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Abstract

Change captioning aims to describe differ-
ences between a pair of images using natural
language. However, learning effective differ-
ence representations is highly challenging due
to distractors such as illumination and view-
point changes. To address this, we propose
a change-entity-guided disentanglement net-
work that explicitly learns difference represen-
tations while mitigating the impact of distrac-
tors. Specifically, we first design a change en-
tity retrieval module to identify key objects in-
volved in the change from a textual perspec-
tive. Then, we introduce a difference repre-
sentation enhancement module that strength-
ens the learned features, disentangling genuine
differences from background variations. To
further refine the generation process, we in-
corporate a gated Transformer decoder, which
dynamically integrates both visual difference
and textual change-entity information. Exten-
sive experiments on CLEVR-Change, CLEVR-
DC and Spot-the-Diff datasets demonstrate that
our method outperforms existing approaches,
achieving state-of-the-art performance. The
code is available at https://github.com/yili-
19/CHEER.

1 Introduction

Change captioning aims to describe the differences
between two images using natural language. Un-
like conventional image captioning that describes
main content of a single image, change captioning
requires understanding both the semantic corre-
spondence and the differences between a pair of
images. This task has garnered significant atten-
tion due to its wide-ranging applications in fields
such as visual monitoring (Jhamtani and Berg-
Kirkpatrick, 2018), remote sensing image analysis
(Liu et al., 2024), and medical image comparison
(Chen et al., 2024).
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Figure 1: Examples of change captioning. (a) depicts
a change occurring in a real-world scenario. (b) shows
a change involving a viewpoint shift. (c) illustrates a
change occurring under extreme viewpoint variation.

Existing methods (Park et al., 2019; Shi et al.,
2020; Kim et al., 2021) mainly follow an encoder-
decoder framework, which first extracts patch fea-
tures from a pair of images, then models the dif-
ference features in between, and finally decodes
these features to generate change captions. To ac-
curately locate the change regions, current works
(Qiu et al., 2021; Yao et al., 2022) mostly match
similar features between the two images and then
disentangle the difference features. Additionally,
to generate higher-quality captions, some studies
(Hu et al., 2024; Zhang et al., 2024b) introduce
large language models (LLMs) into this task. They
primarily replace the LSTM/Transformer structure
with pre-trained LLMs, and further fine-tune the
LLMs with different strategies to make them adapt
to change captioning.

Despite the progress, there are two major lim-
itations in existing approaches. First, viewpoint
variation (Figure 1 (c)) between image pairs often
leads to deformation of objects in the images (i.e.,
pseudo changes (Tu et al., 2023c)). Such pseudo
changes make the distinguishing of really seman-
tic changes more challenging. Existing works at-
tempt to reduce the influence of irrelevant factors
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through introducing additional mechanisms in the
visual encoder, such as using contrastive learning
to align the visual features (Tu et al., 2023c, 2024a).
This approach, however, does not demonstrate
significant effectiveness under extreme viewpoint
changes (Figure 1 (c)), as pseudo changes in these
scenarios become more pronounced. This leads
to difficulties in feature matching for unchanged
objects, which affects subsequent change localiza-
tion. We have observed that despite the challenge
of distinguishing real changes from distractions
based solely on visual features, the similarity be-
tween the object representation in the image and its
corresponding textual representation remains rela-
tively unaffected. Some works (Kim et al., 2024)
attempt to introduce full-sentence descriptions as
prior knowledge. However, directly using an entire
sentence as prior knowledge introduces a lot of re-
dundancy and even incorrect information. In fact,
it is sufficient to focus only on the change entity
provided by the text (such as a red cylinder, a green
cube, etc.) which indicates what has changed.

Secondly, previous studies (Qiu et al., 2021;
Huang et al., 2021) typically rely solely on visual
features as input to the decoder. Some existing
works incorporate additional information, such as
part-of-speech tags (Tu et al., 2021b), to generate
higher-quality descriptions. There are also methods
based on LLMs (Hu et al., 2024) that yield good
results, but they come with considerable compu-
tational cost. If we can incorporate some seman-
tic prior information to guide the model, it could
improve model performance without introducing
significant cost.

