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Abstract

Emotions are fundamental to conversational un-
derstanding. While significant advancements
have been achieved in conversational emotion
recognition and emotional response generation,
recognizing the causes of eliciting emotions is
less explored. Previous studies have primar-
ily focused on identifying the causes of emo-
tions by understanding verbal contextual utter-
ances, overlooking that non-verbal emotional
cues can elicit emotions. To address this issue,
we develop an Emotional Contagion Graph Net-
work (ECGN) that simulates the impact of non-
verbal implicit emotions on the counterpart’s
emotions. To achieve this, we construct a het-
erogeneous graph that simulates the transmis-
sion of non-verbal emotions alongside verbal
influences. By applying message passing be-
tween nodes, the constructed graph effectively
models both the implicit emotional dynamics
and explicit verbal interactions. We evaluate
ECGN ’s performance through extensive ex-
periments on the benchmark datasets and com-
pare it against multiple state-of-the-art models.
Experimental results demonstrate the effective-
ness of the proposed model. Our code is avail-
able at https://github.com/Yu-Fangxu/ECGN.

1 Introduction

Emotions are widely present in human communi-
cation. It is crucial for humans to infer others’
thoughts that are accompanied by changes in emo-
tions. Understanding the mindset of others may
involve not only understanding the contents and
emotions of utterances but also digging out the po-
tential causes of emotions. The ability of models
to reason the cause of emotions is crucial in many
contexts–it enhances the accuracy of responses by
mining the intents, reduces the possible negative
emotions for the opposite, and provides more sub-
stantive emotional support. Therefore, developing
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Where are you going 
this weekend? [Neutral]

I have no idea. Maybe I will sleep
 for the whole day. [Neutral]

So boring! Shall we go out for a picnic 
with my friends? [Happy]

Fred and David, my college class 
mates and Rachel. [Happy]

Sounds interesting. Who are 
the other people? [Happy]

Speaker A

Speaker B

Speaker A

Speaker B

Speaker A

Figure 1: An example of a conversation in the
RECCON-DD dataset. The arrow indicates the cause
utterance for any target utterance.

a model for recognizing the causes behind emo-
tions is crucial for a reliable dialogue system.

In recent years, significant progress has been
made in conversational emotion analysis. Previous
studies (Hu et al., 2023; Song et al., 2022; Zhang
et al., 2023a) on Emotion Recognition in Conver-
sation (ERC) have primarily focused on labeling
emotions for individual utterances, but this study
often lacks recognizing the underlying emotional
stimuli present in these utterances. To address this
limitation, Poria et al. (Poria et al., 2021) introduce
the Causal Emotion Entailment (CEE) task, which
aims to determine which specific utterances stimu-
late a non-neutral emotional response in the target
utterance. Compared to Emotion Cause Extraction
(ECE) (Lee et al., 2010; Gui et al., 2017, 2018;
Fan et al., 2019) and Emotion Cause Pair Extrac-
tion (ECPE) (Xia and Ding, 2019; Hu et al., 2021b;
Ding et al., 2020a; Wei et al., 2020) in discovering
cause triggers in a document, identifying conver-
sational emotion causes is challenging due to the
complex conversational structure and interactions.
Many works focus on understanding contextual ver-
bal utterances (Bosselut et al., 2019; Zhao et al.,
2023a; Zhou et al., 2024a), but neglecting emotions
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themselves can also be the cause of emotions on the
counterparts beyond verbal utterances. For exam-
ple, in Figure 1, speaker B’s emotion is attributed
to speaker A’s happiness, which makes it difficult
to reason from only verbal utterances.

To address this challenge, we turn to Emotional
Contagion Theory (Hatfield et al., 1993, 2011;
Liu et al., 2024), which demonstrates a process
in which a person or group influences the emo-
tions or behavior of another person through the
conscious or unconscious induction of emotion
states and behavioral attitudes. This means that
the emotions of counterparts can elicit emotions
without any linguistic cues. Generally, emotional
contagion can be implicit (Tee, 2015; Wróbel and
Imbir, 2019), which mainly relies on non-verbal
communication (Schoenewolf, 1990), or explicit,
which affects the emotions of counterparts by con-
tent (Kelly and Barsade, 2001).

