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Abstract

Paraphrasing is rooted in semantics, which
makes evaluating paraphrase generation sys-
tems hard. Current paraphrase generators are
typically evaluated using borrowed metrics
from adjacent text-to-text tasks, like machine
translation or text summarization. These met-
rics tend to have ties to the surface form of
the reference text. This is not ideal for para-
phrases as we typically want variation in the
lexicon while persisting semantics. To address
this problem, and inspired by learned similarity
evaluation on plain text, we propose PAM, a
Paraphrase AMR-Centric Evaluation Metric.
This metric uses Abstract Meaning Represen-
tation (AMR) graphs extracted from the input
text, which consist of semantic structures ag-
nostic to the text surface form, making the re-
sulting evaluation metric more robust to vari-
ations in syntax or lexicon. Additionally, we
evaluated PAM on different semantic textual
similarity datasets and found that it improves
the correlations with human semantic scores
when compared to other AMR-based metrics.

1 Introduction

Paraphrase generation is a relevant task in natural
language processing (NLP), which has been widely
applied in versatile tasks, such as question answer-
ing (Dong et al., 2017; Lan and Xu, 2018; Gan and
Ng, 2019; Abujabal et al., 2019), machine transla-
tion (Madnani et al., 2012; Apidianaki et al., 2018;
Kajiwara, 2019), and semantic parsing (Herzig and
Berant, 2019; Wu et al., 2021; Cao et al., 2020).
Recent years have witnessed rapid development
in paraphrase generation algorithms (Bandel et al.,
2022; Huang et al., 2022, 2023). However, little
progress has been made in the automatic evaluation
of this task. It is even unclear which metric is more
reliable among many widely used metrics. Most
evaluation metrics used in previous paraphrase gen-
eration research were not designed specifically for
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Figure 1: Simplified outline of the approach with oracle
example. The AMR parser would produce the same
AMR graph for both paraphrases, and thus, the scoring
is 1.

the task but adopted from other tasks, such as ma-
chine translation (MT) Papineni et al. (2002) and
summarization (Lin, 2004). However, the evalu-
ation of paraphrases is inherently different from
the evaluation of most other text-generation tasks
because a good paraphrase typically obeys two
criteria (Gleitman, 1970; Chen and Dolan, 2011;
Bhagat and Hovy, 2013): semantic similarity and
lexical diversity. Semantic similarity means that
the paraphrase maintains similar semantics to the
input text, whereas lexical diversity requires that
the paraphrase possesses lexical or syntactic dif-
ferences from the input. In contrast, a task like
machine translation does not have such lexical di-
versity requirements. It is, therefore, uncertain
whether the metrics borrowed from other tasks are
sensible in paraphrase evaluation. Recent seman-
tic similarity metrics leverage pretrained language
models to compute the graded similarities between
two texts (Reimers and Gurevych, 2019). How-
ever, because of the way these models work, there
will always be some attachment between the out-
put score and the texts’ specific ordering, struc-
ture, and wording. In hopes of reducing this cou-
pling between semantics and syntax when learning
a semantic similarity evaluation metric, we pro-
pose to explore Abstract Meaning Representation
(AMR). Given that AMR is a formalism designed
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to capture the semantic content of a sentence, ab-
stracting away from the surface form and focusing
on the underlying meaning, we hypothesize that
embedding representations of these structures in-
stead of the traditional plain texts will help the
trained models to better capture the semantics with
less emphasis in the surface structure. We propose
to learn text similarity through a similar pipeline
used in plain-text automatic similarity assessment
methods that encode sentences into latent seman-
tic representations to measure the similarity of the
two representations (Reimers and Gurevych, 2019;
Gao et al., 2021); however, this time we encode
latent semantic representations from AMR graphs
extracted from the two input texts. Our proposed
metric PAM, Paraphrase AMR-Centric Evaluation
Metric, builds on top of Sentence-BERT (Reimers
and Gurevych, 2019), adding extra layers to pro-
cess AMR graphs and fuse these newly computed
graph representations into the text-based backbone.
Inspired by other similarity scoring works (Gao
et al., 2021; Shou and Lin, 2023), we utilize self-
supervised learning methods to overcome the high
cost of collecting training data. We experiment
with PAM on two popular Semantic Textual Sim-
ilarity (STS) datasets and demonstrate that PAM
achieves considerable improvements in correla-
tion with human annotations. In further analysis,
PAM retains the highest performance under vari-
ous challenges compared to previous metrics. The
code to reproduce the experiments is available at
https://github.com/afonso-sousa/pam.

