonnet performs best for Paulo et al.
(2024). The number of data samples used to gen-
erate feature descriptions also vary across studies.
Bills et al. (2023) use the top five most activating
samples, while Choi et al. (2024) select 10-20 of
the most activating samples to generate multiple

descriptions for evaluation. In contrast, Paulo et al.
(2024) use 40 samples and suggest that randomly
sampling from a broader set of activating leads to
descriptions that cover a more diverse set of acti-
vating examples, whereas using only top activating
examples often yields more concise descriptions
that fail to capture the entire description.

The datasets used in these studies also differ.
Paulo et al. (2024) utilize the RedPajama 10M
(Computer, 2023) dataset, Choi et al. (2024) use the
full LMSYSChat1M (Zheng et al., 2023) and 10B
token subset of FineWeb (Penedo et al., 2024), Bills
et al. (2023) — WebText(Radford et al., 2019) and
the data used to train GPT-2 (Radford et al., 2019).
Additionally, different delimiter conventions are
observed: Choi et al. (2024) use delimiters, Paulo
et al. (2024) use « », and Bills et al. (2023) use
numerical markers.

B Data Preprocessing

For our work, we used an uncopyrighted version
of the Pile dataset, with all copyrighted content
removed, available on Hugging Face (Gao et al.,
2020) (https://huggingface.co/datasets/
monology/pile-uncopyrighted). This version
contains over 345.7 GB of training data from
various sources. From this dataset, we extracted
approximately 6 GB for labelling while preserving
the relative proportions of the original data sources.
The extracted portion from the training partition
was used to collect the most activated samples.
For evaluations, we utilized the test partition from
the same dataset, applying identical preprocessing
steps as those used for the training data.

Component Size (GB) Proportion (%)
Pile-CC 1.93 32.17
PubMed Central 1.16 19.38
ArXiv 0.70 11.67
FreeLaw 0.55 9.14
PubMed Abstracts 0.32 5.39
USPTO Backgrounds 0.31 523
Github 0.27 4.54
Gutenberg (PG-19) 0.23 3.85
Wikipedia (en) 0.15 2.57
DM Mathematics 0.11 1.87
HackerNews 0.07 1.17
Ubuntu IRC 0.06 0.99
EuroParl 0.06 0.95
PhilPapers 0.03 0.58
NIH ExPorter 0.03 0.50
Total 5.99 100.00

Table 9: Extracted dataset and proportion of sub compo-
nents

Our preprocessing involved several steps to en-
sure a balanced and informative dataset. First, we
used the NLTK (Bird et al., 2009) sentence tok-
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enizer to split large text chunks into individual
sentences. We then filtered out sentences in the
bottom and top fifth percentiles based on length,
as these were typically out-of-distribution cases
consisting of single words, characters, or a few out-
liers. This step helped achieve a more balanced
distribution. Additionally, we removed sentences
containing only numbers or special characters with
no meaningful content. Finally, duplicate sentences
were deleted.

Labeling Dataset ~ Evaluation Dataset

Number of sentences 88,689,425 5,443,427
Number of tokens 2,284,636,243 137,600,815
Number of unique tokens 21,707,092 2,336,552

Table 10: Dataset Statistics

C Automated Interpretability Pipeline

C.1 Implementation of Automated
Interpretability

Our experiments are based on models and feature
descriptions presented in Table 11. We generate
our feature descriptions as follows. In the imple-
mentation of the autointerpretability pipeline, we
are closely following (Bills et al., 2023; Paulo et al.,
2024; Rajamanoharan et al., 2024) and others: we
pass the natural dataset, used for generating de-
scriptions (see Appendix B) through the model,
and via forward hooks we access the activations of
each feature and each layer, which can be done in
parallel. For Gemma Scope SAEs we implement a
wrapper class that is built into the model as named
module, and can be easily extended to other SAEs.
After passing the whole dataset through the
model, we take top 10% data samples for each fea-
ture, based on the maximum activation of tokens.
We only consider a single maximum activating to-
ken of a data sample. Later, we uniformly subsam-
ple the necessary number of data samples, i.e. 5,
15, ..., 50, that are further passed to an explainer
LLM. We do that to avoid outliers — a small part of
the data which activates the feature the most, but
does not represent its overall behavior well. The
considered top 10% most activating samples rep-
resent top 0.001% of the dataset. More complex
sampling strategies can yield better performance,
as described in Appendix A, but their implementa-
tion and evaluation is left out for future work.
Experiments are performed on the following
models: Gemma-2-2b layer 20 (Riviere et al., 2024),
Llama-3.1-8B-Instruct layer 19 (Dubey et al.,

2024), and SAEs Gemma Scope 16K and 65K layer
20 (Lieberum et al., 2024). In addition, we gen-
erate descriptions using baseline methods, namely
TF-IDF and unembedding matrix projection. Term
Frequency-Inverse Document Frequency (TF-IDF)
is a widely used technique in NLP for measuring
the importance of a word in a document relative
to a corpus. It balances word frequency with how
uniquely the word appears across documents, as-
signing higher scores to informative words while
down-weighting common ones. We generate these
values using 15 maximally activating samples. On
the other hand, the unembedding matrix (Wy;)
(Joseph Bloom, 2024) in transformer models maps
the residual stream activations to vocabulary log-
its, determining word probabilities in the output.
By analyzing projections onto this unembedding
matrix, we gain insight into how learned features
influence token predictions. To generate SAE un-
embedding descriptions, we generate a logit weight
distribution across the vocabulary, and then use the
top ten words with the highest probabilities as fea-
ture descriptions.