Inspired by the emotional contagion process, we
propose an Emotional Contagion Graph Network
(ECGN) to identify emotion causes, which simu-
lates the emotional contagion process through both
explicit and implicit emotional pathways. Explicit
emotional contagion is modeled through the in-
teractions of verbal utterances called verbal cues,
while implicit emotional contagion is captured
through the dynamics of non-verbal emotional la-
bels called non-verbal cues. ECGN consists of
several key steps. First, ECGN extracts both non-
verbal and verbal cues from the conversational con-
text and constructs a heterogeneous conversational
graph. This graph captures two types of inter-
actions: implicit emotional contagion from non-
verbal emotional labels and explicit emotional con-
tagion from verbal utterances. Moreover, ECGN
effectively transmits the dynamics within and be-
tween non-verbal and verbal cues through rela-
tional graph neural networks. Finally, a classi-
fier predicts the emotional cause based on the inte-
grated information.

To evaluate the proposed ECGN, we conduct
extensive experiments on the RECCON-DD and
RECCON-IE datasets. Results consistently demon-
strate that ECGN effectively promotes the detec-
tion of causal utterances from the target utterance.

2 Related Work

Causal Emotion Entailment Poria et al.(Poria
et al., 2021) introduced the RECCON task to iden-
tify the causes of the emotions of a speaker in con-

versations. Based on the granularity of the causes,
it is divided into the CEE task (utterance-level
causes) and the CSE task (phrase-level causes).
Their approach concatenates potential causal ut-
terances with the target utterance, but overlooks
conversational interactions. To improve this, re-
cent work has focused on contextual understand-
ing. For instance, MuTECCEE(Bhat and Modi,
2023) employs multitask learning to model con-
versational context, KEC (Li et al., 2022) and
KBCIN (Zhao et al., 2023a) incorporate common-
sense knowledge through directed acyclic graphs,
PAGE (Gu et al., 2023) leverages positional rela-
tionships, TSAM (Zhang et al., 2022) integrates at-
tention for intra- and inter-speaker influences, and
recent work (Huang et al., 2024; Zhou et al., 2024b)
explores reasoning with Large Language Models
(LLMs). The above works take emotion as aux-
iliary information accompanied by the utterances
and pay attention to the verbal information, but ne-
glect the effects of non-verbal emotional dynamics.
ECGN recognizes and bridges this gap.

Emotion Recognition in Conversations. Emo-
tion Recognition in Conversations (ERC) is a
highly relevant task for CEE, which involves iden-
tifying emotion categories for the target utterance.
ERC needs to predict unknown emotions in the
conversation, differentiating from CEE, for which
emotions are already known. Most of the present
works adopt graph-based and sequence-based meth-
ods. The former (Ghosal et al., 2019; Ishiwatari
et al., 2020; Hu et al., 2021c; Shen et al., 2021;
Zhang et al., 2023a) builds a graph to handle inter-
actions between utterances and speakers.

Another group of works exploits transformers
and recurrent models to learn the interactions be-
tween utterances (Majumder et al., 2019; Hu et al.,
2021a; Liu et al., 2022). Commonsense Knowl-
edge is explored by KET (Zhong et al., 2019). Con-
trastive learning methods are also prevailing for
ERC (Lewis et al., 2019; Song et al., 2022; Yu
et al., 2024), which separates utterances in the rep-
resentation space. Several recent works explore
LLMs (Lei et al., 2023; Zhang et al., 2023b; Wu
et al., 2024b) for ERC tasks. Unlike ERC methods
that only rely on contextual utterances for predic-
tion, ECGN introduces contextual emotional inter-
actions to improve cause predictions. In addition,
we discuss the connection between ECGN and the
implicit emotion analysis in Appendix A.
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Emotion Cause (Pair) Extraction. Emotion
cause extraction (ECE) aims to identify the causes
or stimuli that trigger emotions in each sentence
in a long document, which was first proposed
by (Lee et al., 2010). Early studies are de-
voted to designing rule-based methods (Chen et al.,
2010; Neviarouskaya and Aono, 2013). Recent
works propose various deep networks to tackle this
task (Cheng et al., 2017; Zheng et al., 2022).