2 Related Work

Neural networks have seen significant progress in
paraphrase generation, leading to systems capa-
ble of producing more natural and human-like out-
puts (Sun et al., 2021; Huang and Chang, 2021;
Ding et al., 2021; Wahle et al., 2023; Luo et al.,
2023). Alongside these developments, extensive
research has focused on automatically extracting
paraphrases to build benchmarks, supporting fur-
ther advancements in the field (Ganitkevitch et al.,
2013; Pavlick et al., 2015; Pavlick and Callison-
Burch, 2016; Zhang et al., 2019b; Dou et al., 2022;
Huang et al., 2023). Despite these advancements,
relatively little attention has been given to evalu-
ating the quality of generated paraphrases. Ear-
lier work (Goyal and Durrett, 2020; Kumar et al.,
2020; Sun et al., 2021) typically relied on met-
rics that measure surface-level overlap between

generated outputs and reference paraphrases, such
as BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), and METEOR (Banerjee and Lavie, 2005).
However, these metrics are limited in their abil-
ity to capture semantic equivalence and lexical
diversity — two key aspects of paraphrasing. As
a result, recent research has increasingly shifted
toward compound metrics that explicitly balance
semantic fidelity with lexical variation (Hosking
et al., 2022; Sousa and Lopes Cardoso, 2024a;
Sousa and Cardoso, 2025). A prominent exam-
ple is iBLEU (Sun and Zhou, 2012), which com-
bines BLEU and self-BLEU (Shu et al., 2019) to
quantify both meaning preservation and novelty. In
parallel, modern embedding-based approaches like
SBERT (Reimers and Gurevych, 2019) leverage
sentence embeddings to measure semantic similar-
ity, have also been employed for evaluating para-
phrases as they offer robustness to lexical variations
in paraphrases. AlignScore (Zha et al., 2023) fur-
ther advances the field with a fact-aware alignment
model that evaluates factual consistency between
the source and paraphrase, addressing critical chal-
lenges in meaning preservation. To our knowl-
edge, Shen et al. (2022) are the only researchers
to systematically assess the adequacy of existing
paraphrase evaluation metrics. They identified key
shortcomings and introduced ParaScore, a com-
position of metrics combining semantic similarity
and lexical divergence. We focus on improving
the semantic similarity component of paraphrase
evaluation, which can function independently or
within a framework like ParaScore.

3 paM

We introduce PAM, an evaluation metric that com-
putes graded similarity scores between sentences
using AMR graph representations. For each sen-
tence, an AMR graph is extracted, linearized, and
fed into a Siamese network, which outputs a sim-
ilarity score as the cosine similarity between the
graph embeddings.

3.1 Extracting AMR Graphs

AMR is a linguistically grounded semantic formal-
ism that represents the meaning of a sentence as a
rooted graph, where nodes are concepts and edges
are semantic relations. AMR abstracts away from
surface text, aiming to produce a more language-
neutral representation of meaning. We use a state-
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of-the-art AMR parser! to extract an AMR graph
G = (V, &, R) with node set VV and labeled edges
(u,r,v) € €, where u,v € V and r € R. Each
G provides an explicit representation of the core
concepts in a sentence (refer to Figure 1 for an ex-
ample of a sentence and its corresponding AMR

graph).

Graph Representation Following Beck et al.
(2018), we convert each graph G into its bipar-
tite version G, = (W, &), replacing each labeled
edge (u,r,v) € & with two unlabeled edges
(u,r), (r,v) € &, effectively converting the orig-
inal graph into an unlabeled graph. Additionally,
pretrained models typically use a vocabulary with
subword tokens. To be able to match the features of
concept nodes with the representations of those sub-
word tokens, we follow the work of Ribeiro et al.
(2021), transforming each G, into a new subword
token graph G; = (V, &), where each subword to-
ken of a node vp € V}, becomes a node v; € V;. We
convert each edge (up, vp) € & into a set of edges
and connect every token of wuy to every token of vy,
Following we show an example of this process:

1. Original Graph Let the original graph G =
(V,€) be:
V={A,B,C},

&={(4;r,B),(B,r2,C)}.

T T
A—t . p—2* ¢

2. Bipartite Graph Convert G to its bipartite
version Gp:

Vb: {A,B,C,T’l,TQ}
{(A ’I“l (7"1, B TQ TQ,C)}.

@6@@

3. Subword Token Graph Assume tokenization
of nodes:

A={A,A), B={B), C={C1,C).

Relation nodes remain unchanged: 1, r2. The sub-
word token graph G; becomes:

Vi = {A1, Az, B1,C1,Cy, 11,12},

& :{(Alv Tl)a (A23T1)a (7"1, Bl)a
(Bl, 7‘2), (’FQ, Cl), (7"2, 02)}

"We use a BART-based (Lewis et al., 2020) model, the best-
performing model from: https://github.com/bjascob/
amrlib.

3.2 Model

Figure 2 illustrates PAM, which employs structural
adapters (Ribeiro et al., 2021) to repurpose the
pretrained encoder to structured inputs, in this case,
AMR graphs.