Logit weight distribution = Wy * Wye | feature]

where Wy is the unembedding matrix of a trans-
former model and W, are the decoder weights of
sparse auto encoders.

This reveals which words are most associated
with a given feature, enabling interpretability of
sparse autoencoder (SAE) features, as well as MLP
neurons. Both these methods are cheap baselines to
compare with descriptions generated via different
autointerpretability approaches.

C.2 Prompt Engineering

Our feature description pipeline consists of several
key components, such as the Subject Model, for
which the descriptions are generated, the Explainer
Model, which is a larger language model, used
to generate descriptions, and the System Prompt,
which provides task-specific instructions to the Ex-
plainer Model, detailing what to focus on in the
provided samples and how to format the output.
We append 5, 10, or 50 sentences along with a
user_message_ending at the end, which helps re-
inforce the expected output structure. Before nor-
malizing activations, we first average activations
for tokens belonging to the same word. These val-
ues are then normalized between 0 and 10. For
delimiters, we use single curly brackets if the acti-
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Model Layers HuggingFace Descriptions

Gemma-2-2b 3,12, 20,25 google/gemma-2-2b -

Gemma Scope 16K 20 google/gemma-scope-2b-pt-res/tree/main/ neuronpedia.org/gemma-2-2b/20-gemmascope-res- 1 6k
layer_20/width_16k/average_10_71

Gemma Scope 65K 20 google/gemma-scope-2b-pt-res/tree/main/ neuronpedia.org/gemma-2-2b/20-gemmascope-res-65k

layer_20/width_65k/average_l0_114

Llama3.1-8B-Instruct 19 meta-1lama/Llama-3.1-8B-Instruct

github.com/Transluce Al/observatory.git

Table 11: Sources for models, SAEs and feature descriptions, used in this work.

3
Avg # of tokens Cost/10° feature ($) and stay grounded.

0-shot 1,423 2.13 Output Format:

1-shot 1,498 2.25 Concept: [Focus on the common concept tied to the

2-shot 1,564 2.35 highlighted tokens, described in a concise

10-shot 2,395 3.95 phrase.]

20-shot 3,393 5.09

Table 12: Token usage and cost comparison for different
shot settings.

# of sentences  Avg # of tokens
5 333
15 964
50 2,507

Table 13: Average number of tokens as the number of
sentences increases. These values are based on tokenizer
used for Gemma-Scope-16k and are not the number of
tokens per request generated by OpenAl.

vation intensity is below 4, and double curly brack-
ets otherwise. For numerical input we provide the
Explainer Model with a dictionary of the most acti-
vated tokens after each sample.

Main prompt: The main prompt we use to gen-
erate descriptions is given below.

### Example:

Input example 1:

Sentence 1: The {{United States}} will not allow {{
threats}} against its people.

Sentence 2: The {{U.S.}} -emphasizes deterrence in
foreign policy.

Example Output:
Concept: U.S. deterrence policies and moral stance
on global threats.

Input example 2:

Sentence 1: Ash/Brock [Bouldershipping]l\nI forget
about this one {{all}} for one favours.

Sentence 2: I see this attitude brewing {{all}} at

once.
Sentence 3: I get emails from people {{all}} over
the world.

Example Output:

Concept: Presence of the word 'all'.

user_message_ending: >

Analyze all these sentences as ONE corpus and
provide your description in the following
format:

Your devised concept and it's description
and very few words.

Concept:
in a concise manner,

You are a meticulous AI researcher conducting an
important investigation into sparse
autoencoders of a language model that activates

in response to specific tokens within text
excerpts. Your overall task is to identify and
describe the common features of highlighted
tokens, focusing exclusively on the tokens that
activate and ignoring broader sentence context
unless absolutely necessary.

You will receive a list of sentences in which
specific tokens activate the neuron. Tokens
causing activation will appear between
delimiters like {{ }}. The activation values
range from 0-10:

- If a token activates with an intensity of <4, it
will be delimited like {{this}}.

- If a token activates with an intensity of >4, it
will be delimited like {{{{this}}}}

Guidelines:

1. Focus on the activated tokens: The description
must primarily relate to the highlighted tokens
, not the entire sentence.

2. Look for patterns in the tokens: If a specific
token or a group of similar tokens repeatedly
activates, center your analysis on them.