In this paper, we propose a novel CHange
Entity-guided hEterogeneous Representation
diSentangling (CHEERS) network, which explic-
itly models and uses textual change entities to
guide both feature disentanglement and caption
generation. Specifically, we first design a Change
Entity Retrieval Module, to locate what has
changed based on the similarity between change
entities and images. Second, we design a Hetero-
geneous Representation Disentangling module to
decouple the genuine differences between two
images and generate the representations that encap-
sulate the difference information. Here, we devise
a Commonality Representation Enhancement
module (CRE) that strengthens visual features
in similar regions to decouple the difference
information from the similar features. Then, we
use a Difference Representation Enhancement

(DRE) module, to highlight the difference regions.
Meanwhile, the change entities are further used to
enhance the difference features, while enforcing
consistency in the enhanced regions between the
image-image and image-entity pairs to constrain
the model. Finally, to generate more accurate
change captions, we design a gated transformer
decoder that dynamically fuses the change entity
textual information with the difference visual
features. Through the gating mechanism, the
model can adjust the fusion ratio of the textual
information containing the change entity and the
visual information representing the change based
on context when generating the next word.

The key contributions of this work are threefold:
(1) We propose a novel CHEERS that identifies
changed objects from a textual perspective, provid-
ing explicit guidance for representation learning.
Further, CHEERS uses HRD to effectively sepa-
rate differences and similarities while mitigating
viewpoint variations and enhancing subtle change
perception. (2) We design a gated Transformer
decoder, which dynamically adjusts the fusion of
textual and visual information based on context, pri-
oritizing textual entity information for subject de-
scriptions and visual features for change details. (3)
Extensive experiments on the three public datasets
demonstrate that our approach significantly outper-
forms state-of-the-art change captioning models.

2 Related Work

Change Captioning is an emerging task in the
multi-modal community (Li et al., 2022; Zhang
et al., 2024a; Liu et al., 2023), which generates
natural language descriptions of the differences
between two images. Early works, such as Jham-
tani (Jhamtani and Berg-Kirkpatrick, 2018), ap-
proach this task by approximating object-level dif-
ferences through pixel-wise clustering based on
the difference between images. Park (Park et al.,
2019) uses dynamic attention maps to localize the
changes, while Shi (Shi et al., 2020) extracts both
changed and unchanged features to input into a
caption decoder. However, in real-world scenarios,
viewpoint variation often introduces interference,
reducing the model’s ability to accurately identify
changes. To enhance the robustness of models to
such viewpoint changes, Tu (Tu et al., 2023b) de-
signs neighboring feature aggregation to capture
contextual information and common feature dis-
tillation to learn contrastive information between
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Figure 2: The overall architecture of the proposed Change Entity-guided Heterogeneous Representation Disen-
tangling (CHEERS) network. The CHEERS primarily consists of multiple layers of HRD module and a gated
transformer. Each HRD layer includes two CRE and two DRE.
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Figure 3: The process of change entity retrieval.

images. Liao (Liao et al., 2021) attempts to model
the relative spatial relationships of objects in a 3D
scene to eliminate interference based on this con-
textual information. Tu (Tu et al., 2023c) utilizes
contrastive learning to align the representations of
two images, thereby learning a stable difference
representation. Additionally, to generate higher-
quality captions, several works have attempted to
incorporate additional information to assist the de-
coding process. Tu (Tu et al., 2021b) introduces
part-of-speech information during decoding and
uses a dynamic switch to control the fusion of this
information. More recent works have leveraged
large pre-trained LLM for this task. For instance,
Hu (Hu et al., 2024) employs learnable query to-
kens that probe the multi-level encoded features of
both images to effectively capture their differences
and assist the LLMs in learning these differences.
Zhang (Zhang et al., 2024b) fine-tunes large mod-
els and incorporates a relevant corpus as additional
assistance to generate more accurate captions.

