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Abstract

Multimodal entity linking (MEL), a task aimed
at linking mentions within multimodal contexts
to their corresponding entities in a knowledge
base (KB), has attracted much attention due to
its wide applications. However, existing MEL
methods primarily rely on mention words as
retrieval cues, which limits their ability to ef-
fectively utilize both textual and visual infor-
mation. As a result, MEL struggles to retrieve
entities accurately, particularly when the focus
is on image objects or when mention words
are absent from the text. To address these
issues, we introduce Visual Prompts guided
Multimodal Entity Linking (VP-MEL). Given
a text-image pair, VP-MEL links a marked
image region (i.e., visual prompt) to its cor-
responding KB entity. To support this task,
we construct VPWiki, a dataset specifically
designed for VP-MEL. Additionally, we pro-
pose the Implicit Information-Enhanced Rea-
soning (ITER) framework, which enhances vi-
sual feature extraction through visual prompts
and leverages the pre-trained Detective-VLM
model to capture latent information. Exper-
imental results on VPWiki demonstrate that
IIER outperforms baseline methods across
multiple benchmarks for VP-MEL. Code and
datasets will be released at https://github.
com/MiHongze-tju/VP-MEL.

1 Introduction

Linking ambiguous mentions with multimodal
contexts to the referent unambiguous entities in
a knowledge base (KB), known as Multimodal
Entity Linking (MEL) (Moon et al., 2018), is an
essential task for various multimodal applications.
Most MEL works (Gan et al., 2021; Wang et al.,
2022a; Dongjie and Huang, 2022; Luo et al., 2023;
Zhang et al., 2023a; Xing et al., 2023; Shi et al.,
2024) mainly focus on improving the interaction
of multimodal information and achieve promising
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Figure 1: Comparison between MEL and VP-MEL
tasks. MEL is typically limited to selecting mentions
from text. In contrast, VP-MEL addresses this limita-
tion by using visual prompts to link specific regions in
the images to the correct entities in the knowledge base.

performance. However, existing methods typically
represent mentions in the form of mention words
and assume that each mention is associated
with a high-quality image, which results in two
limitations for MEL.

Text information dependency: MEL primarily
relies on mention words for entity linking, as these
words frequently exhibit significant overlap with
entity names in real-world applications. Such
overlap serves as a strong cue for identifying
entities within the knowledge base(KB). However,
MEL performs poorly when mention words are
absent or unannotated. As shown in Figure 1,
without annotated mention words, MEL computes
similarity based on the entire text, which can lead
to erroneous entity linking. For instance, MEL
may incorrectly associate the data with the entity
Olympic Games due to high textual similarity.
Since Lee C W and Lin Dan are not explicitly men-
tioned, MEL fails to establish correct links to these
entities. This issue underscores the difficulty of
MEL in accurately linking data when the mention
words related to entities are missing from the data.
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Image modality impurity: Compared to textual
data, images often exhibit higher levels of noise.
Misinterpreting or misusing image information can
substantially impact MEL performance. Most exist-
ing coarse-grained methods (Yang et al., 2023; Li
et al., 2024b; Luo et al., 2023; Wang et al., 2022a;
Li et al., 2023a) directly encode the entire image,
making it difficult to eliminate noise interference.
Song et al. (2024) enhances MEL performance by
extracting fine-grained image information through
object detection. However, this approach still relies
on sufficient textual information for accurate ob-
ject localization and is prone to interference from
visually similar objects. Therefore, a potentially
effective strategy to mitigate image noise is enhanc-
ing object localization precision while reducing the
dependence on textual data.

These limitations hinder the ability of MEL to
fully exploit multimodal data effectively. Despite
being fundamental to multimodal data, images con-
tribute minimally to MEL. Furthermore, the strong
reliance on textual data significantly limits MEL
performance, especially when the text is scarce or
incomplete. So we ask: Is it possible to link spe-
cific objects in multimodal images to the KB even
with insufficient textual information? Investigating
this possibility could unlock the full potential of
multimodal data for MEL.

In this paper, we introduce Visual Prompts
guided Multimodal Entity Linking (VP-MEL), a
new task designed for entity linking in image-
text pairs, as shown in Figure 1. VP-MEL an-
notates mentions directly on images using visual
prompts, eliminating reliance on textual mention
words. This approach broadens its applicability,
enabling effective linking of multimodal data to
the KB even when textual information is limited or
image-based information is prioritized. To support
this task, we develop the VPWiki dataset by ex-
tending existing public MEL datasets, where visual
prompts are assigned to each mention within the
corresponding images.

To tackle the challenges of VP-MEL, we propose
the Implicit Information-Enhanced Reasoning
(ITIER) framework. IIER leverages visual prompts
as guiding texture cues to focus on specific local
image regions. To reduce reliance on textual data,
it employs an external implicit knowledge base to
heuristically generate auxiliary information for the
reasoning process. Specifically, a CLIP visual en-
coder is employed to extract both global image fea-
tures and local features guided by visual prompts.

Additionally, a Vision-Language Model(VLM) in-
corporating a CLIP visual encoder is pre-trained to
generate textual information from visual prompts,
supplementing existing text data. IIER integrates
both supplementary visual and textual information,
enhancing the linking of objects in images to the
KB.
Main contributions are summarized as follows:

(1) We introduce VP-MEL, a new entity linking
task that replaces traditional mention words
with visual prompts, linking specific objects
in images to the KB.

(i1) We develop VPWiki, a high-quality annotated
dataset, to establish a strong benchmark for
evaluating VP-MEL. Furthermore, we intro-
duce an automated annotation pipeline to im-
prove the efficiency of VPWiki dataset con-
struction.

(iii)) We propose the IIER framework to tackle VP-
MEL by effectively leveraging multimodal
information and reducing reliance on a sin-
gle modality. Compared to previous methods,
IIER achieves a 20% performance improve-
ment in the VP-MEL task and maintains com-
petitive results in the MEL task.