Text Encoder To take advantage of the semantic
understanding already present in the pretrained lan-
guage model, we retain its main structures, namely
the encoder, and repurpose it through fine-tuning.
Instead of plain text, we feed it the linearized ver-
sion of the AMR graph. These AMR graphs are
linearized by a depth-first traversal algorithm. Ad-
ditionally, while position embeddings are crucial
for modeling sequence order in transformers, we
argue that the linearization order should not affect
AMR graph encoding. Due to the nature of AMR
graphs, relationships between nodes are primarily
defined by their semantic connections rather than
their linear arrangement. Therefore, we remove
the positional embeddings and keep just the reg-
ular subword embeddings. In transformer-based
models like BERT, tokens may be split into smaller
subwords due to the fixed vocabulary. Concept
nodes are tokenized as usual. We do not split AMR
relations and instead add them to the vocabulary
as new words (Ribeiro et al., 2021; Shou and Lin,
2023). The main reason is that relation words are
artificial, while nodes are always concepts, closer
to linguistic tokens in the vocabulary.

Graph Encoder To embed explicitly the connec-
tivity of the graphs in the model, PAM uses Graph
Neural Networks (GNN). Specifically, it uses an
adapter module similar to the work of Ribeiro et al.
(2021), differing in having a single GNN layer
per module, but stacking these modules, following
Shou and Lin (2023) (see in Figure 2 the orange
boxes. Each have a single GNN layer, but two are
stacked together). The adapter modules are stacked
and attached to the first and last pretrained encoder
layers just before the feed-forward sub-layers (see
in Figure 2 the green boxes. One replaces the very
first encoder layer — blue boxes — and the other
replaces the last encoder layer). The representation
fed to these feed-forward sub-layers comes from
a cross-attention layer that attends to both the text
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Figure 2: PAM architecture. The two encoder networks have tied weights (siamese network structure). The training
objective is to maximize dot products between contextual embeddings from positive instances and minimize dot
products between contextual embeddings from negative instances.

and graph representations. The graph features are
populated with the hidden representations from the
pretrained encoder at the respective encoder layer
(notice in Figure 2 the information that goes into
the GNN is the normalized self-attention from that
layer). Specifically, for each node v € V, given
the hidden representation hﬁ,, the encoder layer [
computes:

g = GNN; <LN(hi), {LN(hﬁL) Cu € N@)}) ,

zl, = Wlo(gl) + bl

where N (v) is the neighborhood of the node v
in G and Wle € R™™ is an adapter parameter.
GNN;(+) is the graph convolution that computes
the representation of v based on its neighbors in
the graph, and [ is the index of the last encoder layer.
We employ a Graph Convolutional Network (Kipf
and Welling, 2016) as the graph neural network.

The final representation is computed with a pool-
ing layer as in Reimers and Gurevych (2019).

3.3 Training Scheme

PAM is first pretrained using self-supervision, and
then finetuned using supervised learning.

Self-supervised Training In plain text applica-
tions (e.g., STS and text generation tasks), many
learned metrics are trained to optimize correlation
with human annotations (Reimers and Gurevych,
2019). However, data collection on AMR graph
similarity is more time-consuming because AMR
evaluation has a learning cost of understanding the
semantics of graphs, which are not as straightfor-
ward as plain text (Shou and Lin, 2023). Thus,

self-supervised learning methods are an alterna-
tive solution. We adopt Contrastive Tension (CT)
(Carlsson et al., 2021). CT constructs positive and
negative pairs as follows: Each randomly selected
AMR graph G is paired with itself to construct a
positive instance; other K graphs are sampled to
construct negative instances by pairing them with
G. The assumption for generating negative samples
is that two randomly selected sentences are likely
to be semantically dissimilar. The K + 1 instances
are included in the same batch. The training con-
trastive loss £ is the binary cross-entropy applied to
the generated similarity scores, taking into account
the positive/negative labels. The training objective
using CT is to maximize the dot product between
positive instance representations and to minimize
the dot product between negative instance represen-
tations. The loss function is thus given by:

5 —logo(e-é), ifg=¢
—logo(l—e-é), ifG#G

where o is the Logistic function. A pair of AMR
graphs is fed into the siamese network, one for each
branch, to generate their respective contextual em-
beddings, from which we compute the dot product
and loss (refer to Figure 2 for an illustration).

Supervised Learning with Triplets In addition
to self-supervised learning, we incorporate super-
vised learning via a triplet-based learning approach
(Reimers and Gurevych, 2019), where the training
objective is to optimize the relative similarity rela-
tionships among an anchor (A, a reference AMR
graph), a positive (P, an AMR graph semantically
similar to the anchor), and a negative (N, an AMR
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graph semantically dissimilar to the anchor). The
triplet loss encourages the anchor-positive embed-
ding similarity to increase while reducing similarity
with the negative:

Etriplet = max (0, m + d(eAv ep) - d(eA, e/\/))7

where d(e;, ;) denotes the distance between em-
beddings e; and e; (e.g., cosine or Euclidean dis-
tance), and m is the margin hyperparameter that
defines the minimum required distance difference
between positive and negative pairs. The train-
ing batches were built utilizing an online mining
strategy that dynamically selects “hard” examples.
Hard positives are anchor-positive pairs (A, P) that
are difficult to distinguish due to high embedding
similarity, while hard negatives are anchor-negative
pairs (A, NV) that are challenging due to low em-
bedding dissimilarity. For each triplet, the anchor,
positive, and negative AMR graphs are processed
through the branches of the Siamese network to
generate contextual embeddings. These embed-
dings are then used to compute the triplet loss.