Overall, previous works have primarily focused

on identifying differences from visual information,
generating difference representations, and then us-
ing a decoder to produce captions. In contrast, this
paper shifts the focus to discovering differences
from a textual perspective, leveraging additional
textual information to guide the visual encoder in
more accurately localizing differences. Further-
more, during the caption generation process, we
fuse textual information to produce higher-quality
descriptions.

3 Method

Given a pair of images (Ibef , Iaft), we first employ
the Change Entity Retrieval Module, As shown in
Figure 3, as to extract textual change entities, de-
noted as E, which provide explicit guidance for
identifying key differences. Next, the Heteroge-
neous Representation Disentangling module pro-
cesses (Ibef , Iaft) to separate difference features,
denoted as (Dbef , Daft) respectively. Finally, we
utilize a gated Transformer decoder, which dynam-
ically fuses E and D based on context to generate
the final change description Scap.

3.1 Change Entity Extraction and Retrieval
3.1.1 Change Entity Extraction
In change captioning, the caption typically focuses
on the differences between two images, describing
what has changed and how it has changed. Given
a caption, the change entity generally corresponds
to the subject of the sentence. In this study, we uti-
lize SpaCy (Honnibal, 2017) to extract the subjects
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from captions. Our captions are collected from the
corresponding training set. For instance, in experi-
ments on the CLEVR-Change dataset (Park et al.,
2019), we extract subjects from the training cap-
tions of this dataset. After obtaining all change en-
tities, we extract semantic-level features E through
pre-trained CLIP ViT-L/14 (Radford et al., 2021),
which offers strong text-image alignment capabil-
ities. These embeddings serve as the foundation
for subsequent modules that localize and describe
visual changes.

3.1.2 Change Entity Retrieval
After extracting the semantic embeddings E for all
change entities, the next step is to retrieve the most
relevant change entity that matches the given image
pair (Ibef , Iaft). The goal is to find the change en-
tity with the largest difference in cosine similarity
between the two images, as this entity is likely to
correspond to the true change in the scene. The
main method is to identify the change entity with
the largest difference in cosine similarity between
the two images, as this entity generally corresponds
to the true change in the scene.First, the two images
are encoded by CLIP into feature representations
denoted as (Xbef , Xaft). Then, the cosine simi-
larity between each image feature and all change
entity embeddings E is computed as Si ∈ RM

where i ∈ {bef, aft} represent the cosine similar-
ity between the change entity embeddings E and
the image features.Then select the most relevant
change entity Ê by maximizing the difference be-
tween the cosine similarity scores of the change
entity with the two images:

Ê = argmax
E

(Sbef − Saft) . (1)

To ensure that the selected change entity represen-
tation is relevant, we introduce a constraint that at
least one of the two cosine similarity scores Si is
higher than the average similarity S̄i ∈ R.

3.2 Change Entity-guided Heterogeneous
Representation Disentangling

3.2.1 Commonality Representation
Enhancement Module

In the visual feature encoding stage, we design a
representation enhancement module to disentangle
the difference and common features between two
images. The structure is illustrated in Figure 2.
Given a target feature Ftarget ∈ RH×W×C and a
source feature Fsource ∈ RH×W×C , the enhance-
ment process is described as follows. First, the

cosine similarity between each position in Ftarget

and Fsource is computed as S ∈ R denotes the
similarity between position i in the target and posi-
tion j in the source.Next, the similarity values are
transformed into a probability map using a softmax
function:

P (i, j) =
exp(Sim(i, j))∑
k exp(Sim(j, k))

. (2)

To identify the parts of the target that have high
similarity with the source, the maximum similarity
across all positions in the source is computed and
expanded to the same dimensions as Ftarget through
a learnable linear layer:

P̂ (i) = Linear(max
j

P (i, j). (3)

Finally, a sigmoid function is introduced to control
the scaling ratio, and a residual connection is added
to prevent excessive information loss:

F ′
target = LN(σ(P̂ ) · Ftraget + Ftarget), (4)

where σ(·) denotes the sigmoid function and LN
represents layer normalization. This design allows
adaptive feature scaling while preserving the origi-
nal visual information.