3. Sparse Autoencoder Dependency: The activations
depend only on the words preceding the
highlighted token. Descriptions should avoid
relying on words that come after the activated
token.

4. No coherent presence of concept: Return 'NO
CONCEPT FOUND' if there is no coherent theme in

the sentences provided, do not force a concept

Prompt variation 1: Main prompt + dictionary
of most activated tokens with their normalized acti-
vation values.

You are a meticulous AI researcher [...]

You analyze a list of most-activated sentences and a
dictionary of relevant tokens, each with
assigned activation values, to identify key
themes and concepts. Tokens causing activations
will be provided in the dictionary after each

sentence. The activation values range from
0-10.

Guidelines:[..]

Output Format:

Concept: [Focus on the common concept tied to the
highlighted tokens, described in a concise
phrase.]

EXAMPLE 1

Sentence 1: "The choir's harmonies resounded
throughout the church as the congregation stood

in awe.”
Most relevant tokens:
8, "church”: 6,

{{"harmonies”: 9, "resounded”:
"congregation”: 43}3}[..]

Prompt variation 2: Main prompt + zero shots.
Prompt variation 3: Main prompt + one shot.
Prompt variation 4: Main prompt + five shots.
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# of features Time (h) Cost/10? features ($)
Gemma-2-2b 239,616 185 0.77
Gemma Scope 16K 16,384 524 31.98
Gemma Scope 65K 65,536 622 9.49
Llama-3.1-8B 458,752 361 0.79

Table 14: Cost comparison for discovering samples, that
are maximally activating features.

C.3 Computational Costs

Obtaining maximum activating samples for fea-
tures is performed locally on a cluster with 8
NVIDIA A100 GPUs with VRAM 40Gb. The pro-
cess can be easily parallelized, but for cost calcu-
lation we are using the total consumed time. Such
GPUs can be rented starting with $0.67/hr, how-
ever, an average price on the market exceeds this
value. For simplicity of calculations, we take a
price of $1/hr. For convenience, we consider a
price per 10? features, the results are presented in
Table 14.

Due to the differences in the implementation,
calculating maximum activating samples is signifi-
cantly cheaper for the complete models, since we
do it during the same forward pass for the whole
model, and the price is divided by the total number
of features we consider. For SAEs, in the current
implementation we only do it per one layer, which
significantly reduces the number of considered fea-
tures. In the future we are planning on optimizing
this process in a way, that it is possible to calculate
it simultaneously for multiple chosen SAEs. The
size of SAEs also plays an important role: in terms
of total costs it is more expensive, but if we con-
sider the cost per 103 features, the larger the SAE —
the cheaper it is.

The total computational cost for this part of the
experiments is estimated at 4,920 GPU hours. This
includes all experiments conducted on the models
referenced in this paper. While not all experiments
are explicitly discussed, they contributed to the
final results presented here.

D ¥ FADE Evaluation Framework

D.1 Implementation and Computational
Efficiency

To compute the Purity and Responsiveness, we sam-
ple evaluation sequences from the natural dataset
based on the activation distribution of the consid-
ered feature. For each sequence, we calculate the
maximum absolute activation value across all to-
kens. Using these values, we sample sequences by

selecting a user-configurable percentage of those
with the strongest activations and for the remain-
der, drawing an equal number of samples from
each of the following percentile ranges: [0%, 50%),
[50%, 75%), [75%, 95%), and [95%, 100%).

Computational efficiency is a key consideration
in our design, as evaluating every neuron in an
LLM can be prohibitively expensive. The cost
of evaluations is dynamically adjustable based on
several factors, including the number of samples
generated and rated, the evaluating LLM used, and
the natural dataset selection.

Our method allows users to control the cost by
setting the number of synthetic samples (denoted
n) relative to the full size of the natural dataset
(N). By pre-computing activations from the nat-
ural dataset in parallel, we effectively reduce the
per-run complexity from O(N M) for M neu-
rons to O(n * M). Given that n is typically in the
hundreds while V is in the millions, this strategy
yields significant efficiency gains.

Additionally, we only execute the computation-
ally costly Faithfulness evaluation when both Clar-
ity and Responsiveness exceed a user-configurable
threshold. This conditional execution ensures that
unnecessary computations are avoided for features
that do not meet our interpretability criteria.