4 Training Data

To train PAM, we first use data parsed by Shou and
Lin (2023), which entails one million sentences
(randomly sampled from English Wikipedia, used
in SimCSE (Gao et al., 2021)) parsed to AMR
graphs using SPRING (Bevilacqua et al., 2021).
This data is used in the self-supervised training,
where we set the positive ratio to be 4/16, follow-
ing Shou and Lin (2023), in a batch of 16, there are
4 positive graph pairs and 12 negative pairs. That
is, in a batch we sample 4 graphs and create one
positive pair and three negative pairs for each graph.
We further train PAM in a supervised learning fash-
ion using 101 762 entries from the Quora Question
Pairs (QQP) dataset®>. These entries were com-
piled by Reimers and Gurevych (2019) as anchor-
positive-negative triplets>.

5 Semantic Textual Similarity Results

Following Shen et al. (2022), we select, as base-
lines, well-known metrics often used to evaluate
paraphrase generation. We categorize evaluation
metrics into three main types based on their focus:

2https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

3https://huggingface.co/datasets/
sentence-transformers/quora-duplicates

Lexical Overlap: BLEU (Papineni et al., 2002) (n-
gram precision with brevity penalty), ROUGE (Lin,
2004) (e.g., ROUGE-L, measuring recall of over-
lapping n-grams), and METEOR (Banerjee and
Lavie, 2005) (precision, recall, and synonym
matching).

Token-Level Semantic Similarity:
BERTScore (Zhang et al., 2019a) (contextual token
similarity using BERT) and BARTScore (Yuan
et al., 2021) (text quality scoring with BART).

Semantic Structure Embedding:
SBERT (Reimers and Gurevych, 2019) (sen-
tence embeddings for semantic similarity) and
AlignScore (Zha et al., 2023) (cross-task alignment
modeling for factual verification).

We compare PAM with the aforementioned met-
rics on modified test sets from two popular se-
mantic textual similarity datasets, STSb (Cer et al.,
2017) and SICK (Marelli et al., 2014). The original
datasets contain pairs of sentences with human-
labeled similarity scores. Opitz et al. (2021) uti-
lized a parser to construct AMR graph pairs from
those sentence pairs and further confirmed the over-
all quality of those generations. To evaluate PAM
for STS, we skip the AMR parsing from the input
sentence and use these AMR graphs directly. These
datasets have, respectively, 1 379 and 4 927 test
instances. Table 1 shows the Pearson correlation
between generations and references for the various
metrics on the two test datasets. PAM outperforms
all other metrics by a significant margin, achieving
the highest score on correlation with human annota-
tion. Specifically, PAM improves over SBERT from
65.55% to 75.73% on STSb, and from 71.82% to
73.43% on the SICK dataset.

6 Reframing Robustness Analysis

A basic assumption of PAM is that it is concerned
with the entire AMR graph and is unaffected by fo-
cus change — or reframing — of the AMR graph, that
is, restructuring the graph by having as root node
a different concept. For this, we create synthetic
versions of the STSb and SICK datasets, where, for
each entry pair, we compute all possible rearrange-
ments of the AMR graphs by changing its focus
(Huang et al., 2023) to other concepts (see refram-
ing examples in Figure 3). We randomly sample
these reframed versions of the original AMR and
pair them randomly, creating up to three new en-
try pairs per original pair. Since PAM can also be
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Metric STSb  SICK
lexical overlap
BLEU 50.58 52.53
ROUGE-L 5092 56.72
METEOR 46.48 54.24

token-level semantic similarity

BERTScore 33.15 45.22
BARTScore 51.23 58.47

semantic structure embedding

AlignScore  41.64  50.82
SBERT 65.55 71.82
PAM 75.73  73.43

Table 1: Pearson correlation p between generated and
reference scores on STSb and SICK test sets. Perfor-
mance is reported by convention as p * 100. The best
results are in bold.

seen as an AMR similarity metric, we assess its
performance against various metrics often used to
evaluate AMR similarity:

SMATCH (Cai and Knight, 2013): This met-
ric evaluates the structural overlap between AMR
graphs by treating each graph as a conjunction of
triples. SMATCH identifies a one-to-one variable
matching that maximizes the number of exact triple
matches using a greedy hill-climbing algorithm.

SemBLEU (Song and Gildea, 2019): This met-
ric extends BLEU (Papineni et al., 2002) to AMR
graph comparison. SemBLEU linearizes AMR
graphs through breadth-first traversal and assesses
text quality by comparing n-grams.

WWLK (Opitz et al., 2021): Weisfeiler-Leman
AMR similarity metric view AMR graphs as high-
dimensional objects. The method iteratively propa-
gates node embeddings with contextualization and
employs the Wasserstein Weisfeiler-Leman kernel
(WWLK) to compute the minimum cost of trans-
forming one graph into another.