3.2.2 Difference Representation Enhancement
Module

The difference enhancement module follows the
same basic structure and operational process as
the aforementioned CRE framework, with the only
difference being the computation process of P̂ :

P̂ (i) = Linear(I −max
j

P (i, j)). (5)

where I denotes the unit vector. This method em-
phasizes the difference between the two represen-
tations rather than the similar parts.

3.2.3 Heterogeneous Representation
Disentangling

During the visual encoding process, we primar-
ily use the aforementioned representation enhance-
ment module to decouple and highlight the differ-
ence features. The structure is illustrated in Fig-
ure 2. The input images Ibef , Iaft ∈ RC×H×W

are first processed by a ResNet backbone to ex-
tract the raw feature representations Fbef , Faft ∈
RC′×H′×W ′

.Then, we feed the two raw features
into a CRE to highlight the common parts between
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them and we also indirectly enhance image rep-
resentations using the change entities through the
DRE:

Ci = CRE(Fj , Fi),

C ′
i = DRE(E,Fi),

(6)

where Ci, C
′
i ∈ RC×H×W . However, instead of

directly using the output features, we apply the
probability matrix P̂ in module to enforce consis-
tency on the CRE as follows:

LC = MSE(P̂C , P̂ ′
C), (7)

where P̂C donates the probability matrix in CRE
and P̂ ′

C donates the probability matrix in DRE. Af-
ter highlight their common parts, multi-head cross-
attention (Vaswani, 2017) is applied between the
enhanced common features to model interactions
between the two images:

C̃i = MHCA(Ci, Cj), (8)

where MHCA represents the multi-head cross-
attention. Inspired by previous works (Tu et al.,
2023c, 2024b), contrastive learning is introduced
during the computation of cross-attention to further
help it obtain stable change representations, with
the loss function being InfoNCE loss:

LI = − log
exp(sim(q, k+)/τ)

∑N
i=1 exp(sim(q, ki)/τ)

(9)

Then the difference between the attended features
and the original raw features is computed and fur-
ther enhanced by DRE. In a similar manner, we use
the change entity to further enhance the differences:

Di = DRE(Fi, Fi − C̃i).

D′
i = CRE(E,Fi − C̃i),

(10)

then enforce consistency on the DRE through the
probability matrix:

LD = MSE(P̂D, P̂ ′
D). (11)

Finally, we fuse the two difference representations
through a linear layer:

Fdiff = Linear(Concat[Dbef ;Daft]), (12)

3.3 Gated Transformer Decoder

After obtaining the visual difference features Fdiff ,
the gated mechanism is applied to dynamically

combine them with the textual change entity in-
formation E during caption generation. The de-
coder first processes its hidden states H through a
self-attention mechanism:

H ′
n−1 = SelfAttention(Hn−1)

where H ′
n−1 represents the updated decoder hidden

states after self-attention.Next, the updated hidden
statesH ′Hare used in multi-head attention mecha-
nisms with both the textual change entity features
E and the visual difference features Fdiff . Specif-
ically, we compute:

HT
n−1 = MHCA(H ′

n−1, E,E)

HV
n−1 = MHCA(H ′

n−1, Fdiff , Fdiff )
(13)

These operations allow the model to attend to both
the textual and visual information based on the
updated hidden states from the self-attention. Then,
the attention outputs HT and HV are combined
through a learnable weighting mechanism. We use
a linear layer to generate two parameters, α and β ,
that control the importance of each attention output
and the final feature representation HF

n−1 is then
computed as a weighted sum of HT and HV :

α = Linear(Concat([H ′
n−1;H

T
n−1])) (14)

β = Linear(Concat([H ′
n−1;H

V
n−1])) (15)

HF
n−1 = α ·HT

n−1 + β ·HV
n−1 (16)

Finally, this combined feature is added to the resid-
ual connection and passed through a normalization
layer to produce the updated hidden states:

Hn = LN(HF
n−1 +H ′

n−1) (17)

The final output at each decoding step is then com-
puted by passing through a Linear layer and a soft-
max layer to predict the next word in the caption.