The ECE task has been researched for nearly a
decade, but its reliance on additional emotion an-
notations limits its applicability in real-world sce-
narios. To this end, Emotion-Cause Pair Extraction
(ECPE) (Xia and Ding, 2019) is proposed to ex-
tract all pairs of emotions and corresponding causes
in a document without emotion annotation. They
propose a two-step framework to perform ECPE. In
the following work, ECPE-2D (Ding et al., 2020a)
utilizes a 2D Transformer to model clause pairs.
Sequence-labeling scheme is also constructed for
ECPE (Yuan et al., 2020; Cheng et al., 2021; Wu
et al., 2023). Recent works have started to explore
the strong reasoning and understanding abilities of
LLMs for ECPE (Wu et al., 2024a; Gu et al., 2024).
Unlike these two tasks, which predict emotional
causes in documents, ECGN focuses on captur-
ing the complex emotional interactions between
interlocutors in real-life conversation scenarios.

3 Methodology

3.1 Problem Definition

We start by formulating the CEE task. Con-
sider a conversation as a sequence of ut-
terances with speakers and emotions as
C = {(u1, e1, s1), (u2, e2, s2), . . . , (uT , sT , eT )},
where ut is the utterance at the timestamp t in the
conversation, et ∈ {happy, angry, sad, disgusted,
fearful, surprised, neutral} is the corresponding
emotion label, and st is the speaker identity of ut.
The goal of CEE is to identify the set of utterances{ui}(i ≤ t) which are the emotion causes of ut
in the conversation history if ut is a non-neutral
utterance.

3.2 Model Overview

Figure 2 shows the pipeline of ECGN. It consists
of several key components designed to simulate
explicit and implicit emotional contagion.

The first component is to encode utterances and
emotions, using a language model to extract textual

representations while generating emotion represen-
tations with emotion labels.

The second component is the construction of
the emotional contagion graph with the extracted
representations. The emotional contagion graph
contains the explicit and implicit ones. The explicit
emotional contagion graph simulates the triggering
of emotions by language content in the conversa-
tional context. The implicit emotional contagion
graph simulates the influence of non-verbal cues on
emotions in the conversational context, which are
represented by emotion encodings. In this graph,
the vertices represent utterances or emotions. In-
teractions within emotion nodes pass unconscious
contagion silently, dynamics between emotion and
utterances or utterances themselves actively trig-
ger emotions. To learn the transition process, we
employ relational graph neural networks and graph
transformers to integrate such interactive relation-
ships, which allows ECGN to capture causes in
terms of contents and emotions.

The last component combines both the learned
emotional and utterance information to construct
cause representations, which are used to distinguish
the causal and non-causal utterances.

3.3 Context Encoding with Emotions
Given an utterance history U = {u1, u2, . . . , uT }
and an emotion history E = {e1, e2, . . . , eT },
where T is the number of utterances contained in a
conversation, we use a language model to extract
verbal utterance representations. More specifically,
we add special tokens, such as [CLS] and [SEP],
which serve as markers to indicate the beginning
and end of each utterance. To facilitate verbal utter-
ance representations with emotion semantics, we
construct a prompt:

Xi(si, ui, ei) = si ei says ∶ ui, (1)

where X(⋅, ⋅, ⋅) transforms each utterance into an
implicit emotion-rich form. For example, an utter-
ance can be organized as John happily says: I’m so
glad I bought this watch! Finally, we concatenate
all the prompts in a conversation and feed them
into a pretrained language model:

Ht = PLM([CLS]X1[SEP] . . . [CLS]XT [SEP]),
(2)

Where the conversational textual representations
Ht = Concat(ht1, ht2, . . . , htT ) ∈ RT×d is the con-
catenation of all last hidden states at the [CLS] to-
ken’s position, d is the dimension of hidden states.
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Figure 2: Overview of our proposed method. The structure of the model is shown at the bottom. First, we input the
utterances and emotions into the language model to obtain the encodings of them. Then we construct a heterogeneous
graph modeling the complex interaction relations, including the simulated implicit and explicit emotional contagion.
Having a heterogeneous graph, we build a graph-learning model for learning dynamics between different node
features. Different relations indicate that distinct information passing is needed. Finally, a cause prediction module
is employed to identify the causes of emotions within the conversation.

3.4 Emotion Encoding
To leverage the non-verbal cues, we generate emo-
tional representations at each time step with emo-
tion labels. Given a candidate set of emotion labels
S = {e1, e2, . . . , e∣S∣}, each emotion ei can be rep-
resented as an embedding vector:

gi = PLM(ei), (3)

Where gi ∈ Rd, and then we concatenate emo-
tion representations as a lookup table P =
Concat(g1, g2, . . . , g∣S∣) ∈ R∣S∣×d. These emotion
representations are initialized with the original pre-
trained language model. Given an emotion history
E = {e1, e2, . . . , eT }, we generate the representa-
tions for et through:

het = Lookup(P , et), (4)

Where het ∈ Rd is the representation of et, concate-
nating them can get the conversation emotional
representation He = Concat(he1, he2, . . . , heT ) ∈
RT×d.