D.2 Details on the Experiment Setup

In our experiments we send 15 requests to the evalu-
ation LLM for generating synthetic samples. We re-
move duplicates and use these as concept-samples.
We use the whole evaluation dataset as control sam-
ples. For rating we draw 500 samples from the
natural dataset, where we take 50 from the top
activated and 450 from the lower percentiles, ac-
cording to the sampling strategy outlined above in
Appendix D.1. If we obtain fewer than 15 concept-
samples in this first rating we again sample 500 new
samples with the same sampling approach. We rate
15 samples at once, and if one of the calls fails, for
example due to formatting errors of the evaluating
LLM, we retry the failed samples once. For the
Faithfulness experiments we use the modification
factors [—50, —10,—1,0,1,10,50]. We draw 50
samples from the natural dataset and let the subject
LLM continue them for 30 tokens. We then rate
only these continuations for concept strength by the
evaluating LLLM, again retrying once, if the rating
fails. We only execute the Faithfulness experiment,
if both the Clarity and Responsiveness of a feature
is larger or equal to 0.5.
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Licenses Gemma-2-2b is released under a custom
Gemma Terms of Use. Gemma Scope SAEs are
released under Creative Commons Attribution 4.0
International. L1ama3.1-8B-Instruct is released
under a custom Llama 3.1 Community License.
Transluce feature descriptions, Pile Uncopyrighted
dataset and LangChain are released under MIT Li-
cense. VLLM is released under Apache 2.0 Li-
cense.

D.2.1 Prompts for the Evaluating LLM
Generating Synthetic Data Prompt

You are tasked with building a database of sequences

that best represent a specific concept.

To create this, you will generate sequences that
vary in style, tone, context, length, and
structure, while maintaining a clear connection

to the concept.

The concept does not need to be explicitly stated in

each sequence, but each should relate
meaningfully to it. Be creative and explore
different ways to express the concept.

Here are examples of how different concepts might be

expressed:
Concept: "German language” - Sequences might include
German phrases, or sentences.

Concept: "Start of a Java Function” - Sequences
might include Java code snippets defining a
function.

Concept: "Irony"” - Sequences might include ironic

statements or expressions.

Provide your sequences as strings in a Python List
format.

Example: ["This is a first example sequence."”, "

Second example sequence but it is much longer

also there are somy typos in it. wjo told you

that I can type?”]

Output only the Python List object, without any
additional comments, symbols, or extraneous
content.

Rating Natural Data Prompt

You are tasked with building a database of sequences
that best represent a specific concept.
To create this, you will review a dataset of varying
sequences and rate each one according to how
much the concept is expressed.

For each sequence, assign a rating based on this
scale:

0: The concept is not expressed.
1: The concept is vaguely or partially expressed.
2: The concept is clearly and unambiguously present.

Use conservative ratings. If uncertain, choose a
lower rating to avoid including irrelevant
sequences in your database.

If no sequence expresses the concept, rate all
sequences as 0.

Each sequence is identified by a unique ID. Provide
your ratings as a Python dictionary with
sequence IDs as keys and their ratings as
values.

Example Output: {{"14": o, "15": 2, "20": 1, "27":
033

Output only the dictionary - no additional text,
comments, or symbols.”

Features GPU Inference  Cost per

evaluated  Time (h)  Cost ($)  feature ($)
Gemma-2-2b 9.000 24+77.5 46.17 0.0164
Gemma Scope 16K 25.000 2442153  128.25 0.0147
Gemma Scope 65K 2.000 24+17.2 10.26 0.0257
Llama-3.1-8B 2.000 24+17.2 10.26 0.0257

Table 15: Computational cost estimates of the evaluation
experiments.

D.2.2 Associated Cost

The activation generation for the Subject Models
for the results in section 4.1 was run locally on a
cluster with NVIDIA A100 GPUs with 40GB of
VRAM. Similar to section C.3 we assume a price
of $ 1/hr. Since activations can be cached in par-
allel for the whole model, only a single pass over
the evaluation dataset was needed per model. We
estimate a needed time of 24 hours on one GPU
for the activation generation, resulting in a cost
of $24 per model. During the evaluations, only
the activations of synthetic samples and Faithful-
ness text generations need to be computed. Given
our hyper-parameter setting described in D.2, we
measure an average of 31 seconds GPU time per
neuron. Of that, roughly 2 seconds are spent on the
Clarity, Responsiveness and Purity metrics, while
the much more expensive Faithfulness computation
contributes the remaining 29 seconds. These 29
seconds arise because, with our present threshold
of 0.5, the Faithfulness experiment is executed on
53% of candidate labels; if it were executed ev-
ery time it would add roughly 55 seconds. This
leads us to an average cost of $0.0086 per neuron,
excluding the fixed activation caching cost.

The estimated cost for the evaluating LLM con-
sists of the cost for the generation of synthetic sam-
ples as well as the cost for rating natural data. In
the configuration used for the experiments, unless
stated otherwise, we estimate the evaluating LLM
creates on average about 2800 tokens per feature
evaluation, which corresponds to a cost of about
$0.00168 per feature at an output token cost of $0.6
per million tokens. For the rating part, the evaluat-
ing LLM receives about 23000 tokens as input, of
which on average 17000 are from the Responsive-
ness and Purity experiments and 6000 are from the
Faithfulness experiments, which corresponds to a
total cost of $0.00345 per feature at an input token
cost of $0.15 per million tokens. Corresponding
results are presented in Table 15.