3.4 Joint Training
The overall training of the proposed network fol-
lows an end-to-end approach, where the goal is to
maximize the likelihood of generating the correct
word sequence. Given the ground-truth sequence
of words (w1, . . . , wm), the network is trained by
minimizing the negative log-likelihood loss func-
tion:

LS(θ) = −
m∑

t=1

log pθ(w
∗
t |w∗

<t). (18)
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In this equation, pθ(w∗
t |w∗

<t) is the predicted proba-
bility for the t-th word given all the previous words.
Here, θ represents the parameters of the network.
In addition to this standard captioning loss, the
model incorporate two alignment losses and a con-
trastive loss. These losses help the model learn bet-
ter feature alignments between visual and textual
representations. The final loss function combines
the captioning loss with these contrastive losses:

L = LS + λv(LC + LD) + λmLI , (19)

where λv and λm are scalar trade-off parameters
that control the relative importance of the losses.

4 Experiments

4.1 Datasets
CLEVR-Change: This large-scale dataset (Park
et al., 2019) focuses on moderate viewpoint
changes. It consists of 79,606 image pairs across
five change types: “Color”, “Texture”, “Add”,
“Drop”, and “Move”. We use the official dataset
split, with 67,660 pairs for training, 3,976 for vali-
dation, and 7,970 for testing.

CLEVR-DC: A more challenging dataset (Kim
et al., 2021) that includes extreme viewpoint shifts.
It contains 48,000 image pairs with the same
change types as CLEVR-Change. The official split
is used, with 85% for training, 5% for validation,
and 10% for testing.

Spot-the-Diff: A dataset (Jhamtani and Berg-
Kirkpatrick, 2018) of 13,192 aligned image pairs
taken from surveillance cameras. Following stan-
dard practices, we evaluate our model on a single-
change task. The dataset is split into training (80%),
validation (10%), and testing (10%).

4.2 Evaluation Metrics
We evaluate the quality of the generated sentences
using five standard metrics: BLEU-4 (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
ROUGE-L (Lin, 2004), CIDEr (Vedantam et al.,
2015), and SPICE (Anderson et al., 2016). All re-
sults are computed through the Microsoft COCO
evaluation server (Chen et al., 2015), providing a
consistent and standardized evaluation across dif-
ferent models.

4.3 Implementation Details
For feature extraction, we utilize ResNet-101 (He
et al., 2016) pre-trained on the Imagenet dataset
(Deng et al., 2009). Specifically, we extract features

from the convolutional layers, yielding a tensor of
size 14× 14. To handle these features, we set the
hidden dimension of our model to 512.

During training, we adjust the minibatch sizes
based on the dataset: 128 for CLEVR-Change, 128
for CLEVR-DC and 96 for Spot-the-Diff. We em-
ploy the Adam optimizer (Kingma, 2014) with
different learning rates for each dataset, specifi-
cally 1× 10−3 for CLEVR-Change, 1× 10−3 for
CLEVR-DC and 5 × 10−4 for Spot-the-Diff. In
the inference phase, we adopt a greedy decoding
strategy to generate captions from the model out-
puts. All experiments are carried out using PyTorch
(Paszke et al., 2019) and run on one RTX3090 GPU
to ensure efficient training and testing.

4.4 Performance Comparison

4.4.1 Results on CLEVR-Change
In this experiment, we compare our approach
with existing state-of-the-art methods and the re-
sults are summarized in Table 1. It is evident
that our method consistently outperforms existing
Transformer-based decoder models across all eval-
uation metrics, particularly in B, M, R metrics,
indicating that our model is effective at decoupling
differences and similarities. Compared to the LLM-
based FINER-MLLM, our method significantly
outperforms it in B, M, R, S metrics, highlight-
ing that our approach can more accurately pinpoint
differences, even without relying on large models.

In the case of semantic changes alone, it can
be observed that, our model outperforms existing
models across all metrics. This is primarily due
to the use of DRE, where the change entity acts
as a guide to strengthen the representation of dif-
ferences, allowing our model to more accurately
locate differences even under the interference intro-
duced by changes in perspective.