3.5 emotional contagion Graph Construction
To mimic both explicit and implicit emotional con-
tagion processes, we construct a heterogeneous
graph for each conversation history. We denote a
graph as G = (V,E ,R), with vertices vi ∈ V , edges
ϵk ∈ E , rij ∈ R is the type of relation between vi
and vj .
Our graph G contains two types of nodes:

Utterance node: We consider the ith utterance
in the conversation as a node vti ∈ Vt, whose rep-
resentations are initialized with its utterance-level
features ht,(1)i = hti for any time step i.

Emotion node: We treat each emotion in the
conversation as a node vei ∈ Ve and initialize the
representations with h

e,(1)
i = hei .

Then the set of nodes can be represented as:

V = Vt ∪ Ve, (5)

where utterance node Vt = {ui}, emotion nodeVe = {ei} and i ∈ [1, T ].
Our graph G contains three types of edges:
Emotion-Emotion edge: To simulate the non-

verbal implicit emotional contagion, we connect
the current utterance i with a past context window
size of p and a future context window size of f .
We believe that adjacent utterances of utterance i
have the most significant impact. For the sake of
message passing between utternaces, each utter-
ance vertex has an edge with the timestamp i utter-
ance of the past: vei−p, vei−p+1, . . . , vei−1, the future
utterances: vei+1, vei+2, . . . , vei+f and vei itself. These
edges are denoted as Euu = {(ei, ej), (ej , ei)},
where max(0, i − p) ≤ j ≤ min(i + f, T ), and
i ∈ [1, T ]. Eee enables the non-verbal emotional
information to transmit intra- and inter- speakers.

Utterance-Utterance edge: Verbal communi-
cations can elicit emotions, we connect utterance
nodes to construct explicit emotional contagion
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graph to capture the conscious emotions as Eee ={(ui, uj), (uj , ui)}, which allows the utterances
themselves to cause the emotions.

Utterance-Emotion edge: To further estab-
lish the interactions between emotions and utter-
ances, we connect the utterance node i with its
emotion node to model the interaction within a
speaker. The edges can be represented as Eue ={(ui, ei), (ei, ui)}, which connects the mutual ef-
fect of emotion and utterance within a speaker. Be-
sides, multi-hop message passing enables such an
effect to spread across speakers.

Then the set of edges can be represented as:

E = Euu ∪ Eue ∪ Eee, (6)

where E includes non-verbal implicit emotional
dynamics Eee, and verbal explicit emotional dy-
namics Eue and Euu.

3.6 Emotional Dynamic Interaction
To effectively pass the information between nodes
and learn the dynamics, we utilize R-GCN
(Schlichtkrull et al., 2018), which can integrate
different relationships between vertices and learn
the node representations:

h
∗,(l+1)
i = σ ⎛⎝∑r ∈R ∑j∈N r

i

1∣N r
i ∣W l

rh
∗,(l)
j +W l

0h
∗,(l)
i

⎞⎠ ,
(7)

Where N r
i is the set of neighboring nodes of node

i under the relationship r, h∗,li is the representa-
tions for node i which is either emotional or tex-
tual node after layer l ∈ [1, L], Wr ∈ Rd1×d2 and
W0 ∈ Rd1×d2 are learnable parameters to transform
the neighborhood information within relationship
r. R-GCN layers not only transmit the emotional
dynamics within the emotional nodes and utterance
nodes but also capture the interactions between
emotions and utterances. Then, the node represen-
tations are mapped to a shared representation space.
To step further, We exploit GraphTransformer (Shi
et al., 2020) to learn rich utterance representations.
More specifically, the representations can be calcu-
lated as follows:

h
∗,(l+1)
i =W1h

∗,(l)
i + ∑

j∈Ni

αi,jW2h
∗,(l)
j , (8)

αi,j = Softmax
⎛⎜⎝
(W3h

∗,(l)
i )(W4h

∗,(l)
j )√

d

⎞⎟⎠ , (9)

where the αi,j is the attention coefficient and d is
the hidden size. The final utterance representation

is then obtained by concatenating the emotional
and utterance node representations at layer L:

hi = Concat(ht,(L)i , h
e,(L)
i ), (10)

3.7 Cause Prediction

To predict the cause of the target utterance, we
obtain the cause representation ct by concatenating
the utterance representations between the target
utterance T and the historical utterance i:

ci = ReLU(W5[hi;ht] + b1), (11)

ŷi = Sigmoid(W6ci + b2), (12)

Where ŷi is the probability of utterance i is the
cause of emotion in the target utterance. W5 ∈
Rd2×d3 , W6 ∈ Rd3×1 b1 ∈ Rd3 , b2 ∈ R are learn-
able parameters. The cross-entropy loss function is
adopted for optimization.