2 Related Work
2.1 Multimodal Entity Linking

Given the widespread use of image-text content
in social media, the integration of both modalities
for entity linking is essential. For example, Moon
et al. (2018) pioneer the use of images to aid entity
linking. Building on this, Adjali et al. (2020) and
Gan et al. (2021) construct MEL datasets from
Twitter and long movie reviews. Expanding the
scope of MEL datasets, Wang et al. (2022c) present
a high-quality MEL dataset from Wikinews, featur-
ing diversified contextual topics and entity types.
To achieve better performance on these datasets,
a multitude of outstanding works in the MEL field
(Wang et al., 2022a; Yang et al., 2023; Luo et al.,
2023; Shi et al., 2024) emerge, focusing on extract-
ing and interacting with multimodal information.
Song et al. (2024) use object detection to extract
visual information from images and better link
mention words to correct entities, but still face dif-
ficulty in linking images to KBs in the absence of
mention words. Although multimodal information
can enhance entity linking performance, in these
methods, text consistently dominates over images.
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2.2 Vision Prompt

Region-specific comprehension in complex visual
scenes has become a key research topic in the field
of Multimodal Computer Vision. Existing methods
typically utilize textual coordinate representations
(Zhu et al., 2024; Zhao et al., 2023), learned posi-
tional embeddings (Peng et al., 2024; Zhang et al.,
2023b; Zhou et al., 2023), or Region of Interest
(ROI) features (Zhang et al., 2023b) to anchor lan-
guage to specific image regions. More recently,
Cai et al. (2024) propose a coarse-grained visual
prompting solution that directly overlays visual
prompts onto the image canvas. In contrast, our VP-
MEL provides a fine-grained entity linking method
based on visual prompts to reduce reliance on text.

3 Dataset

As there is no existing MEL dataset that incorpo-
rates visual prompts, constructing a high-quality
dataset is essential for establishing a strong bench-
mark for the VP-MEL task.

Data Collection. Our dataset is built based on
two benchmark MEL datasets, i.e., WikiDiverse
(Wang et al., 2022¢) and WikiMEL (Wang et al.,
2022a). Appendix A.7 provides detailed informa-
tion.

Annotation Design. Given an image-text pair
with corresponding mention words, annotators are
required to: 1) identify and annotate relevant visual
prompts in the image based on the mention words;
2) discard samples where the image and mention
words are unrelated; 3) refine annotations for sam-
ples with inaccurate automated labels; 4) assign an
entity type to each instance (i.e., Person, Organiza-
tion, Location, Country, Event, Works, Misc.).

Annotation Procedure. To improve data anno-
tation efficiency, we develop a pipeline that auto-
matically annotates visual prompts in images based
on mention words inspired by Li et al. (2024a). In
the pipeline, the Visual Entailment Module is em-
ployed to evaluate and filter out the highly relevant
data. Subsequently, the Visual Grounding Module
annotates the visual prompts in the images. The
details of the pipeline are provided in Appendix
A.6. The annotation team consists of 10 annotators
and 2 experienced experts. All annotators have lin-
guistic knowledge and are instructed with detailed
annotation principles. Fleiss Kappa score (Fleiss,
1971) of annotators is 0.83, indicating strong agree-
ment among them. We employ the Intersection

| Train Dev. Test Total

pairs 8,000 1,035 1,052 10,087
ment. per pair | 1.18 1.16 127 1.19
words per pair | 9.89 9.80 10.32 9.92

Table 1: Statistics of VPWiki. ment. denotes Mentions.

over Union (IoU) metric to assess annotation qual-
ity and discard samples with an IoU score below
0.5.

VPWiki GT Entity in KB

TRUMP

Cover of The America
We Deserve.

qid: Q22686
entity_name: Donald Trump
desc: president of the United States...

Figure 2: An example from VPWiki. GT denotes the
ground truth entity. The red box in the left image repre-
sents the visual prompt annotated for the VP-MEL task.
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Figure 3: More statistics of VPWiki. (a) Distribution of
entity types. (b) Distribution of the number of candidate
entities per mention.

#Candidates per mention.

Dataset Analysis. Figure 2 illustrates an example
from the VPWiki dataset. Additional data samples
are provided in A.9. The VPWiki dataset comprises
a total of 12,720 samples, which are randomly split
into training, validation, and test sets with an 8:1:1
ratio. Detailed statistics of the VPWiki dataset are
provided in Table 1. Additionally, Figure 3 presents
the distribution of entity types and the number of
candidate entities per mention in the dataset. In Fig-
ure 3(a), abbreviations are used to represent each
entity type. Meanwhile, Figure 3(b) shows that as
the number of candidate entities per mention in-
creases, the task becomes increasingly challenging.
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4 Task Formulation

The multimodal knowledge base consists of a
set of entities £ = {E;}Y,, where each entity is
represented as E; = (e, , €y,, €4, €q, ). Here, ey,
represents the entity name, e,; denotes the entity
images, e4, corresponds to the entity description,
and e, encodes the entity attributes. A mention
is denoted as M; = (ms;,my;), where ms,
represents the sentence and m,,; corresponds to the
corresponding image. The corresponding entity
of mention M; in the knowledge base is denoted
as E;. The objective of the VP-MEL task is to
retrieve the ground truth entity F; from the entity
set £ in the knowledge base, based on M.

5 Methodology

In this section, we describe the proposed IIER
framework for the VP-MEL task. As illustrated
in Figure 4, IIER utilizes visual encoder to extract
both deep semantic features and shallow texture
features, which are enhanced by visual prompts
(§5.1). To avoid excessive reliance on visual
features, the Detective-VLM module is designed
to generate supplementary textual information
guided by visual prompts(§5.2), which is then
combined with the original text and processed by
the text encoder (§5.3). Finally, a similarity score
is computed after integrating the visual and textual
features(§5.4).

5.1 Visual Encoder

We choose pre-trained CLIP model (Dosovitskiy
et al., 2021) as our visual encoder. Extensive re-
search (Cai et al., 2024; Shtedritski et al., 2023)
demonstrates its effectiveness in interpreting vi-
sual markers. The image m,,; of M; is reshaped
into n 2D patches. After this, image patches
are processed through visual encoder to extract
features. The hidden states extracted from My,
by the CLIP visual encoder are represented as
V]{@ _ (n+1)><dc’

where d,. denotes the dimension of the hidden state
and [ denotes the number of layers in the encoder.