4.4.2 Results on CLEVR-DC
To evaluate the model’s performance under extreme
viewpoint changes, we conduct experiments on
the recently released CLEVR-DC dataset, which
primarily consists of image pairs with significant
viewpoint variations. In this experiment, we com-
pare our approach with state-of-the-art methods
and the results are summarized in Table 2. It is
clear that our model significantly outperforms ex-
isting methods in the R, C, S metric, demonstrating
stronger robustness to viewpoint changes compared
to prior works. This improvement can be largely
attributed to the DRE guided by the change enti-
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Total Performance Semantic Change
Method B M R C S B M R C S

DUDA (Park et al., 2019) 47.3 33.9 - 112.3 24.5 42.9 29.7 - 94.6 19.9
IFDC (Huang et al., 2021) 49.2 32.5 69.1 118.7 - 47.2 29.3 63.7 105.4 -

DUDA+ (Hosseinzadeh and Wang, 2021) 51.2 37.7 70.5 115.4 31.1 49.9 34.3 65.4 101.3 27.9
VACC (Kim et al., 2021) 52.4 37.5 - 114.2 31.0 - - - - -
SRDRL (Tu et al., 2021b) 54.9 40.2 73.3 122.2 32.9 52.7 36.4 69.7 114.2 30.8
R3Net (Tu et al., 2021a) 54.7 39.8 73.1 123.0 32.6 52.7 36.2 69.8 116.6 30.3
BiDiff (Sun et al., 2022) 54.2 38.3 - 118.1 31.7 - - - - -

CLIP4IDC (Guo et al., 2022) 56.9 38.4 76.4 150.7 - - - - - -
IDC-PCL (Yao et al., 2022) 51.2 36.2 71.7 128.9 - - - - - -

NCT (Tu et al., 2023b) 55.1 40.2 73.8 124.1 32.9 53.1 36.5 70.7 118.4 30.9
VARD (Tu et al., 2023a) 55.2 40.8 74.1 124.1 33.3 53.6 36.7 71.0 119.1 30.5

SCORER (Tu et al., 2023c) 56.3 41.2 74.5 126.8 33.3 54.4 37.6 71.7 122.4 31.6
SMART (Tu et al., 2024b) 56.1 40.8 74.2 127.0 33.4 54.3 37.4 71.8 123.6 32.0

DIRL+CCR (Tu et al., 2024a) - - - - - 54.6 38.1 71.9 123.6 31.8
* FINER (Zhang et al., 2024b) 55.6 36.6 72.5 137.2 26.4 - - - - -

CHEERS (Ours) 57.1 42.2 75.8 130.0 33.9 54.1 39.0 73.6 127.4 33.2

Table 1: Comparing with state-of-the-art methods on CLEVR-Change dataset. The best results are in bold and *

indicates that the method is based on LLMs.

Method B M R C S

DUDA (Park et al., 2019) 40.3 27.1 - 56.7 16.1
VAM (Shi et al., 2020) 40.9 27.1 - 60.1 15.8

VACC (Kim et al., 2021) 45.0 29.3 - 71.7 17.6
NCT (Tu et al., 2023b) 47.5 32.5 65.1 76.9 15.6

VARD (Tu et al., 2023a) 48.3 32.4 - 77.6 15.4
SCORER (Tu et al., 2023c) 49.4 33.4 66.1 83.7 16.2

DIRL+CCR (Tu et al., 2024a) 51.4 32.3 66.3 84.1 16.8

CHEERS (Ours) 51.6 32.7 66.8 86.9 17.0

Table 2: Comparing with state-of-the-art methods on
CLEVR-DC dataset. The best results are in bold.

ties, which effectively emphasizes the difference
features between two images. Additionally, the
decoder, which integrates textual information, en-
hances the generation of more accurate captions.
This combination enables our model to capture and
highlight subtle changes in images, making it supe-
rior to previous approaches.