Table 2 shows the results for these baseline metrics
for STSb and SICK test sets. The table includes
AMRSim (Shou and Lin, 2023), a work similar
to PAM that repurposes the SBERT architecture
for AMR similarity evaluation. For the reframing
dataset, we train and test an AMRSim model fol-
lowing the original paper setup. PAM achieves the
highest scores across datasets and variants tested.

Figure 3: Example of reframing transformations of the
same AMR graph.

Specifically for the reframing dataset, since it has
some structures that were never seen during train-
ing, a decrease in performance is expected. No-
tably, when comparing PAM with AMRSim, the
performance drop (A) is -1.63 vs. -4.12 on STSb
and -1.97 vs. -2.75 on SICK, highlighting PAM’s
superior robustness.

Metric Original Reframing
STSb SICK STSb SICK
SMATCH 57.82 60.41 64.87 59.19
SemBLEU 38.07 35.32 40.63 36.16
WWLK 50.41 50.92 54.32 5395
AMRSim  70.88 73.10 66.76  70.35
PAM 75.73 73.43 73.90 71.46

Table 2: Performance comparison of PAM against AMR
similarity metrics for original and reframed datasets.
Results are Pearson correlation (x100) on STSb and
SICK test sets. The best results are in bold.

7 Ablation Study

Model STSb (A) SICK (A)

PAM w/o supervised learning 72.59 72.23
w/0 cross-attention 70.06 (-2.53) 71.54 (-0.69)
w/o graph adapter 67.95 (-4.64) 70.25 (-1.98)

Table 3: Ablation study. Results are reported as Person
correlation (x100) and differences (A) to the full model
(PAM) on STSb and SICK test datasets.

To understand the contribution of each component
of the approach, we conduct an ablation study
whose results are shown in Table 3. We evaluate
PAM without supervised learning to reduce compu-
tational costs. All components contribute positively
to final performance.

Without Cross-Attention: This variant removes

17111



[ PAM —
7001 [ SBERT

0.2 0.4 0.6 0.8 10

Figure 4: Distribution of scores of PAM and SBERT for
the SICK test set.

the cross-attention mechanism, fusing the lin-
earized graph textual representation and graph rep-
resentation with concatenation. It performs worse
than the full model, showing a score drop of 2.53
on STSb and 0.69 on SICK, highlighting the im-
portance of cross-attention in integrating graph in-
formation effectively.

Without Graph Adapter: This variant removes
all the additional parameters introduced by PAM,
reverting the model to a plain SBERT configura-
tion where the textual input consists of linearized
AMR graphs. The performance of this variant de-
grades significantly compared to the full model,
with a score drop of 4.64 on the STSb dataset and
1.98 on the SICK dataset. This demonstrates that
the explicit connectivity embedded into the model
through GNNss is crucial for its performance.

8 Score Distribution

We compare the score distributions of PAM and
SBERT. As observed in the histogram in Figure 4,
PAM shows a higher dispersion of scores when
compared with SBERT. PAM’s greater dispersion
provides finer granularity for distinguishing para-
phrase quality, enabling it to more easily capture
subtle differences between near-paraphrases, par-
tial paraphrases, and unrelated pairs. In contrast,
SBERT’s concentrated distribution risks overstat-
ing similarity for non-paraphrastic pairs and may
fail to penalize meaningful deviations.

9 Performance over Paraphrase Types

9.1 In-Depth Analysis of Paraphrastic
Phenomena

We evaluate PAM’s paraphrase assessment using ex-
amples from the seminal work of Bhagat and Hovy

(2013), covering various paraphrase types. along-
side their corresponding semantic similarity scores.
These examples consist of sentence or phrase pairs
that convey approximately the same meaning using
different words, though they may not qualify as
strict paraphrases. To complement these examples,
we manually construct non-paraphrases by alter-
ing their meaning with minimal changes. Table 4
shows the scores assigned by PAM and SBERT for
the various examples. Following, we mainly dis-
cuss the scores for the paraphrase column, as the
non-paraphrase is less nuanced.

Synonym substitution: While bought and ac-
quired convey a similar meaning in this context,
implying a transfer of ownership, their exact mean-
ings have subtle distinctions. This nuance is re-
flected in the paraphrase evaluation score of 94.16
compared to 98.99, where a slightly lower score
for this substitution is arguably more appropriate.
Their vector representations in static word embed-
dings show a cosine similarity of 0.3980, indicat-
ing moderate semantic similarity. This supports
the slight penalty, as the words are related but not
perfectly interchangeable.

Converse substitution: The sentences describe the
same event, differing only in grammatical structure
(active vs. passive voice). This makes them near-
perfect paraphrases. The score of 90.53, while high,
may underrepresent the strong semantic equiva-
lence between the two sentences. In contrast, the
score of 95.46 better reflects their similarity, as the
grammatical shift does not alter their meaning in
this context.

Change of voice: This example illustrates the or-
acle example in Figure 1, as the two sentences
produce the same AMR graph:
(1 / love-01
:ARGO (p / person
:name (n / name
:op1 "Pat"))
:ARGT (p2 / person
:name (n2 / name
:op1 "Chris")))
A perfect similarity score is thus expected as the
grammatical shift does not alter the sentence mean-
ing in this context.