4 Experimental settings

4.1 Dataset and evaluation metrics

Dataset. We conduct experiments on two bench-
mark datasets, RECCON-DD and RECCON-
IE (Poria et al., 2021), derived from DailyDia-
log (Li et al., 2017) and IEMOCAP (Busso et al.,
2008), respectively. RECCON-DD serves for train-
ing and in-distribution testing, while RECCON-IE
is used as an out-of-distribution test set to evaluate
the generalization ability of models. The statistics
of the RECCON-DD dataset are shown in Table 3.
The data samples used for the experiments were
constructed by pairing each non-neutral emotional
utterance with its historical utterances, including
itself, one by one. If a historical utterance was
found to be the cause of an emotional utterance,
the utterance pair was labeled as positive; other-
wise, the pair was labeled as negative. In addition,
we analyze the distribution of cause pairs in the con-
versations, as shown in Figure 3, about 80 % of the
emotion causes are located within two time steps
before the target utterances, indicating the high im-
pact of neighboring emotions and utterances. We
further discuss the locality of the emotion causes
in Appendix B.

Metrics. Following previous work (Poria et al.,
2021), we adopt the macro-averaged F1 score to
evaluate performance. Also, the F1 score for posi-
tive and negative samples is reported.
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Methods Neg. F1 (%) Pos. F1 (%) Macro F1 (%)

ECE Methods
KAG (Yan et al., 2021) 86.35 58.18 72.26

Adapted (Turcan et al., 2021) 88.18 64.53 76.36

ECPE Methods
ECPE-2D♣ (Ding et al., 2020a) 94.96 55.50 75.23

ECPE-MLL♣ (Ding et al., 2020b) 94.68 48.48 71.59
RankCP♣ (Wei et al., 2020) 97.30 33.00 65.15

HCL-ECPE (Hu et al., 2024) 88.52 66.47 76.93

CEE Methods
ChatGPT 0-shot† (Zhao et al., 2023b) 85.25 51.33 68.29
ChatGPT 1-shot† (Zhao et al., 2023b) 82.10 52.84 67.47
MuTECCEE (Bhat and Modi, 2023) 83.46 61.62 72.54

PAGE (Gu et al., 2023) 89.42 65.20 77.02
KEC † (Li et al., 2022) 88.85 66.55 77.70

KBCIN † (Zhao et al., 2023a) 89.65 68.59 79.12
TSAM (Zhang et al., 2022) 89.75 68.59 79.17
DAM (Kong et al., 2023) 89.35 69.32 79.34

ECGN(ours) 90.57∗±0.19 69.78±0.54 80.17∗±0.24
Table 1: Results on the RECCON-DD dataset. †and ♣ denotes the results obtained from (Zhao et al., 2023b)
and (Poria et al., 2021).* represents our method is significant statistically (p-value < 0.05).

Methods Neg. F1 (%) Pos. F1 (%) Macro F1 (%)

ECPE-2D (Turcan et al., 2021) 97.39 28.67 63.03
ECPE-MLL (Yan et al., 2021) 93.55 20.23 57.65

RankCP (Wei et al., 2020) 92.24 15.12 54.75
KEC (Li et al., 2022) 86.08 19.72 52.90

ECGN(ours) 93.55±0.24 42.99±1.76 68.26±0.91
Table 2: Results on the RECCON-IE dataset.

RECCON-DD Train Dev Test

Positive Pairs 7026 328 1767
Negative Pairs 20558 838 5296

Number of Dialogues 834 47 225

Table 3: Statistics of the RECCON-DD dataset.