4.4.3 Results on Spot-the-Diff
To evaluate the expressive capability of our model
in real-world scenarios, we conduct experiments on
the recently released Spot-the-Diff dataset, which
primarily consists of well-aligned image pairs with-
out any viewpoint changes. In this setup, we com-
pare our approach against state-of-the-art methods.
As shown in Table 3 our model achieves improve-
ments across various metrics compared to tradi-
tional streamline models. Compared to LLM-based
methods (requiring 4 or 8 A100 GPUs), our method
also achieves competitive performance while using
significantly fewer computational resources (only

Method B M R C S

DUDA (Park et al., 2019) 8.1 11.8 29.1 32.5 -
VAM (Shi et al., 2020) 10.1 12.4 31.3 38.1 -

VACC (Kim et al., 2021) 9.7 12.6 32.1 41.5 -
VARD (Tu et al., 2023a) - 12.5 29.3 30.3 17.3

SCORER (Tu et al., 2023c) 10.2 12.2 - 38.9 18.4
DIRL+CCR (Tu et al., 2024a) 10.3 13.8 32.8 40.9 19.9

*OneDiff (Hu et al., 2024) 12.8 14.6 35.8 56.6 -
*FINER (Zhang et al., 2024b) 12.9 14.7 35.5 61.8 22.1

CHEERS (Ours) 10.5 12.9 33.1 41.0 19.6

Table 3: Comparing with state-of-the-art methods on
Spot-the-Diff dataset. The best results are in bold and *

indicates that the method is based on LLMs.

a single 3090 GPU), demonstrating its efficiency.
This indicates that our model can still accurately
describe differences in more complex scenes. Since
the dataset contains diverse statements but is not
large, the models struggle to learn the semantic
information of less frequent words. However, with
the help of prior semantic information about the
change entity, CHEERS can more accurately de-
scribe the changes present in such scenarios.

4.5 Ablation studies

Ablation Study of Each Module.To assess the con-
tribution of each module, we conduct the follow-
ing ablation studies on CLEVR-Change. Table 4
shows the overall performance of each component
of the proposed method across the entire dataset
and only scene changes. It is evident that each
module contributes to enhancing the baseline per-
formance. Furthermore, the best performance is
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CLEVR-Change CLEVR-DC Spot-the-diff

GT: the gray cylinder has been 
newly placed
SCORER: no change was made

Ours: the tiny gray metal cylinder 
has been added 
Entity: the tiny gray thing

GT: the other cylinder has appeared

SCORER: the large yellow cube 
moved
Ours: the tiny gray metal cylinder 
has been added 
Entity: the rubber cylinder 

GT: that truck is not present in the 
after image
SCORER: the blue truck has moved

Ours: the blue truck is missing

Entity: many cars

Figure 4: Qualitative analysis between the state-of-the-art method SCORER (Tu et al., 2023c) and our CHEERS on
the CLEVR-Change, CLEVR-DC, and Spot-the-diff datasets.

Method B M R C S

Baseline 42.2 34.7 67.5 100.1 28.6
CRE 56.6 42.2 75.7 128.6 33.6
DRE 55.6 41.6 74.9 127.7 33.5
HDR 56.3 41.2 74.3 125.3 32.9
GATE 43.9 36.2 69.8 104.4 29.1

CHEERS 57.1 42.2 75.8 130.0 33.9

Table 4: Ablation study of each module on CLEVR-
Change dataset.

λm

λv 0.25 0.50 0.75

0.25 128.2 129.0 129.3
0.50 129.0 129.4 130.0
0.75 129.3 128.1 129.4

Table 5: CIDEr scores on CLEVR-Change dataset under
different combinations of λm and λv .

achieved when all modules are combined, demon-
strating that each component not only fulfills its
unique role but also complements the others. This
indicates that, with the guidance of the change en-
tity, the model can more accurately pinpoint differ-
ences and generate higher-quality captions.

Ablation Study of Number of Entities. We
conduct an ablation study on the number of en-
tities used in our model, as illustrated in Figure
5. Across three different datasets, we observe that
simply increasing the number of entities does not
lead to significant performance improvements. In
fact, having too many entities can make it difficult

Encoder B M R C S

CLIP ViT-L/14 52.8 40.9 74.2 121.8 30.5
CLIP ViT-B/32 49.0 38.8 72.2 117.5 29.3
ResNet-101 57.1 42.2 75.8 130.0 33.9

Table 6: Performance of different visual encoders on
CLEVR-Change dataset.
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Figure 5: Effect of number of entities on three datasets.

for the model to focus on the true change targets,
as the increased variation in the entities may dis-
tract the model from capturing the most relevant
changes. Based on these findings, we set the num-
ber of entities to optimal values of 3 allowing the
model to focus on the true change targets without
being distracted by irrelevant variations.