Pronoun/Co-referent substitution: Yet again,
here, the grammatical shift does not alter the sen-
tence meaning in this context. Thus, a perfect score
aligns with the expected outcome. This perfect
score comes from the same AMR representing both
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Phenomenon

Paraphrase (PAM/SBERT)

Non-Paraphrase (PAM/SBERT)

Synonym substitution

Converse substitution

Change of voice

Pronoun/Co-referent substi-

tution

Google bought YouTube. <&
Google  acquired
(94.16/98.99)

Google bought YouTube. <

YouTube was sold to Google.

(90.53/95.46)

Pat loves Chris. < Chris is loved
by Pat. (100.0/96.76)

Pat likes Chris, because she is
smart. < Pat likes Chris, because
Chris is smart (100.0/96.21)

YouTube.

Google bought YouTube. <

Google destroyed YouTube.
(86.30/82.50)
Google bought YouTube.
< Google rented YouTube.
(81.45/90.64)
Pat loves Chris. ¢ Chris hates Pat.
(60.74/78.28)

Pat likes Chris, because she is
smart. < Pat likes Chris, because
Pat is smart (99.97/96.18)

Actor/Action substitution

I dislike rash drivers. < I dislike
rash driving (87.77/97.76)

I dislike rash drivers. <& 1
dislike drivers who follow rules
(82.85/87.35)

Table 4: Paraphrase phenomena examples with paraphrase and non-paraphrase counterparts, including similarity
scores. Paraphrase pairs are retrieved from the work of Bhagat and Hovy (2013). We highlight the scores we deem

best in bold.

sentences:

(1 / like-01
:ARGO (p / person
:name (n / name
:opl "Pat"))
:ARG1 (p2 / person
:name (n2 / name
:opl "Chris™))
:ARG1-of (c / cause-01
:ARGO (s / smart-06
:ARG1 p2)))
In the negative example, the only change in the
AMR is :ARGT p2 = :ARG1 p, which the model
does not understand as a big change and gives it a

high score.

Actor/Action substitution: The sentences share
strong semantic overlap but differ in focus: one em-
phasizes individuals, the other behavior. Although
related, this shift introduces a subtle distinction.
The score of 87.77 accurately reflects their close
but not identical meanings, whereas 97.76 over-
states their similarity by ignoring this nuance.

From the abovementioned discussion, our main
takeaway is that PAM excels at capturing fine-
grained distinctions (e.g., synonym substitution
or actor/action substitution) and strict paraphrases
(e.g., change of voice or pronoun/co-referent sub-
stitution), which makes it a suitable metric for para-
phrase generation evaluation. SBERT may be more
suited for coarse-grained paraphrase identification
where near interchangeability might be more desir-
able (like ignoring the nuanced distinction between

“bought” and “acquired” in synonym substitution).

9.2 Automatic Evaluation on Paraphrase

Types

To ensure that our conclusions extend beyond indi-
vidual examples, we compare PAM and SBERT
on the Extended Paraphrase Typology Corpus
(ETPC) (Kovatchev et al., 2018), a dataset of par-
allel paraphrases annotated with 26 fine-grained
paraphrase types (including non-paraphrases).

Figure 5 shows the normalized (Z-score) scores for
PAM and SBERT on the different types. Consis-
tent with our earlier findings (§9.1), PAM assigns
lower scores to converse substitutions. Similarly,
PAM penalizes opposite polarity substitutions and
semantic-based paraphrases more than SBERT. In-
terestingly, all these types are labeled in the original
dataset paper (Kovatchev et al., 2018, Table 1) as
cases that may produce both paraphrases and non-
paraphrases, which may justify the differing view
of both metrics. A type linked to non-paraphrases,
as per the authors of the dataset, is entailment.
Here, PAM correctly assigns lower similarity scores,
whereas SBERT overestimates similarity. Non-
paraphrases are also better evaluated by PAM. For
the types associated with textual paraphrases that
got the highest score difference between the two
metrics, ellipsis and coordination changes, PAM
provides more appropriate scores.

17113



8T
0.8 1 75 mm PAM
_ - 68 65 SBERT
v
0.6 1 55 5354
] 49 6 51 hs Slig
¢ 42 a3t B 40 40
. 39 39 33 37 37 3436 35 37
g ﬁa 32 28 27 30m 30
S % 23 20 2%
18
2 0.2 4 16 16 12 15 o
: | |
=2
©
= 0.0 ’7
E n 12
%]
el
—0.2 1 b7
(9]
N 31 2’?
g
5 —047 -49
E 55
—0.6 65
———— ——— —— ——
. XL 2 2NN o o X o ) ez N N 2 NN D > o o o QL
P EFLEIITLF TSI I LE ST S &S S
F TS TNELFTEFTEFSTESFTFT L &
NS P O O & S SN NS S SN
& g & & & & X <& RPN PN NGNS Q’O& S & O @ L
F & 2 &S e T TS FLFLS LS E S ESSE
RN SO R o) FPFE TEFITLFST TR E T
S & & T & & = Y S E T & 7 S
[N &@ \)\oe & 33@ & & R ‘,&\
& ERs P S S &
\ NS & . N
S X X NG SRS &
<@ 2 o A O & S A\ 2
¢ Qo\ < Q PN S
. < &
& $ <# (,)'o@ e &
& R i <

Figure 5: Normalized distribution of scores of PAM and SBERT for the ETPC dataset per paraphrase type.