Since CLIP focuses on aligning deep features
between images and text and may overlook some
low-level visual details (Zhou et al., 2022), we se-
lectively extract features from both the deep and
shallow layers of CLIP. Specifically, a shallow fea-
ture (V]\%) is used to represent the textures and
geometric shapes in the image, while deep fea-
tures (Vlg, Vllj, V]\%) are used to represent ab-

0 oyl L2 0 Lon
v[CLS],UM],,ij,...,UMJ eR

stract semantic information. We take the hidden
states corresponding to the special [CLS] token
(UFC Ls) € R%) from these layers as the respective

visual features F"'. These features are concatenated
and normalized using LayerNorm, and then passed
through a MLP layer to transform the dimensions
to d,,, with the output representing the global fea-
tures of the image Vj\cjj € Rd.

1 l
F — /UE)C'LS] G VM],,
Vi = LN (Concat(F?, F'0, F'', F'?))
G _ G’
K%__MLP<W%>.

Then, hidden states from the output layer of en-
coder V]@j are passed through a fully connected
layer, which also transforms the dimensions to d,,
yielding the local features of the image V]@j S
R(n+1)xdy.

Vi =FC (vﬂgj) .
For the image e,,, of entity I;, the global feature

VEQ’; and local feature Vb% are obtained using the
same method described above.

5.2 Detective-VLM

Real-world multimodal data often contain chal-
lenges such as short texts or image noise. In this
context, VLMs serve as implicit knowledge bases,
can analyze both image and text to infer useful aux-
iliary information. Most VLMs (Liu et al., 2024;
Zhu et al., 2024; Ye et al., 2023; Li et al., 2023b)
adopt the CLIP visual encoder, enabling them
to focus more effectively on markers in images
compared to other visual methods (Cai et al., 2024;
Shtedritski et al., 2023). Therefore, we instruction
fine-tune a VLM to extract effective information
from images. The VLM follows template designed
below to further mine potential information from
the image m,, and sentence m,; of mention Mj,
assisting in subsequent feature extraction:

Background: {Image?

Text: {Sentence}

Question: Based on the text ’{Sentence}’,

tell me briefly what is the {Entity Type} and
{Entity Name} in the red box of the {Image}?

Answer: { Entity Name} {Entity Type}

We utilize VPWiki dataset to design the fine-
tuning dataset, where {Image} and {Sentence}
correspond to m,,; and ms; in M;, respectively.
During the inference process, { Entity Name}
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Figure 4: The overall architecture of Implicit Information-Enhanced Reasoning (IIER) framework. The image-text
pairs of the Mention and Entity are used together as input. Specifically, Mention Text is the sentence corresponding
to Mention Image, while Entity Text consists of Entity Name and Entity Attribute corresponding to the Entity Image

in the Knowledge Base.

and { Entity Type} need to be generated by VLM.
Details of the dataset and Detective-VLM can be
found in Appendix A.4.

The objective formula for instruction fine-tuning
Detective-VLM is expressed as follows:

N
mein;l:(fe(xi)a Yi),

where f represents the pre-trained VLM, and 6
denotes the model parameters. N represents the
number of instruction-output pairs, x; is the i-th
instruction, and y; is the corresponding desired
output. £ is defined as:

T
L(fo(zi),y) = = > log Py(y." |s),
t=1

where T is the length of output sequence, y;(t) is
the ¢-th word of the expected output y; at time step
t, and P is conditional probability that the model
generates the output y;(t) at time step ¢.
Detective-VLM aims to ensure that the output is
both accurate and relevant, minimizing the likeli-
hood of generating irrelevant information. Notably,
we represent the Answer output by VLM as my,;.

5.3 Textual Encoder

For the mention M, after concatenating mention
sentence ms; with my,;, they form the input se-
quence, with different parts separated by [CLS]
and [SEP] tokens:

Iy, = [CLS] mu, [SEP]my, [SEP] .

Hidden states of output layer after the input se-
quence passes through text encoder are represented
as Ty, = [t([)CLS] : t]le; o té{}j] e RU+Lxde
where d; represents the dimension of output layer
features, and /; denotes the length of input. We
use the hidden state corresponding to [CLS] as the
global feature of the text 7T’ ]\% € R%, and the en-
tire hidden states as the local features of the text
TE € R+,

The input sequence for entity E; consists of the
entity name e,,, and entity attributes e,,, which can
be represented as:

I, = [CLS]en, [SEP] eq, [SEP].

Then, using the above method, we obtain the
text features Tbgi and Tgi for the entity.
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5.4 Multimodal Feature Interaction

Inspired by the multi-grained multimodal interac-
tion approach (Luo et al., 2023), we build the fea-
ture interaction part. The multimodal feature in-
teraction section consists of three different units.
Notably, this section focuses only on introducing
the functions of each unit, detailed mathematical
derivations are provided in Appendix A.5.

Visual-Features Interaction (VFI). Image
features of the mention M, and the entity E;
interact separately. For feature interaction from
M; to E;, after passing through VFI:

SM2E — VFIMQE(V]\% JVELVE).

The three input features are sufficiently inter-
acted and integrated, resulting in the similarity
matching score S‘J‘/ 2E Similarly, for the feature in-
teraction from E; to M, the similarity score S{;ZM
can be obtained through VFI:

S = VFlpam (Vi Vit Vi, ).

Based on this, the final visual similarity score
Sy can be obtained:

Sy = (SY2E + SE2M) /2.

Textual-Features Interaction (TFI). TFI com-
putes the dot product of the normalized global
features Tz\% and TEG,Z_ , yielding the text global-to-

global similarity score S% 2G,

G2G _ G G
S§26 = 1fi - Tf.

To further uncover fine-grained clues within lo-
cal features, TFI applies attention mechanism to
capture context vector from the local features TAL/IJ_
and TL%Z-’ producing the global-to-local similarity

score Sqq 2L between the global feature Tg_ and the
context vector:

S,ZCJ'QL = TFIGQL (ng’ T]Lw] s Téz ) .
Based on this, the final textual similarity score
ST can be obtained:
St = (SF2¢ + 5725 /2.