The total cost in our experiments is primarily
driven by the use of high values of hyperparame-
ters intended to ensure high evaluation accuracy
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as outlined in section D.2. Here especially the
low threshold of executing the Faithfulness experi-
ments is a big contributor to overall cost. Increas-
ing this threshold will reduce the computational
cost substantially. Additionally, the high number of
samples that is being rated for the activation-based
metrics can be reduced in order to significantly
lower the amount of needed inference tokens for
the evaluating LLM. Furthermore, as seen in Table
1, often the size of the evaluating LLM itself can be
reduced with minimal accuracy losses, resulting in
cheaper inference costs via e.g. self-hosted models
or simply cheaper inference. For example if we had
run the Faithfulness experiments only on the most
promising 25% percent of labels, corresponding
to a Faithfulness threshold of approximately 0.9
given our evaluated labels, the average GPU com-
pute cost per neuron, excluding the static compu-
tation of cached activations, would decrease from
$0.0086 to $0.0044.

In our experiments we chose these high hyperpa-
rameter settings, as we wanted to prioritize robust-
ness and replicability of our results. We believe
however, that even with significantly lower con-
figurations, especially regarding the Faithfulness-
threshold and number of modification factors, valu-
able insights can be found at a considerably lower
cost.

D.3 Combining ¥ FADE metrics into a single
score

The principal value of ¥ FADE lies in its multidi-
mensional analysis of feature-to-description align-
ment. Reducing these dimensions to a single score
may obscure important nuances that are crucial for
developing and refining interpretability techniques.
Separate metrics allow researchers to pinpoint spe-
cific weaknesses in their descriptions and address
them directly. However, for applications that re-
quire simplified comparison or ranking of descrip-
tions, appropriate combination methods can be se-
lected based on the specific requirements of the use
case. We propose that various means (weighted,
geometric, or harmonic) could serve the purpose of
creating one holistic evaluation metric. A weighted
combination of the four metrics would allow one
to adjust importance based on specific use cases
and applications. The geometric mean would be
particularly suitable, as it accounts for all metrics
while being naturally sensitive to underperform-
ing dimensions. Alternatively, a harmonic mean
could be employed for cases where balanced per-

formance is even more critical, as it penalizes low
scores more severely than the geometric mean.

E Extended Results

E.1 Quantitative Analysis

This section provides a more in-depth analysis of
the experimental results presented in Section 4.1.

SAEs concept narrowness results in lower inter-
pretability This might seem counterintuitive at
first, but it is important to stress again that we are
not evaluating the features by themselves, but in-
stead the adequacy of the proposed feature descrip-
tion to these features. One potential explanation
is that larger SAEs distribute concepts more finely
across features. As a result, a slightly inaccurate
description that might have still activated a feature
in a smaller SAE may fail to activate the corre-
sponding feature in a larger SAE, where concepts
are encoded even more sparsely. The consistency
of this result is demonstrated by using different
feature descriptions — MaxAct*, produced in this
work, and the ones available on Neuronpedia.
Interestingly, we observe a small left-skewed
peak in the Responsiveness distribution for 65K
SAEs labelled via MaxAct*, a pattern not seen in
any other experiment (see Figure 6). A qualitative
analysis suggests that this is primarily caused by
features representing out-of-distribution concepts
relative to the dataset used for evaluation, such
as, e.g., “new line” feature, which due to the pre-
processing steps is not present in the dataset used
for descriptions generation (see Figure 13). Due
to the lower quality of feature descriptions, the
Purity distribution for Neuronpedia descriptions
of Gemma Scope 65K exhibits a bimodal pattern.
High-quality descriptions tend to have high Purity,
reflecting the greater monosemanticity of the fea-
tures. However, a substantial number of inaccurate
descriptions lead to very low Purity values.

Some Gemma-2 layers look almost not inter-
pretable The feature distribution in layer 12 dif-
fers significantly from other layers, since it lacks
the characteristic rightward elevation in Clarity, Re-
sponsiveness, and Purity scores, as presented on
Figure 7. Manual analysis of the heatmaps support
the theory, that layer 12 demonstrates a high level
of polysemanticity. Interestingly, similar result
were demonstrated on Llama-3.1-8B-Instruct
by (Choi et al., 2024). Evaluating several com-
plete models with ¥ FADE would provide more
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Figure 7: Feature descriptions fit for different layers of Gemma-2.

insights into the interpretability of different models = mance on activation-based metrics without signif-
components. icantly affecting Faithfulness, contradicting find-

. . ings in (Choi et al., 2024). This discrepancy may
Numeric input shows marginally better perfor- .., from differences in provided examples or
mance A_S illustrated in Figure 8 (?1), the per- feature types, as our analysis focuses on Gemma
formance difference between numeric input-based Scope SAEs, whereas (Choi et al., 2024) examined
prompts and delimiter-based highlighting is not | 1,53 1-8B-Instruct neurons. Additionally,
statistically significant for both MLP neurons and higher shot count increases computational costs