PAM as a Binary Classifier To further evaluate
PAM ’s effectiveness, we tested its performance as a
binary classifier. By selecting a decision threshold
that corresponds to a fixed false positive rate (FPR)
of 5%, we assessed its true positive rate (TPR)
and precision, comparing it directly to SBERT.
This approach allows us to analyze how well each
method balances sensitivity and specificity, provid-
ing insights into their practical utility in scenarios
where controlling false positives is critical. PAM
achieves a TPR of 0.321 and precision of 0.929,
outperforming SBERT, which achieves a TPR of
0.243 and precision of 0.908. These findings sug-
gest that, at an equivalent false positive rate, PAM
is more effective at correctly identifying positive
instances (higher TPR) while also maintaining a
slightly higher precision.

10 Conclusion

We have proposed a learning-based semantic simi-
larity metric for paraphrase evaluation called PAM.
It leverages AMR graphs that are extracted from
input texts by a pretrained AMR parser and pro-
cessed by the model’s underlying siamese network
structure that incorporates GNNs for explicit graph
connectivity representation. PAM is trained under
self-supervised and supervised learning. Our pro-
posed similarity metric addresses the main problem
with currently employed metrics for paraphrase
generation evaluation: the assumption of a high
coupling between semantic meaning and surface
form. PAM effectively encodes the meaning of the

texts by leveraging AMR graphs, attaining the high-
est correlations with human evaluations compared
to other test metrics, and maintaining robustness
against reframed AMR variants. It also has a more
discriminative distribution than SBERT.

Limitations

Throughout this document, we have already ac-
knowledged some of the limitations of PAM. The
main limitation of this work is that it heavily re-
lies on the pretrained AMR parser. The improper
extraction of AMR graphs can affect the overall
performance of the model as it fails to produce
accurate representations. The required extraction
of AMR graphs also entails a substantial computa-
tional overhead that might make the metric unfit for
some use cases. Finally, due to its reliance on the
AMR parser, our approach may not be easily em-
ployed for specialized domains or languages other
than English, for which appropriate AMR parsers
may not be available.
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A Experimental Setup

We implemented PAM with sentence transformers
(Reimers and Gurevych, 2019). The transformer
parameters were initialized from the uncased BERT
base model (Devlin et al., 2019)*, and the remain-
ing parameters were initialized randomly. We fol-
lowed the setup from Shou and Lin (2023), and set
an input length of linearized AMR graphs as 128,
learning rate as le-5, dropout rate as 0.1, graph
adapter size as 128, and trained for 1 epoch. The
optimizer we used was AdamW. We stacked two
adapter modules.

B Sensitivity Analysis

Model STSb (A) SICK (A)
PAM w/o supervised learning 72.59 72.23
Architecture tuning
init with ROBERTA 9.74 (-62.85) 15.13 (-57.1)
GAT as GNN layer 69.89 (-2.7)  71.67 (-0.92)
adapter at every other layer 68.54 (-4.05) 70.14 (-2.09)
Hyperparameter tuning
adapter stack size: 3 7091 (-1.68) 71.19 (-1.04)
adapter stack size: 4 71.03 (-1.56) 72.07 (-0.16)
GNN hidden size: 256 69.84 (-2.75) 71.90 (-0.33)

Table 5: Sensitivity analysis. Results are reported as
Person correlation (x100) and differences (A) to the full
model (PAM) without the supervised learning step on
STSb and SICK test datasets.

To understand the contribution of each compo-
nent of the approach, we conduct a sensitivity anal-
ysis whose results are shown in Table 5:

1. Initialized with RoBERTa: This variant ini-
tializes the PLM layers with RoBERTa (Liu,
2019) instead of BERT. Interestingly, using
RoBERTa with our training setup (see Ap-
pendix A) significantly reduces performance.
We attribute this drastic drop to RoOBERTa’s
increased sensitivity to hyperparameters. Fur-
ther investigation into hyperparameter tuning
may yield additional insights.

2. GAT as GNN Layer: This variant replaces
the GCN layer with a Graph Attention Net-
work (GAT) (Velickovié et al., 2018). Besides
introducing additional computational costs
due to multi-head attention, this layer yields
poorer results, with a drop of 2.7 on STSb

4https://huggingface.co/google—bert/
bert-base-uncased

and 0.92 on SICK. This suggests the limited
usefulness of GAT in this context.

3. Adapter at every other layer: Adding the
adapter layer stack to every other encoder
layer results in a performance drop in STSb
(4.05) and SICK (2.09). This suggests that the
model loses performance under the used train-
ing settings if too many parameters are added.
A longer training process might help these
variants recover some of the lost performance.