Ablation Study of Number of Encoder Lay-
ers. We analyze how the number of encoder layers
affects model performance, as shown in Figure 6.
Our experiments across three different datasets re-
veal that increasing the number of encoder layers
does not consistently improve performance. In fact,
deeper layers tend to lead to overfitting, where the
model becomes overly complex and struggles to
generalize.

Ablation Study of λm and λv. We conduct an
ablation study to examine the effect of the scalar
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Figure 6: Effect of number of encoder layers on three
datasets.

trade-off parameters λm and λv. As shown in Ta-
ble 5, we vary both parameters in 0.25, 0.50, 0.75
and report the CIDEr score on CLEVR-Change
dataset. The results show that lower weights for
either component lead to degraded performance.
The best result is observed when λm = 0.50 and
λv = 0.75. This indicates that both losses provide
complementary supervision, and proper balancing
of their contributions is crucial for optimal perfor-
mance.

Ablation Study of Visual Encoder. We analyze
the impact of different visual encoders on model
performance, as shown in Table 6. We compare
three encoders: CLIP ViT-L/14, CLIP ViT-B/32,
and ResNet-101 on CLEVR-Change dataset. The
results demonstrate that the choice of visual en-
coder significantly affects the overall performance.
Although CLIP-based encoders are known for their
strong semantic alignment capabilities, they per-
form worse than ResNet-101 in the change cap-
tioning task without fine-tuning. This is mainly be-
cause CLIP-based encoders tend to focus more on
global semantic features, whereas ResNet-101 bet-
ter captures fine-grained local differences that are
crucial for detecting and describing visual changes.
Based on this analysis, we use ResNet-101 as our
default visual encoder for a good trade-off between
performance and efficiency.

4.5.1 Qualitative Analysis
Figure 4 presents three representative examples
from CHEERS, evaluated against the baseline
model SCORER, across three different datasets.
Each example shows the ground-truth change cap-
tions alongside those generated by CHEERS and
SCORER, with changed regions highlighted by red
boxes. Besides, we also present the change entity
retrieved by our model to demonstrate its correla-
tion with the real changes. Additionally, to observe
whether the model can focus on the difference re-
gions, we illustrate the attention distributions and
visualize them as a heatmap.

Upon reviewing the descriptions generated by
both methods in Figure 4, it becomes clear that

our model outperforms SCORER in recognizing
subtle differences, and it demonstrates greater ro-
bustness in handling extreme viewpoint changes.
The heatmap analysis reveals that our model ef-
fectively focuses on the different objects across
the paired images, highlighting its attention to key
details. Moreover, it can be observed that the ex-
tracted entities have a high correlation with the
ground truth, which further validates the approach
of using entities to guide the model in identify-
ing the differences, reinforcing the practicality and
effectiveness of this strategy.

5 Conclusion

This paper proposes CHEERS, which leverages
change entities to guide difference localization and
caption generation. CHEERS first determines the
change entity by maximizing the similarity differ-
ence between two images and candidate subjects.
Then, guided by the change entity, a representation
enhancement mechanism is applied to disentangle
difference features from distraction. Additionally,
we design a gated transformer that dynamically
fuses visual difference information with the tex-
tual change entity features. Extensive experiments
show that CHEERS achieves state-of-the-art results
on multiple benchmark datasets, demonstrating its
effectiveness in various change scenarios.

Limitations

We propose a novel model, CHEERS, for gener-
ating higher-quality text and having stronger ro-
bustness in the change captioning task. Although
our model achieves state-of-the-art performance
on several public datasets, there is still room for
improvement. In the entity retrieval and encoding
stage, we primarily use CLIP, which is not sensi-
tive to numerical and spatial relationships. More
powerful models could be used for entities retrieval
or to generate prior textual information.
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