SAEs, thgugh the mean score is SlighﬂY higher e to the larger token input (see Table 12). In this
for numeric input. A more comprehensive eval-

uation across multiple layers and a larger feature
set is needed to determine the optimal approach.
Nonetheless, these findings challenge prior asser- ~ Stronger explainer LLMs yield better fea-
tions that highlighting the most activating tokens ~ ture descriptions More capable models con-
is superior due to LLMs’ assumed difficulty in pro- ~ sistently achieve higher performance across

cessing numerical inputs (Choi et al., 2024). nearly all metrics, as presented in Figure 9.
Llama-3.1-70B-Instruct (quantized) performs

Increasing sample count improves performance  comparably to GPT-40 mini, aligning with find-
A clear trend emerges: providing more samples  ings from the evaluation of LLMs (see Table 1).
to the explainer LLM enhances its performance.  Performance generally declines with model size,
However, this also increases the computational cost  except for Llama-3.2-1B-Instruct, which fre-
of feature generation due to the higher token count.  quently fails to adhere to the required output for-
While 15 samples yield strong results, 50 samples  mat, leading to significantly poorer results across
perform even better, as shown in Figure 8 (b). all metrics.

study, we primarily use 2-shot prompts, balancing
performance and cost efficiency.

Increasing examples improves performance but  MaxAct* demonstrates superior performance
raises costs As shown in Figure 8 (c), increasing ~ Our findings highlight the importance of consid-
the number of shots consistently enhances perfor-  ering all four ¥ FADE metrics when optimizing
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automated interpretability approaches. On Gemma
Scope 16K, MaxAct* outperforms all baselines
across all metrics except Faithfulness (see Fig-
ure 10). We show that our generated descriptions
significantly surpass those currently available on
Neuronpedia. Additionally, we compare MaxAct*
to TF-IDF and unembedding-based baselines (see
Appendix C.1). While the unembedding method
underperforms in activation-based metrics such as
Clarity, Responsiveness, and Purity, it achieves no-
tably higher Faithfulness by explicitly considering
the feature’s output behavior. This underscores
that Faithfulness depends on both the feature type
(e.g., SAEs vs. MLP neurons) and the generated
description.

Our results align with (Gur-Arieh et al., 2025),
which demonstrates that combining MaxAct-like
approaches with output-based methods enhances
overall feature description quality. However, the
input-centric metric used in that work does not fully
capture failure modes that Clarity, Responsiveness,
and Purity account for.

This becomes particularly evident when com-
paring MaxAct* to feature descriptions gener-
ated for L1lama-3.1-8B-Instruct in (Choi et al.,
2024). While Clarity scores are comparable — al-
beit slightly lower for MaxAct* — Responsiveness
and Purity show significant improvements. This
difference may partially stem from the fact, that
the dataset used in this work is significantly larger
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Figure 9: Performance of feature descriptions generation via different explainer LLMs.
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Figure 10: MaxAct* comparison to feature descriptions, generated via other methods on Gemma Scope 16K and
Llama3.1-8B-Instruct.

than the one used to produce feature descriptions in  aligned descriptions tend to yield consistently high
(Choi et al., 2024). Notably, the Purity distributions ~ values across all metrics. Conversely, when the
of the two approaches are strikingly different, even  descriptions are of lower quality, the correlation
opposing: MaxAct* exhibits a right-skewed peak, decreases, as each metric is sensitive to different
whereas Transluce’s feature descriptions perform  types of failure cases (see Appendix E.2).
poorly on this metric overall. Faithfulness differ- An exception to this pattern is the Faithfulness
ences are minor but still favor MaxAct*, likely due  metric. In its case, the relationship is reversed:
to the generation of higher-quality feature descrip-  poorer description quality leads to a higher corre-
tions. lation with the other metrics. This occurs because
Faithfulness is set to zero when other metrics are
Metrics correlation depends on the quality of low and the Faithfulness score is not being com-
produced feature descriptions In general, we  puted.
observe a strong correlation between the evaluated
metrics, with the exception of the Faithfulness met- E-2 Qualitative Analysis
ric. Importantly, the degree of correlation is in-  Fine-tuning automated interpretability requires
fluenced by the quality of the feature descriptions  consideration of all metrics in ¥ FADE The
being assessed (see Table 16). Descriptions gener- comparison of metric distributions against the simu-
ated using MaxAct* exhibit the strongest alignment  ]ated activation-based metric in Figure 3 highlights
with their corresponding features, whereas Neu-  that relying solely on this metric is insufficient for
ronpedia descriptions, especially on Gemma Scope  accurately assessing the quality of feature descrip-
65K, show the weakest alignment, which results in  tions. If an automated interpretability framework
higher correlation between Clarity, Purity and Re- s fine-tuned exclusively on such a metric, it may
sponsiveness metrics for MaxAct* Gemma Scope,  generate suboptimal descriptions.
and lower correlation between Faithfulness and For instance, evaluations indicate that the
other metrics. description for feature 5183 in layer 19 of
This trend can be explained by the fact that well- Llama3.1-8B-Instruct, as generated in (Choi
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MaxAct* 16K MaxAct* 65K Neuronpedia 16K Neuronpedia 65K