4. Adapter stack size of 3: Increasing the num-
ber of adapter layers to 3 causes a perfor-
mance drop of 1.68 on STSb and 1.04 on
SICK. This suggests that adding weights may
be leading to model overfitting.

5. Adapter stack size of 4: Increasing the num-
ber of adapter layers to 4 results in a perfor-
mance reduction of 1.56 on STSb and 0.16 on
SICK. This suggests that adding weights may
be leading to model overfitting.

6. GNN hidden size of 256: Increasing the hid-
den size of the GNN layer to 256 leads to
a score reduction of 2.75 on STSb and 0.33
on SICK. Similar to the aforementioned vari-
ants, this demonstrates the sensitivity of the
model to increasing parameters, suggesting
it is leading the model to forget pre-acquired
knowledge from the PLM layers.

The results in Table 5 are comparing perfor-
mance with PAM without supervised learning. This
choice was solely based on reducing the expense
of training more models and does not deter from
the findings. The table shows that every compo-
nent contributes positively to the final overall per-
formance of PAM. The main takeaway from this
sensitivity analysis is that this architecture under
self-supervised learning is quite unstable and does
not allow for many added parameters, which will
lead to a decrease in performance. For reference,
PAM just adds approximately 7.7 million parame-
ters over SBERT, which accounts for a 7% increase.

C Computational Considerations

In this section, we analyze the computational ex-
pense of PAM as a crucial factor to consider for prac-
tical use. We compare yet again with SBERT, as it
serves as the backbone for PAM and is a commonly
used metric to evaluate semantic preservation for
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paraphrase generation (Sousa and Lopes Cardoso,
2024b; Bandel et al., 2022). We averaged the
elapsed time for 1000 runs on a Quadro RTX 8000
GPU. Note that each inference requires the extrac-
tion and processing of two AMR graphs.

The average inference time per run of PAM was
0.4892 seconds, while for SBERT, it was 0.0173
seconds. This is a substantial increase mainly due
to the AMR extraction, which took an average of
0.4603 seconds, which accounts for almost the to-
tality of the inference time of PAM. The remainder
of the time is used on the siamese network infer-
ence, whose increase in processing time (compared
with SBERT) is negligible.

D More Paraphrastic Examples

Here we have more examples o paraphrastic phe-
nomena (see Table 6), following the experiments
in Section 9.

Antonym substitution: The sentences do not qual-
ify as paraphrases since they do not convey the
same meaning. Instead, they share a one-way en-
tailment relationship: “Pat ate” entails ‘“Pat did not
starve”, but the reverse does not necessarily hold.
This distinction is crucial when evaluating the ap-
propriateness of the semantic similarity scores. The
score of 60.64 underrepresents the strong seman-
tic overlap between the two sentences, while the
higher score of 75.42 is more appropriate for cap-
turing the entailment relationship.

Change of person: Here, the grammatical shift
does not alter the sentence meaning in this con-
text. Thus, a perfect score aligns with the expected
outcome. This perfect score comes from the same
AMR representing both sentences:
(s / say-01
:ARGO (p / person
:name (n / name
:op1 "Pat"))
:ARG1 (1 / like-01

:ARGO p

:ARG1 (f / football)))
Repetition/Ellipsis: The sentences share signifi-
cant semantic overlap but are not perfectly equiva-
lent. The first sentence implies an active demonstra-
tion, while the second sentence makes a general
statement about the demo’s quality. This subtle
shift in focus introduces a minor semantic differ-
ence, which justifies a slightly lower paraphrase
score of 91.81.

Function word variation: The sentences describe

the same event, differing only in grammatical struc-
ture (the use of function words and syntactic ar-
rangement). This makes them near-perfect para-
phrases. The score of 91.81, while high, appropri-
ately accounts for the subtle shift in emphasis from
the action performed by Pat to the quality of the
demo itself. In contrast, the score of 94.55 may
overestimate their similarity, as it overlooks this
nuanced semantic distinction.
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Phenomenon

Paraphrase (PAM/SBERT)

Non-Paraphrase (PAM/SBERT)

Antonym substitution

Change of person

Repetition/Ellipsis

Function word variations

Pat ate. < Pat did not starve
(60.64/75.42)

Pat said, “I like football.” <
Pat said that he liked football
(100.0/97.16)

Pat can run fast and Chris can run
fast, too. < Pat can run fast and
Chris can, too (99.45/98.70)

Pat showed a nice demo. < Pat’s
demo was nice (91.81/94.55)

Pat ate. <4 Pat did not eat
(80.25/74.67)

Pat said, “I like football.” <
Pat heard, “I like football.”
(88.45/98.15)

Pat can run fast and Chris can run
fast, too. <5 Pat can run fast and
Chris is slow (88.59/90.52)

Pat showed a nice demo. ¥ Pat’s
demo was ugly (62.89/73.06)

Table 6: More paraphrase phenomena examples with paraphrase and non-paraphrase counterparts, including
similarity scores. Paraphrase pairs are retrieved from the work of Bhagat and Hovy (2013). We highlight the scores
we deem best in bold.
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