Cross-Modal Features Interaction (CMFI).
CMFI performs a fine-grained fusion of features
across modalities. It integrates visual and textual
features to generate a new context vector, he:

he = CMFI(TE, V).

The mention is processed similarly to produce
the new context vector h,,:

ha = CMFI(T}, Vi)

Based on this, the final multimodal similarity
score S¢ can be obtained:

Sc = he - hp,.
5.5 Contrastive Learning

Based on the three similarity scores Sy, St, and
Sc, the model is trained using contrastive loss func-
tion. For a mention M and entity F, the combined
similarity score is the average of the similarity
scores from the three independent units:

S(M,E) = (Sv + Sr + 5¢)/3.

This loss function can be formulated as:
Lo oy SO B))
>_iexp(S(M;, E;))
where F; represents the positive entity correspond-
ing to M, while EZ/ denotes negative entity from
the knowledge base £. It is expected to assign
higher evaluation to positive mention-entity pairs
and lower evaluation to negative ones.
Similarly, the three independent units are trained
separately using contrastive loss function:
exp(Sx (Mj, Eq))
> exp(Sx (Mj, E;))
The final optimization objective function is ex-
pressed as:

EZﬁo—i—)\(ﬁv—FﬁT—i—Ec),

Lx = —log

X e {V,T,C}.

where A is the hyperparameter to control the loss.

6 Experiments

6.1 Experimental Settings

All the training and testing are conducted on a
device equipped with 4 Intel(R) Xeon(R) Platinum
8380 CPUs and 8 NVIDIA A800-SXM4-80GB
GPUs. Detailed experimental settings are provided
in Appendix A.1. To comprehensively evaluate
the effectiveness of our approach, we compare
IIER with various competitive MEL baselines and
VLM baselines. A detailed introduction of these
baselines is provided in the Appendix A.2.

For the VP-MEL task experiments, all ap-
proaches are evaluated on the VPWiki dataset. And
for the MEL task experiments, all approaches are
evaluated on the WikiDiverse (Wang et al., 2022c)
dataset. Additional experiments and detailed expla-
nations are provided in the Appendix A.10.
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Table 2: Performance comparison on the VP-MEL(a) and MEL(b) tasks. Baseline results marked with "x" are based
on Sui et al. (2024). Each method is run 5 times with different random seeds, and the mean value of each metric is
reported. The best score is highlighted in bold. Detailed evaluation metrics can be found in Appendix A.3.

Methods VP-MEL Methods MEL
H@l H®@3 H@S H@l H®@3 H@S
BLIP-2-xI (Li et al., 2023b) 15.86 3541 4532 VILT* (Kim et al., 2021) 3439 51.07 57.83
BLIP-2-xx1 (Li et al., 2023b) 21.90 3731 49.70 ALBEF* (Li et al., 2021) 60.59 75.59 83.30
mPLUG-OwI3-7b (Ye et al., 2023) | 29.46 30.45 48.94 CLIP* (Radford et al., 2021) 61.21 79.63 85.18
LLaVA-1.5-7b (Liu et al., 2024) 4320 64.35 65.71 METER* (Dou et al., 2022) 53.14 7093 77.59
LA SN 30 |90 0% 62 g et | 57 5 o
o ’ ’ ’ ’ BLINK* (Wu et al., 2020) 57.14  78.04 85.32
MiniGPT-4-13b (Zhu et al., 2024) | 37.61 37.61 40.03 IMEL" (Adjali et al., 2020) 3738 5423 61.00
VELML (Zheng et al., 2022) 22.51 37.61 43.35 VELML (Zheng et al., 2022) | 55.53 78.11 84.61
GHMEFC (Wang et al., 2022a) 25.53 4139 48.94 GHMEFC (Wang et al., 2022a) | 61.17 80.53 86.21
MIMIC (Luo et al., 2023) 24.62 4235 49.25 MIMIC (Luo et al., 2023) 63.51 81.04 86.43
MELOV (Song et al., 2024) 26.44 4275 51.51 MELOV™ (Sui et al., 2024) 67.32 83.69 87.54
IIER (ours) 48.36 67.51 77.50 IIER (ours) 69.47 84.43 88.79
() (b)
6.2 Main Results WikiDiverse WikiDiverse*
Methods
Results on VP-MEL. As shown in Table 2a, Hel He3 Hes|Hel Hel Hes
ITER significantly outperforms all other methods VELML | 55.53 78.11 84.61|15.35 2632 31.38
on VP-MEL task. First, among the VLM methods, GHMEC | 61.17 80.53 86.21 | 17.37 28.97 34.36
LLaVA-1.5 has the smallest performance gap com- MIMIC | 63.51 81.04 86.43 | 17.23 29.60 34.84
pared to our method, with differences of 5.16%, MELOV | 67.32 83.69 87.54 | 17.66 30.03 36.43
3.16%, and 11.79% from IIER across the three IIER 69.47 84.43 88.79 | 23.87 3837 45.14

metrics, respectively. Even so, given the signif-
icantly lower training cost compared to LLaVA,
IIER offers a clear advantage in efficiency while
achieving competitive performance. Second, there
is a notable performance gap between MEL meth-
ods and IIER. MEL methods struggle with effective
entity linking in scenarios where mention words
are absent, underscoring their limitations and the
robustness of our approach.

Results on MEL. Table 2b presents the experi-
mental results comparing IIER with other methods
on MEL dataset. During testing, the Detective-
VLM analyzes image and text data to generate a
concise representation of mention words, which
are concatenated with the text and used for entity
linking similarity calculation. With enhanced vi-
sual features and external knowledge, IIER demon-
strates excellent performance in the MEL task. Al-
though our work primarily focuses on VP-MEL
rather than MEL, IIER still demonstrates strong
competitiveness compared to the state-of-the-art
MEL method. This highlights the effectiveness

Table 3: Performance comparison in the absence of men-
tion words on the WikiDiverse dataset. The symbol "«"
represents the dataset without annotated mention words.

of external implicit knowledge in supporting the
reasoning process of entity linking.