C R P F [c R P F [c R P F [c R P F
Clarity 1.00 068 063 0.17 1.00 0.69 065 0.14 1.00 063 053 021 1.00 056 049 0.28
Responsiveness - 1.00 086  0.16 - 1.00 092  0.10 - 1.00 0.88 021 - 1.00 0.87 0.14
Purity - - 1.00 0.12 - - 1.00 0.12 - - 1.00 0.24 - - 1.00  0.23
Faithfulness - - - 1.00 - - - 1.00 - - - 1.00 - - - 1.00

Table 16: Correlation of FADE metrics for different sets of feature descriptions.

I Transluce F
MaxAct*

P
<|begin_of _text|>Believing is not the act of a Toltec warrior, knowing is.
<|begin_of _text|>List of French people * List of World Heritage Sites in
France *References * Bernstein* Richard
<|begin_of _text|>Guest features include singer Britthey Taylor and rapper Nyce.
<|begin_of _text|>office.com/verify — Verification of your Microsoft office account
is very important in order to keep the privacy of your personal details and your
Microsoft account under control.
<|begin_of _text|>""Why" i§ a more difficult question.’
<|begin_of _text|>A dry baby is a rash-free baby, so you will both be happy.

<|begin_of text|># -*- coding: utf-8 -*-from rest_framework import
serializers__author = "ContraxSuite, LLC; LexPredict, LLC"C__copyright
= "Copyright ~ 2015-2020,  ContraxSuite, LLC"C  license =

"https://github.com/LexPredict/lexpredict-contraxsuite/blob/1.7.0/LICENSE"C
= "17.0"C__maintainer__ = "LexPredict, LLC"C__email =

Figure 11: Heatmap and descriptions evaluation result
for feature 5183 of L1ama3.1-8B-Instruct layer 19.

Method Label

Transluce activation on names with specific formatting, including
"Bryson," "Brioung," "Bryony," and "Brianna"

MaxAct* Presence and significance of the word "is"

Table 17: Descriptions for L1ama3.1-8B-Instruct fea-
ture 5183 layer 19.

et al., 2024), performs well in terms of Clarity and
Responsiveness, yet achieves a near-zero Purity
score (see Figure 11). Conversely, a description
produced using MaxAct* (see Table 17) exhibits
lower Clarity and Responsiveness but significantly
higher Purity.

The heatmap of activations during description
generation suggests that the description from (Choi
et al., 2024) strongly activates this feature. While
the heatmap does not show all the names listed
in Transluce’s description, this may be due to the
sampling method, which selects random sentences
from the top 1000 to mitigate outliers. However,
activation is observed on similar names, such as
“Bernstein” and “Brittney.” More importantly, this
clearly polysemantic feature responds to multiple

B Neuronpedia F
. TF-IDF

Unembedding

MaxAct*

P
<bos>Oblivion gets predictible after 3 hours of play: "Look at that door, | bet
theirs at trap near their and a key is needed for it, waaaaaaahhhhhaaaahahskojd!
<bos>1 Commentnewestoldestmost repliesmost popularsdfTry seeing a counselour.
<bos>  5dfx I've heard an interview on the planet money podcast some time ago
where they had a teacher on.

<bos>5 minutes late for the show (FYI archive-listeners) and just fbbfshsjfhd,j.
<bos>[/home/ctf/haas/haas,/home/ctf/haas/haas-proxy.py,/home/ctf/haas/jhkn
“*I now had the location of the flag.

<bos> eklovlfjkeos Sure, but my point is that you can’t know for sure whether
Facebook will actually delete your profile even if they say they have.

Figure 12: Heatmap and descriptions evaluation result
for feature 9295 of Gemma Scope layer 20.

distinct concepts, including the word “is” in spe-
cific contexts (included into a description generated
via MaxAct*), as well as certain coding patterns.

As a result, despite the relatively high metric
score of 0.77 in Transluce’s evaluation, the de-
scription has very low Purity. This underscores
the importance of considering not only how well
a concept activates a feature but also other inter-
pretability factors measurable with ¥ FADE. In
this case, although the feature is inherently difficult
to interpret, we argue that the MaxAct* descrip-
tion provides a more accurate representation, as
it better captures the feature’s activating pattern,
and ¥ FADE is clearly demonstrating the feature’s
polysemanticity.

Method Label

Neuronpedia The presence of JavaScript code segments or functions
TF-IDF asdfasleilse asdkhadsj easy file jpds just mean span think
Unembedding f, <eos>, fd, wer, sdf, df, b, jd, hs, ks

MaxAct* Presence of nonsensical or random alphanumeric strings

Table 18: Descriptions for Gemma Scope feature 9295
layer 20.