4.2 Baselines

For a comprehensive evaluation, we compare our
method with the following baselines:

(1) ECE and ECPE methods: KAG (Yan et al.,
2021) that alleviates positional bias problem and
improves the semantic dependencies using CSK;
Adapted (Turcan et al., 2021) jointly detects emo-
tion and emotion cause enhanced by CSK; ECPE-
2D (Ding et al., 2020a) uses the 2D represen-
tation to simulate emotion-cause pairs interac-
tions with a 2D transformer; ECPE-MLL (Ding
et al., 2020b) extends ECPE-2D by incorporat-

ing multi-label learning to extract emotion cause.
RankCP (Wei et al., 2020) emphasizes inter-
clauses modeling with a ranking perspective for
ECPE; HCL-ECPE (Hu et al., 2024) introduces
hierarchical contrastive learning for ECPE.

(2) CEE methods: KEC (Li et al., 2022) injects
commonsense knowledge for a directed acyclic
graph; KBCIN (Zhao et al., 2023a) leverages event-
centered commonsense knowledge (Bosselut et al.,
2019) to capture the inter-utterance relationships;
PAGE (Gu et al., 2023): A position-aware graph-
based model distinguishes different speakers for
causal entailment. MuTECCEE (Bhat and Modi,
2023) exploits multitask learning to extract con-
versational emotions, emotion causes, and entail-
ment. TSAM (Zhang et al., 2022) proposes a two-
stream attention model to separately model emo-
tions and speakers. In-Context-Learning (Zhao
et al., 2023b): uses ChatGPT (GPT-3.5-turbo-0301)
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Figure 3: Distribution of the distance between positive
pairs. The distance denotes the temporal difference
between the causal and target utterances. The blue part
indicates the portion that distance is less than 2.

with few-shot demonstrations to test CEE perfor-
mance.

4.3 Implementation Details

We use Roberta-base (Liu et al., 2019) as the
pre-trained language model for a fair compari-
son. All experiments are conducted using the
PyTorch (Paszke et al., 2019) and Torch Geomet-
ric (Fey and Lenssen, 2019) frameworks, with re-
sults reported across five repetitions.

5 Main Results and Analysis

Results on RECCON-DD. Table 1 shows the
performance comparison of ECGN with state-of-
the-art methods. It is observed that the ECE and
ECPE methods perform worse than the CEE meth-
ods. For example, Adapted (Turcan et al., 2021)
serves as the best method among ECE and ECPE
methods that can achieve 76.36% macro F1 score,
which performs mediocrely among the CEE meth-
ods. ECGN surpasses 3.81%, indicating the effec-
tiveness of our design for CEE. ECPE and ECE
models fail to leverage available emotion labels of
utterances and model utterance and emotion inter-
actions in conversation structure, leading to their
poorer performance.

Compared to CEE methods, we outperform
TSAM by 1% overall and KBCIN, which incorpo-
rates external knowledge. The second-best baseline
DAM incorporates discourse parsing to enhance
long-distance cause classification. However, as
shown in Figure 3, most causal relations occur in
the local context, highlighting the effectiveness of
our simulation of emotional contagion in the local
context to improve the overall performance. In ad-

Emotion Graph Neg. F1 Pos. F1 Macro F1

90.57 69.78 80.17
89.98 68.48 79.23
89.77 68.45 79.11
89.38 68.29 79.04

Table 4: Effects of different components on the perfor-
mance of the proposed ECGN model.

dition, ECGN has an overwhelming performance
advantage over ChatGPT; the possible reason is
that ChatGPT is not well aligned with the complex
data annotation for CEE. The experimental results
are significantly better than the baselines under the
t-test, which validates the robustness of ECGN.

Results on RECCON-IE. Table 2 shows the ex-
perimental results on RECCON-IE. ECGN demon-
strate improvements compared to other baseline
methods. In terms of Macro-F1 score, ECGN out-
performs the best-performing baseline by 4.12%,
highlighting its superior OOD generalization capa-
bility.

5.1 Ablation Study

We conducted a series of ablation studies on
ECGN. The results, as depicted in Table 4, high-
light the criticality of each element in our approach.
Removing the graph structure and concatenating
the emotional representations with utterance repre-
sentations, as well as removing the implicit emo-
tional graph part, harms the performance to a large
extent. This result demonstrates the effectiveness
of ECGN in dealing with emotional causes hap-
pening in the local time with the mutual influence
of emotions. Removing ei in Xi decreases macro
F1 by 0.3%, indicating the importance of the influ-
ence of the emotional state on the features of the
utterance. Ablation results for edges are provided
in Appendix C.