6.3 Detailed Analysis

Influence of Mention Words on MEL Methods.
As shown in Table 3, the performance of MEL
methods drop significantly across all three metrics
in the absence of mention words. The average per-
formance decline is 72.65%, 64.48%, and 60.28%,
respectively. This indicates that MEL methods
fail to extract meaningful information from visual
and textual data, making them unsuitable for tasks
without mention words. In contrast, even without
Detective-VLM, visual prompts, or mention words,
IIER can still achieve the best metrics. This demon-
strates that IIER in the VP-MEL task possesses a
stronger capability to leverage both image and text

17128



Methods VP-MEL

H@1 H@3 H@S5 H@10 H@20
MiniGPT-4-7b 28.55 43.66 52.27 62.99 70.70
MiniGPT-4-13b 27.04 43.96 53.02 63.44 70.72
BLIP-2-x1 37.16 54.38 59.52 66.62 72.81
BLIP-2-xxl 40.63 54.53 61.78 68.73 74.62
LLaVA-1.5-7b 4245 63.14 69.03 76.74 82.33
LLaVA-1.5-13b 41.54 59.37 66.92 73.11 77.80
Detective-VLM(ours)‘48.36 67.51 77.50 82.59 87.90

Table 4: Performance comparison in different VLMs.

G VP-MEL

V=~ -Layer

H@1 H@3 H@5 H@10 H@20
Single Shallow Layer 39.88 60.88 71.00 79.31 86.56
Single Deep Layer 39.73 58.91 69.94 80.82 88.07
(Shallow+3 Deep) Layers [43.66 60.88 68.58 78.70 84.29
(3 Shallow+Deep) Layers |40.33 59.22 67.37 75.38 83.23
IIER 48.36 67.51 77.50 82.59 87.90

Table 5: Performance comparison across different fea-
ture layers in V¢,

information effectively.

Effect Analysis of Detective-VLM. As shown in
Table 4, we evaluate the effectiveness of Detective-
VLM by replacing it with various VLMs and an-
alyzing the results. Our method achieves the
best performance across all metrics. In particular,
Detective-VLM shows an absolute improvement
of 5.91% in Hit@1 compared to the second-best
approach. In contrast, non-fine-tuned VLMs often
produce a large amount of irrelevant information,
which hampers subsequent processing.

Contributions of Visual Features from Differ-
ent Layers. As shown in Table 5, we combine
visual features from different layers during the ex-
traction of V¢ to compare the effects of various
combinations. In the deeper layers of CLIP visual
encoder, the model tends to focus more on abstract,
high-level concepts. VP-MEL focuses on aligning
high-level concepts between images and text, facili-
tating the capture of their semantic correspondence.
This explains why using a single deep layer fea-
ture achieves the highest H@20 score of 88.07%.
However, in the VP-MEL task, low-level texture
details are equally important. Shallow texture fea-
tures need to be extracted to help the model focus
on the presence of visual prompts. Based on this,

VP-MEL
Methods
H@l H@3 H@5 HE@10 H@20
IIER 48.36 67.51 77.50 @ 82.59 87.90
[IER? 41.54 59.06 61.93 66.62 72.96
[IER' 3565 5393 6526  73.57 80.51
IIER* 35.03 53.80 65.01 73.26 80.39

Table 6: The model marked "{" uses a VLM without
fine-tuning. The model marked "{" without VLM. The
model marked "x" without VLM and Visual Prompts.

we choose to concatenate the deep features with
the shallow features. Experimental results show
that the best performance is achieved when the
proportion of deep features is larger.

Ablation Study. In Table 6, we conduct ablation
study on the IIER framework. Our instruction-
based fine-tuning standardizes the format of the
VLM-generated auxiliary information to minimize
irrelevant noise. Without fine-tuning, the VLM
tends to produce unstructured and often irrelevant
text, which can interfere with downstream reason-
ing. As shown in the results, IIER exhibits sig-
nificant performance degradation in H@5, H@10,
and H@20 under this setting. Then we remove
the Detective-VLM module from IIER, which re-
sults in a decline across all metrics. Notably, even
without Detective-VLM, IIER shows robust entity
linking performance, outperforming MEL methods
as shown in Table 2a. This highlights the ability of
IIER to efficiently leverage multimodal information
from both images and text. Subsequently, remov-
ing the visual prompts from the images results in a
decline across all metrics, emphasizing the crucial
role of visual prompts in guiding the model to focus
on relevant regions within the images. Note that
the slight decrease in metrics does not suggest a
diminished significance of visual prompts, as they
are integral to the functioning of the VLM.

7 Conclusion

In this paper, we propose VP-MEL, a novel task
designed to link visual regions in image-text pairs
to their corresponding entities in a knowledge base,
guided by visual prompts. To support this task,
we develop VPWiki, a high-quality dataset con-
structed using an automated annotation pipeline
to improve annotation efficiency. To tackle VP-
MEL, we propose IIER, a framework that effec-
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tively leverages visual prompts to extract enriched
local visual features and generate supplementary
textual information. IIER maintains a balance be-
tween visual and textual features, preventing exces-
sive reliance on a single modality. Extensive ex-
perimental results demonstrate that IIER surpasses
state-of-the-art methods. Furthermore, VP-MEL
significantly alleviates the constraints of mention
words and expands the applicability of MEL to
real-world scenarios.

Limitations

VP-MEL expands the application scenarios of
MEL, allowing users to directly annotate areas
of interest within images. However, this requires
a correlation between the image and the text. In
cases where the image and text are uncorrelated,
the performance of VP-MEL may degrade. In
practical applications, users may utilize arbitrarily
shaped regions to indicate areas of interest. Future
research will aim to refine the design of visual
prompts for improved adaptability and perfor-
mance. We hope this work will inspire further
research into leveraging recent advancements in
both natural language processing and computer
vision to enhance performance.