Out-of-Distribution Features in Gemma Scope
65K SAEs The dataset used for automatic inter-
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Evaluation MaxAct* Heatmap Neuronpedia Heatmap
F <bos># Z2 = X (V2) tilt") replacements.append|(str(optical_params_to_use["z2"]|| ™ W=
+ " # Z2 = X (V2) tilt") strs_to_replace.append("0. - retention _ show ) g . comsand
<bos>) ) Appeal from the United States Bankruptcy Court for the Western District 074 )
of Michigan Case No. - save ( content ) @ api . execute
< v # | <bos>Repeat wntil $|uf{k+1}-uk|< varepsilon$: Sufk+1} gets T(uk)$ #0.27

$u{k+1} gets u{k-+1}-overine{u{k+1}}$ Su{k+1} gets frac{ u{k+1}}{|
u{k+1}|}|u0-overline{u0} |$ Su{k+1} gets u{k+1} + overline{uk}, ,.k gets
k+1.$**Output:** $(u*, lambda*)$, where $u*=uk$, $lambda*=Rdagger(u*)3.
with $Rdagger$ defined in [eq:Rayleigh_new].

T Y, 'delete ') g . show
8s8.08 hal 9

show _ identity *) @ g . command

8477

Figure 13: Feature 3,286 of Gemma Scope 65K SAE. MaxAct* description: ‘“Mathematical expressions and
significant numerical values”. Neuronpedia description: “function definitions in a programming context”.

B Neuronpedia F
. TF-IDF

Unembedding

MaxAct*

P
<bos>"You'd better go home early yourself, Barrow, or that tongue of yours will
get you into trouble," retorted Charlie, conscious that he ought to take his own
advice, yet lingering, nervously putting on his gloves, while the glasses were being
filled.
<bos>But his off-the-cuff style has occasionally gotten him into trouble.
<bos>You just think that because shes one of the few who actually stand up to
you.One of these days thats going to get her into trouble. Maybe not with him, but
sooner or later shed piss off the wrong immortal and wind up hurt.
<bos>He tends to speaks without thinkingwhich gets him into troublebut would
give anything for those he loves.

Figure 14: Heatmap and descriptions evaluation result
for feature 1139 of Gemma Scope layer 20.

pretability omitted certain concepts, such as "new
line," leading to gaps in feature descriptions. These
omissions contribute to the small left-side peak in
Responsiveness distribution in Figure 6. Several
features, including 3315, 3858, and 4337, lack ac-
tivation heatmaps under the MaxAct* approach,
as the dataset does not represent their concepts.
Consequently, the Explainer Model, relying on un-
related sentences, generates incorrect descriptions
(see Figure 13). Heatmaps from Neuronpedia? re-
veal what would activate these features, highlight-
ing limitations of the dataset used in this work,
and broader issues in the automated interpretability
pipeline. For example, despite obtaining and visual-
izing correct results, feature descriptions available
on Neuronpedia are also not representing a correct
concept. Similar results have been obtained for the
<bos> token and indentation in text and code.

2https://www.neuronpedia.org/gemma-2-2b/20-
gemmascope-res-65k/3286

Method Label

Neuronpedia references to problematic situations or conflicts that cause
trouble

TF-IDF trouble

Unembedding troubles, difficulties, problems, troublesome, mischief, ...

MaxAct* Activation of "into" and "trouble" indicating situations

leading to problem

Table 19: Descriptions for Gemma Scope feature 1139
layer 20.

Reliable Evaluation — ¥ FADE Identifies the
Best Description Different automated inter-
pretability methods prioritize either activation-
based metrics or Faithfulness-based measures, lead-
ing to descriptions that may be overly broad or
inaccurate.

In some cases, even manual inspection of
heatmaps fails to fully capture the underlying con-
cept represented by a feature. Therefore, a compre-
hensive evaluation must consider all four metrics.

Table 18 presents feature descriptions generated
by various methods. Based on the heatmap analy-
sis, the MaxAct* description most accurately repre-
sents the concept. The unembedding method, while
incorporating specific tokens promoted by the fea-
ture, also demonstrates strong alignment with the
concept, as reflected in the corresponding metrics.
However, it is not descriptive enough, which is
resulting in lower Responsiveness and Purity.

Sometimes baseline methods may outperform
more complex approaches, particularly on specific
metrics. For instance, TF-IDF and unembedding
baselines exhibit significantly higher Faithfulness
compared to Neuronpedia or MaxAct* for certain
features (see Figure 14).

Feature 1139, for example, influences the output
of tokens related to the concept of “trouble”. De-
scriptions that explicitly capture this aspect tend
to achieve higher Faithfulness (see Table 19). The
MaxAct* description, in contrast, emphasizes the
broader meaning and the most activating expres-
sion, “into trouble”, leading to higher Clarity.
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