5.2 Effect of the Number of R-GCN Layers

We conducted an investigation into the influence
of the number of layers in the Relational-GCN ar-
chitecture. The findings, as presented in Table 5,
indicate that the incorporation of more global infor-
mation with the deeper graph networks introduces
confused context since most causes are adjacent to
the target utterances. Besides, the use of deep graph
neural networks resulted in performance degrada-
tion due to oversmoothing, as reported in previ-
ous studies (Kipf and Welling, 2016). Experiments
show that employing two layers of Relational-GCN
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Layers Neg. F1 Pos. F1 Macro F1

1 90.22 68.27 79.24
2 90.57 69.78 80.17
3 90.38 68.67 79.52
4 90.11 68.70 79.40
5 90.43 68.15 79.29
6 90.46 69.02 79.74

Table 5: The performance of using a different number
of R-GCN layers under the window size 2.

Model Neg. F1 Pos. F1 Macro F1

R-GCN 90.57 69.78 80.17
R-GAT 90.56 69.45 80.04

FiLMConv 90.75 69.50 80.12

Table 6: The performance of using different graph net-
works as a message passing mechanism.

proved to be a balanced approach. The decrease in
performance may be due to redundant information
introduced by the excessive number of layers.

5.3 Effect of Contextual Window Size

We also report the performance under a large range
of window sizes. In Figure 4, the trend of per-
formance shows that it first increases with the in-
crease of window size. The increase in window size
should have a larger perception field to aggregate
more information; however, the intrinsic property
of a conversation decides that a non-neutral emo-
tion is more likely to be triggered by the neighbor’s
utterances, and distant utterances may introduce
irrelevant information (Ding et al., 2019).

5.4 Performance Across Different Message
Passing Mechanisms

We investigated whether the performance of
ECGN depends heavily on the specific message
passing mechanism by substituting the default R-
GCN with two alternatives: R-GAT (Busbridge
et al., 2019) and FiLM (Brockschmidt, 2020). The
results presented in Table 6 reveal stable perfor-
mance in these different variants of graph neural
networks. This suggests that ECGN is robust and
works effectively with various underlying message-
passing structures.

5.5 Efficiency of ECGN

To demonstrate the efficiency of ECGN, we com-
pared its parameter count and average inference
time per utterance for recognizing emotional causes

Model # Parameters (M) Runtime (s)

Roberta-base 124.64 0.022
ECGN 129.83 0.024

Table 7: ECGN increases minimal computation costs
and extra parameters compared to the base model.
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Figure 4: Test results under different window sizes on
the RECCON-DD dataset. The red dashed line depicts
the trend generated by polynomial fitting.

against the base RoBERTa-base model. Inference
time was measured on a single NVIDIA L40S GPU.
The results shown in Table 7 indicate that incorpo-
rating graph layers adds only 4.16% more param-
eters and increases inference time by just 9.09%.
These minimal computational overheads highlight
the high parameter and computational efficiency of
ECGN, confirming its scalability.

5.6 Can Implicit Emotional Dynamics
Identify Causes?

To verify how much the causes depend on the
implicit emotion dynamics, we remove utterance
nodes and only retain emotion nodes to determine
the causes. As reported in Figure 5, the perfor-
mance works almost equal to ChatGPT 1-shot and
slightly better than RankCP on the Macro F1 score.
It indicates that implicit non-verbal emotional dy-
namics play a critical role in causal emotion entail-
ment, as demonstrated by its performance even in
the absence of explicit utterance-level information.

6 Case Study

We exhibit a case study in Table 8. In this case, the
speaker SA first feels sad when finding his chicken
tastes dry, which elicits a sad emotion. Subse-
quently, speaker SB turns his emotion from neutral
to sad not only because speaker SB’s tastes are dry,
but also is influenced by SA. As shown in Table 8,
removing the implicit emotional contagion network
enables the model to understand only the utterance
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Turn Speaker Utterance Emotion w/IEC w/o IEC Label
1 A Hey George, how is your chicken? Neutral - - -
2 B My chicken tastes all right, but it is pretty

dry. How is your fish?
Neutral - - -

3 A My fish is pretty dry too. Sad [3] [3] [3]
4 B It’s almost as if this food has been sitting

a little too long. It doesn’t seem fresh.
Sad [3, 4] [4] [3, 4]

Table 8: Case study of a conversation instance shows that non-verbal implicit emotional dynamics (IEC) enables the
model to rectify incorrect cause predictions.