Ethics Statement

The datasets employed in this paper, WikiDiverse,
WikiMEL, and RichpediaMEL, are all publicly ac-
cessible. As such, the images, texts, and knowledge
bases referenced in this study do not infringe upon
the privacy rights of any individual.
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A Appendix

A.1 Experimental Settings

For our proposed model framework, we use pre-
trained ViT-B/32 (Dosovitskiy et al., 2021) as the
visual encoder, initialized with weights from CLIP-
ViT-Base-Patch32!, with d, and d, set to 96. The
number of epochs is set to 20, and the learning rate
is tuned to 1 x 10~°. The batch size is set to 128. In
the loss function, A is set to 1. For the text encoder,
we select pre-trained BERT model (Devlin et al.,
2019), setting the maximum input length for text
to 40 and the output feature dimension d; to 512.
Without including the VLM, the size of the train-
able parameters is 153 M, and the total estimated
model parameters size is 613 M. We train and test
on a device equipped with 4 Intel(R) Xeon(R) Plat-
inum 8380 CPUs and 8 NVIDIA A800-SXM4-
80GB GPUs.

A.2 Descriptions of Baselines

To thoroughly evaluate the performance of our
method, we compare it against strong MEL base-
lines, including BERT (Devlin et al., 2019),
BLINK (Wu et al., 2020), JMEL (Adjali et al.,
2020), VELML (Zheng et al., 2022), GHMFC
(Wang et al., 2022a), MIMIC (Luo et al., 2023)
and MELOV (Sui et al., 2024).

Additionally, we select robust VLMs for com-
parison, including BLIP-2-x1 2, BLIP-2-xxl 3 (Li
et al., 2023b), mPLUG-OwI3-7b * (Ye et al.,

1https://huggingface.co/openai/
clip-vit-base-patch32
Zhttps://huggingface.co/Salesforce/
blip2-flan-t5-x1-coco
3https://huggingface.co/Salesforce/
blip2-flan-t5-xx1
4https://huggingface.co/mPLUG/
mPLUG-0w13-7B-240728

2023), LLaVA-1.5-7b °, LLaVA-1.5-13b © (Liu
et al., 2024), MiniGPT-4-7b 7, MiniGPT-4-13b 8
(Zhu et al., 2024), VIiLT (Kim et al., 2021), ALBEF
(Lietal., 2021), CLIP (Radford et al., 2021), and
METER (Dou et al., 2022). We reimplemented
JMEL, VELML and MELOV according to the orig-
inal literature due to they did not release the code.
We ran the official implementations of the other
baselines with their default settings.

*BERT (Devlin et al., 2019) is a pre-trained lan-
guage model based on the Transformer architecture,
designed to deeply model contextual information
from both directions of a text, generating general-
purpose word representations.

*BLINK (Wu et al., 2020) present a two-stage zero-
shot linking algorithm, where each entity is defined
only by a short textual description.

*JMEL (Adjali et al., 2020) extracts both unigram
and bigram embeddings as textual features. Differ-
ent features are fused by concatenation and a fully
connected layer.

*VELML (Zheng et al., 2022) utilizes VGG-16
network to obtain object-level visual features. The
two modalities are fused with additional attention
mechanism.

*GHMFC (Wang et al., 2022a) extracts hierarchi-
cal features of text and visual co-attention through
the multi-modal co-attention mechanism.
*MIMIC (Luo et al., 2023) devise three interaction
units to sufficiently explore and extract diverse mul-
timodal interactions and patterns for entity linking.
*MELOV (Sui et al., 2024) incorporates inter-
modality generation and intra-modality aggrega-
tion.

*BLIP-2 (Li et al., 2023b) effectively utilizes the
noisy web data by bootstrapping the captions,
where a captioner generates synthetic captions and
a filter removes the noisy ones.

*mPLUG-OwI3 (Ye et al., 2023) propose novel
hyper attention blocks to efficiently integrate vi-
sion and language into a common language-guided
semantic space, thereby facilitating the processing
of extended multi-image scenarios.

Shttps://huggingface.co/liuhaotian/1lava-v1.
5-7b

6https://huggingface.co/liuhaotian/llava—v1.
5-13b

"https://drive.google.com/file/d/
1RY9;jVedyglLX-038LrumkKRh6Jtaop58R/view?usp=
sharing

8https://drive.google.com/file/d/
la4zLvaiDBr-36pasffmgpvH5P7CKmpze/view?usp=
share_link
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eLLaVA-1.5 (Liu et al., 2024) is an end-to-end
trained large multimodal model that connects a
vision encoder and an LLM for general purpose
visual and language understanding.

*MiniGPT-4 (Zhu et al., 2024) aligns a frozen vi-
sual encoder with a frozen LLM, Vicuna, using just
one projection layer.

*VIiLT (Kim et al., 2021) commissions the trans-
former module to extract and process visual fea-
tures in place of a separate deep visual embedder.
*ALBEF (Li et al., 2021) introduce a contrastive
loss to align the image and text representations
before fusing them through cross-modal attention,
which enables more grounded vision and language
representation learning.

*CLIP (Radford et al., 2021) is a neural network
trained on a variety of (image, text) pairs. It can be
instructed in natural language to predict the most
relevant text snippet, given an image.

*METER (Dou et al., 2022) systematically inves-
tigate how to train a fully-transformer VLP model
in an end-to-end manner.

A.3 Evaluation Metrics

For evaluation, we utilize Top-k accuracy as the
metric that can be calculated by the following
formula:

N
1
Accuracyy,, j = N E I(ti € yy),
i

where N represents the total number of samples,
and [ is the indicator function. When the receiving
condition is satisfied, I is set to 1, and O otherwise.

A.4 Detective-VLM

Detective-VLM is based on the mplug-owl]2 frame-
work (Ye et al., 2024), with instruction fine-tuning
carried out using the mplug-owl2-l1lama2-7b model
9

We utilize VPWiki dataset to design the fine-
tuning dataset, where {Image} and {Sentence}
correspond to m,,; and ms; in Mj, respectively. In
the fine-tuning dataset, the { Entity Name} cor-
responds to the mention words in M that are asso-
ciated with the Visual prompt, the { Entity Type}
is one of [Person, Organization, Location,
Country, Bvent, Works, Misc].