Neg F1 Pos F1 Macro F1
F1 Metrics

0

20

40

60

80

100
RankCP
ChatGPT 1-shot
Ours (implicit)

Figure 5: Performance comparison with baselines using
only non-verbal implicit emotional dynamics.

semantics, which overlooks speaker SA’s sadness
as an emotion trigger of SB , leading to mistaken
classification. Besides, by analyzing our predicted
emotion causes, we find that the following aspects
mainly cause prediction errors: First, the causal
relationship happens when the distance between
the target utterance and the cause utterance is large.
This type of error presents a challenge to trace back
to distant previous dialog history. The second cate-
gory is sudden emotional change, which confuses
the model about causal relations. Solving these two
kinds of errors needs a more fine-grained reasoning
process to understand the mental state, e.g. Theory
of Mind (Ma et al., 2023; Jin et al., 2024; Stra-
chan et al., 2024; Yu et al., 2025) because conversa-
tional context is simple, which is unable to provide
sufficient information to accurately identify those
causes, and external memory to retrieve relevant
information from long conversation histroy (Zhong
et al., 2024; Maharana et al., 2024) also have po-
tential capturing distant information.

7 Conclusion

In this paper, we introduce the Emotional Con-
tagion Graph Network (ECGN) as an innovative
model that improves causal emotion entailment
in conversations by simulating the impact of non-
verbal implicit emotions on the counterpart’s emo-

tions. By drawing inspiration from the Emotional
Contagion Theory, the model constructs a hetero-
geneous conversational graph to capture explicit
and implicit emotional dynamics between speakers,
simulating the influence between emotions them-
selves and interactions with utterances in a conver-
sation to determine the causes. Extensive experi-
mentation on the benchmark datasets demonstrates
superior performance of ECGN over state-of-the-
art baselines. Ablation studies and evaluations fur-
ther validate the robustness and effectiveness of
our approach, as well as the importance of implicit
emotional dynamics in the conversation for causal
emotion entailment.
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Limitations

Our method only uses text-based information to
simulate the emotional contagion. We recognize
that multimodal information, such as video and
audio can enhance the non-verbal emotional conta-
gion, including facial expressions, body language,
posture, tone of voice, and other non-verbal cues.
Such an integration would better reflect the dy-
namics of emotional contagion in the real world,
leaving a large room for future benchmarks and the
development of new methods.
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A Connection to Implicit Emotion
Analysis

Our work is relevant to implicit emotion analysis,
which often focuses on recognizing emotions from
text where the specific emotion is not explicitly
stated (Zhou et al., 2021; Liao et al., 2024). emo-
tional contagion is a widely existing psychological
phenomenon, which is about people spreading emo-
tions unconsciously to influence or change others’
emotions. Our proposed ECGN recognizes it and
explicitly models it to improve the recognition of
emotional causes in conversations.

B Local Context Justification

ECGN focuses on the local conversational context,
which is motivated by the observation that emo-
tional causes frequently appear near the target ut-
terance. This characteristic exists in the RECCON-
DD dataset, where high inter-annotator agreement
(kappa score: 0.7928) indicates reliable annota-
tions, reflecting the characteristic of cause pairs
being concentrated in a local context in real-world
scenarios.

The reliance on local context is further veri-
fied in a document-level emotion cause extraction
dataset (Gui et al., 2018; Ding et al., 2019), col-
lecting data from SINA City News, which is also
a real-world scenario. Statistics show that more

Model Neg. F1 Pos. F1 Macro F1

ECGN 90.57 69.78 80.17
- Utterance-Utterance Edges 90.29 67.97 79.13
- Emotion-Emotion Edges 89.84 68.57 79.20
- Utterance-Emotion Edges 90.12 68.45 79.29

Table 9: The performance of removing each type of
edges.

than 95% of emotion causes happen at a relative
distance of less than 2. This finding demonstrates
that emotional causes often happen in a local con-
text and verifies the rationality of our modeling of
the local conversational context.

C Additional Ablation Study

To verify the effectiveness of emotional dynamic in-
teraction, we conduct ablation studies by removing
emotion-emotion edges, utterance-utterance edges,
and utterance-emotion edges. The results shown in
Table 9 indicate that removing each type of edge
will lead to a significant drop in performance, as re-
moving them hinders the information passing in the
graph, demonstrating that the edges are effective
in passing emotional contagion and contributing to
performance.
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