9https://huggingface.co/MAGAeH3/
mplug-owl2-11lama2-7b

A.5 Feature Interaction Formula

Visual-Features Interaction (VFI). The two
similarity scores Si72E and SF?M in visual feature
interaction are calculated using the same method.
Here, we take 5{}4 2E a5 an example.

hy = MeanPooling(Vbei),
hye = FC(LayerNorm(hy, + VJ\%)),
hyg = Tanh(FC(hy)),
hy, = LayerNorm(hyg * hye + VE),

SYPE = hy - Vi,
Textual-Features Interaction (TFI). The calcu-
lation of the global-to-local similarity score S&2F
incorporates an attention mechanism as follows:

Q, K,V = TjWag, Tig, Wi, Thy, Wi,
T
Vdr

L L L
where TEi Wiq, TM], Wik, TMj W, are learnable
matrices.

H; = softmax( )V,

hy = LayerNorm(MeanPooling(H})),
SE =TFC(TE) - hy.

Cross-Modal Features Interaction (CMFI).
CMFI performs alignment and fusion of features
from different modalities.

het7 hmi = FCa (Tg; )7 FCa (T]\C/T}] )’

Hey, Hipy = FC(Q(VE[;)? FCCQ(V]\%]'%

in which FC,; is defined by W,; € R%*d and
bcl E Rdc’ FCC2 iS deﬁned by WC2 G Rd’UXdC and
ch € Rdc‘

exp(het : Hév)

?H exp(het - Hi,)'

oy =

n
hee =Y aix Hiyi € [1,2,..., (n+ 1),
7

heg = Tanh(FCc3(het),
in which F'C 3 is defined by W3 € R%*d and
bes € Rée,
he = LayerNorm(heg * het + hec).

By replacing inputs he; and H,,, with h,,; and
H.,,, hy, can be obtained using the aforementioned
formula.
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WIKIDiverse | WikiMEL | RichpediaMEL
Sentences 7,405 22,070 17,724
M. in train 11,351 18,092 12,463
M. in valid 1,664 2,585 1,780
M. in test 2,078 5,169 3,562
Entities 132,460 109,976 160,935

Table 7: Statistics of WIKIDiverse, WikiMEL, and Rich-
pediaMEL. M. denotes Mentions.

A.6 Data Annotation Pipeline

Please note that the pipeline serves as a prepro-
cessing stage for data annotation. We use the Vi-
sual Entailment Module and the Visual Grounding
Module to automatically annotate visual prompts
in the images. While the accuracy of the pipeline
is limited—such as its difficulty in distinguishing
between specific individuals when multiple people
are present—it still plays a crucial role in improv-
ing annotation efficiency. Due to these limitations,
manual verification and re-annotation are neces-
sary after pipeline processing. However, for anno-
tators, making a simple "yes or no" judgment is
much easier than selecting a specific individual. As
a result, even with limited accuracy, the pipeline
significantly boosts the overall efficiency of the
annotation process.

For the Visual Entailment Module and Visual
Grounding Module, we choose OFA;4,.4¢(v ) and
OFA4pge(ve) (Wang et al., 2022b), respectively.

I FER
mm LOC
Em MIsC
3 ORG

3 COUNTRY
3 EVENT
E WORK

Figure 5: Entity type distribution of WIKIDiverse.

A.7 WikiDiverse and WikiMEL

WikiDiverse is a high-quality human-annotated
MEL dataset with diversified contextual topics and
entity types from Wikinews, which uses Wikipedia
as the corresponding knowledge base. WikiMEL
is collected from Wikipedia entities pages and con-

Methods WikiMEL RichpediaMEL

H@l H@3 H@5|H@l H@3 H@5
ViLT* 72.64 8451 87.86|45.85 62.96 69.80
ALBEF* | 78.64 88.93 91.75 | 65.17 82.84 88.28
CLIP*  |83.23 92.10 94.51 | 67.78 85.22 90.04
METER* | 72.46 84.41 88.17 | 63.96 82.24 87.08
BERT* | 74.82 86.79 90.47 | 59.55 81.12 87.16
BLINK* | 74.66 86.63 90.57 | 58.47 81.51 88.09
JMEL* | 64.65 79.99 84.34 | 48.82 66.77 73.99
VELML |68.90 83.50 87.77 | 62.80 82.04 87.84
GHMFC |75.54 88.82 92.59 | 76.95 88.85 92.11
MIMIC | 87.98 95.07 96.37 | 81.02 91.77 94.38
MELOV* | 88.91 95.61 96.58 | 84.14 92.81 94.89
IIER | 88.93 95.69 96.73 | 84.63 93.27 95.30

Table 8: Baseline results marked with "x" according to
Sui et al. (2024). We run each method three times with
different random seeds and report the mean value of
every metric. The best score is highlighted in bold.

tains more than 22k multimodal sentences. The
statistics of WIKIDiverse and WikiMEL are shown
in Table 7. The entity type distribution of WIKIDi-
verse is illustrated in Figure 5.

During the data collection process, we select
the entire WIKIDiverse dataset along with 5,000
samples from the WikiMEL dataset. Compared
to WikiMEL, WIKIDiverse features more content-
rich images that better represent real-world appli-
cation scenarios, making it particularly suitable
for meeting the requirements of the VP-MEL task
in practical contexts. Consequently, WIKIDiverse
constitutes the majority of the VPWiki dataset. Ad-
ditionally, we integrate the knowledge bases (KBs)
from both datasets, resulting in an entity set encom-
passing all entities in the main namespace.

A.8 Additional Ablation Study

The ablation study of the loss function is shown
in table 9. When only Lo is computed, the model
performance degrades. When the loss function
consists of Lo and a single Lx , the performance
further declines in certain cases (e.g., Lo + Lt
, Lo + Ly . This degradation stems from the
increased unimodal loss, which exacerbates feature
interaction imbalance. When using Lo + L¢ ,
the performance improves compared to using Lo
alone. This is because Lo , as the loss function
of the feature interaction module, alleviates the
imbalance to some extent.
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VP-MEL

Methods

H@l H@3 HE@5 HE@10 H@20
Lo 42.15 56.65 62.69 67.67 71.90
Lo+ Lr | 3097 4985 56.65 63.75 69.78
Lo+ Ly | 3852 5453 58091 63.60 67.82
Lo+ Lc | 48.19 6254 66.77 69.18 72.36
IIER 4836 67.51 77.50 82.59 87.90

Table 9: The loss function consists of Lo and Lx (X =
V, T, C), where the similarity score in L is the average
score of the three feature interaction modules Ly .

A.9 Data Samples

We provide additional data samples categorized by
entity type. The specific details can be found in
Figure 7.

A.10 Additional Experiments

To comprehensively assess the performance of the
IIER framework in the MEL task, we test IIER on
the WikiMEL and RichpediaMEL datasets (Wang
et al., 2022a). The statistics of WikiMEL and Rich-
pediaMEL are shown in Table 7. Experimental
results are shown in Table 8. The experimental
results demonstrate that IIER remains highly com-
petitive with state-of-the-art MEL method.

It is noted that within these two datasets, certain
metrics of IIER exhibit values that are comparable
to those of MELOV, such as H@1 and H@3 in the
WikiMEL dataset. This may be attributed to the
higher image quality and the homogeneous entity
types (primarily Person) in WikiMEL and Richpe-
diaMEL. When datasets contain fewer entity types
and minimal image noise, the auxiliary information
generated by IIER contributes less to performance
improvement.

Nevertheless, IIER achieves the best perfor-
mance on WikiDiverse, which includes a wider va-
riety of entity types, and achieves a new SOTA for
the VP-MEL task. As MEL increasingly addresses
more complex scenarios, IIER shows significant
potential for future advancements.

Comparative experiments with VLM2Vec (Jiang
etal., 2024) are added, as presented in Table 10. Ex-
perimental results demonstrate that IIER remains
state-of-the-art. While VLM2Vec performs excel-
lently as a general-purpose information retrieval
model for multimodal search, it is not specifically
designed for fine-grained entity-level alignment -

VP-MEL
H@l H@3 H@5

Methods

BLIP-2-xI (Li et al., 2023b) 15.86 35.41 4532
BLIP-2-xxlI (Li et al., 2023b) 21.90 37.31 49.70
mPLUG-OwI3-7b (Ye et al., 2023) [ 29.46 30.45 48.94
LLaVA-1.5-7b (Liu et al., 2024) |43.20 64.35 65.71
LLaVA-1.5-13b (Liu et al., 2024) |32.93 65.56 66.92
MiniGPT-4-7b (Zhu et al., 2024) |28.10 33.53 37.31
MiniGPT-4-13b (Zhu et al., 2024) |37.61 37.61 40.03

22.51 37.61 43.35
25.53 41.39 48.94
24.62 42.35 49.25
26.44 4275 51.51
44.09 65.76 70.01

VELML (Zheng et al., 2022)
GHMEC (Wang et al., 2022a)
MIMIC (Luo et al., 2023)
MELOV (Song et al., 2024)
VLM2Vec (Jiang et al., 2024)

IIER(ours) 48.36 67.51 77.50

Table 10: Performance comparison in different VLMs.

the core requirement of entity linking tasks. This
inherent limitation partially explains VLM2Vec’s
suboptimal performance on MEL tasks.

A.11 Case Study

To clearly demonstrate the proposed VP-MEL task
and the ITER model, we conduct case studies and
compare them against two strong competitors (i.e.,
LLaVA-1.5 and MIMIC), in Figure 6. As shown
in Figure 6a, in the first case, all three methods
correctly predicted the entity. IIER makes full use
of both image and text information, allowing it to
more effectively distinguish between the different
individuals in the image. LLaVA-1.5 may be over-
whelmed by the textual information, while MIMIC
struggles to identify the correct entity when the
mention words are unavailable. In the second case,
both LLaVA-1.5 and MIMIC retrieve Endeavour
as the first choice. Only IIER, with the guidance of
Visual Prompts and integration of textual informa-
tion, correctly predicts the right entity. In Figure
6b, we present the failed predictions. In the first
case, when the content of the image interferes with
the visual prompt, it impairs the reasoning process
of IIER. The red box in the image bears a high
similarity to the visual prompt. As a result, IIER in-
correctly focuses on the wrong region of the image,
ranking Donald Trump first. When IIER encoun-
ters difficulties in distinguishing the objects within
the visual prompts, it leads to incorrect inferences.
For example, in the second case, the distinguish-
ing features of the two individuals in the image
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(a) Successful predictions.
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Figure 6: Case study for VP-MEL. Each row is a case, which contains Input, ground truth entity, and top three
retrieved entities of three methods, i.e., IIER (ours), LLaVA-1.5 (Liu et al., 2024), MIMIC (Luo et al., 2023).
Each retrieved entity is described by its Wikidata QID and entity name, with the entity marked with a checkmark
indicating the correct one.

are obstructed, which causes IIER to struggle in
differentiating between them. The image content
in real-world data is often complex, which makes
VP-MEL a challenging task. We hope that this task
can be further refined and developed over time.
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Type

Image of mention

Text of mention

Image of entity

Entity

Australia's Douglas
Utjesenevic going against

"gqid": "Q681184"
"entity_name": "Eberhard

East German Eberhard Vogel at "
PeI'SOIl Vogel
the 1274 FIFA wqud Cup, "desc": "German footballer"
Australia men's first World
Cup appearance.
"gid": "Q38076"
O . A restaurant in Exeter in nentity name": "McDonald’s"
Organization O et ot o
"gid": "Q13875"
. st Map showing San Fernando "entity_name": "Romblon"
Locatlon within the province of "desc": "province of the
mmmn\ Romblon. Philippines"
"qid": "Q30"
"entity_name": "United States
President Bush with PM of America"
Country Tymoshenko in 2008. "desc": "country in North
America"

Event

First place winner Brazilian
Terezinha Guilhermina and her
guide Guilherme Soares de
Santana across the line in
the women's 200 m final T11
is underway.

"gid": "Q211155"

"entity_name": "200 metres"
"desc": "sprint running
event"

Works

Voice actor Rob Paulsen tries
to find the right words for
Pinky during the Masquerade.

"qid": "Q1500726"
"entity_name": "Pinky and the
Brain"

"desc": "animated television
series"

Misc

A California owl in Redwoods
Park in California.

"qid": "Q748921"
"entity_name": "Spotted Owl"
"desc": "species of bird"

Figure 7: Examples of the VPWiki dataset. Each row represents a sample corresponding to a specific entity type,

which contains the entity type, image of mention, text of mention, image of entity, and entity.
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