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Abstract

Human readers can efficiently comprehend
scrambled words, a phenomenon known as
Typoglycemia, primarily by relying on word
form; if word form alone is insufficient, they
further utilize contextual cues for interpreta-
tion. While advanced large language models
(LLMs) exhibit similar abilities, the underly-
ing mechanisms remain unclear. To investigate
this, we conduct controlled experiments to an-
alyze the roles of word form and contextual
information in semantic reconstruction and ex-
amine LLM attention patterns. Specifically, we
first propose SemRecScore, a reliable metric to
quantify the degree of semantic reconstruction,
and validate its effectiveness. Using this met-
ric, we study how word form and contextual
information influence LLMs’ semantic recon-
struction ability, identifying word form as the
core factor in this process. Furthermore, we an-
alyze how LLMs utilize word form and find that
they rely on specialized attention heads to ex-
tract and process word form information, with
this mechanism remaining stable across vary-
ing levels of word scrambling. This distinction
between LLMs’ fixed attention patterns primar-
ily focused on word form and human readers’
adaptive strategy in balancing word form and
contextual information provides insights into
enhancing LLM performance by incorporating
human-like, context-aware mechanisms1.

1 Introduction

User: Do you undretsand Typoglycemia?
LLM: Yes! Typoglycemia is a phenomenon where
people can still read a word or sentence even when
the middle letters of the words are scrambled, ...

Humans exhibit remarkable adaptability in read-
ing, even when the internal character order of
words is scrambled, as long as the first and last

1https://github.com/Aurora-cx/TypoLLM.
B: Corresponding Author.

letters remain intact. This phenomenon, Typo-
glycemia, raises a fundamental question: Why do
humans and LLMs understand scrambled words?

Research shows that humans recognize words
primarily through holistic shape matching (Larson,
2004), relying on contextual prediction when shape
cues are insufficient (binti Ahmad Sabri, 2015). In
extreme scrambling, higher-order regions like the
prefrontal cortex enable retrospective reasoning
to infer words from context (Rayner et al., 2006).
Similarly, LLMs exhibit robustness to character
scrambling. (Cao et al., 2023) found they maintain
high accuracy despite disrupted tokenization, while
(Yu et al., 2024) showed strong Typoglycemia task
performance. These findings suggest LLMs, like
humans, leverage contextual reasoning to recon-
struct scrambled words.

However, a key question remains unanswered:
How do LLMs internally process scrambled text?
Do they employ mechanisms similar to humans?
To investigate this, we designed a series of con-
trolled experiments to systematically analyze the
effects of word form and contextual information on
LLMs’ semantic reconstruction. We constructed a
standardized dataset by carefully controlling key
linguistic variables and evaluated a series of LLMs
to analyze their internal mechanisms underlying
this capability.

We define the Semantic Reconstruction Score
(SemRecScore) as the cosine similarity between
the representation of the original word’s token and
the representation of the final subword token of
the scrambled word at each layer of the LLM.
This metric serves as a reliable measure of seman-
tic reconstruction. Our results show that LLMs
progressively recover word meaning across lay-
ers. However, as the degree of word form pertur-
bation increases, semantic reconstruction quality
gradually declines. At lower perturbation levels,
words achieve near-complete semantic alignment
with their original form, whereas at higher perturba-
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tion levels, only partial alignment is retained. In the
final layers of the models, SemRecScores exhibit
significant differences across different perturbation
levels. In contrast, even when contextual informa-
tion is entirely removed, its impact on semantic
reconstruction remains minimal.

Given that LLMs primarily rely on word form for
semantic reconstruction, we further investigate how
attention mechanisms facilitate this process. Our
analysis reveals that attention allocation to word
form follows a cyclic pattern across layers. More-
over, as word form perturbation increases, LLMs
allocate progressively more attention to word form
across all layers, suggesting that reconstructing
highly scrambled words requires greater compu-
tational resources. Additionally, attention is not
uniformly distributed; instead, LLMs rely on spe-
cific form-sensitive attention heads dedicated to
processing word form information. As perturba-
tion severity increases, more of these specialized
attention heads are activated, yet their distribution
remains stable, indicating a structured approach to
leveraging word form information.

These findings underscore a key distinction be-
tween LLMs and humans: while humans adaptively
adjust their reliance on word form and contextual
cues based on the degree of perturbation, LLMs
primarily rely on word form and exhibit a relatively
fixed yet structured attention allocation pattern.

Our contributions can be summarized as follows:
(1) We introduce a new perspective on LLM in-
terpretability by investigating their internal mecha-
nisms under character-level perturbations and pro-
pose SemRecScore as a reliable metric for quanti-
fying LLMs’ semantic reconstruction ability. (2)
Through systematic experiments, we demonstrate
that word form is the primary factor in semantic
reconstruction, while contextual information has
minimal impact, and we reveal the key role of form-
sensitive attention heads in this process. (3) We
further uncover a fundamental divergence between
LLMs and human cognition, providing insights for
improving LLMs’ semantic adaptability.

2 Related Work

Mechanisms Underlying Human Typoglycemia.
Humans’ Typoglycemia ability suggests that word
recognition does not strictly depend on letter order
but involves higher-level cognitive mechanisms.
Research in cognitive science and psychology sug-
gests that word recognition primarily relies on word

form rather than letter-by-letter decoding (Shill-
cock et al., 2000).

Eye-tracking studies (Johnson et al., 2007; White
et al., 2008) show that fluent readers process words
holistically rather than focusing on each letter. As
long as the first and last letters remain intact, recog-
nition remains stable (Rayner et al., 2006; Johnson
and Eisler, 2012). Beyond word shape, contextual
priming further speeds up recognition (Plummer
et al., 2014). For example, in “The nurse gave the
patient a. . . ”, words like ’doctor’ or ’medicine’ are
automatically activated (binti Ahmad Sabri, 2015),
helping readers reconstruct scrambled words more
efficiently. These findings suggest that human read-
ers flexibly adapt between word form and context.

LLM-Based Typoglycemia. Some recent stud-
ies have explored Typoglycemia and its impact
on LLM robustness, but their analyses remain
at a surface level, lacking a systematic investiga-
tion of internal mechanisms. For instance, Cao
et al. (2023) demonstrated that GPT-4 and other
advanced LLMs maintain strong language under-
standing under extreme character perturbations, ac-
curately reconstructing scrambled words. However,
their study was limited to input-output comparisons
without examining how LLMs internally process
scrambled text. Expanding on this, Yu et al. (2024)
evaluated multiple LLMs on Typoglycemia tasks
and found them remarkably robust. Yet, their fo-
cus remained on task-level performance rather than
the underlying representations and attention mech-
anisms driving word recovery. Thus, while these
works show that LLMs can handle Typoglycemia,
they offer only observational insights. Our study
fills this gap by analyzing LLMs’ internal process-
ing under Typoglycemia perturbations.

Robustness to Word Order Perturbations and
Contextual Dependencies. Pham et al. (2021)
and Sinha et al. (2021) found that BERT-based
models maintain high accuracy in NLU tasks even
when word order is shuffled, indicating a reliance
on lexical co-occurrence patterns rather than syn-
tactic structures. Similarly, Gupta et al. (2021)
observed that BERT struggles to detect unnatural
inputs, often making high-confidence predictions
despite severe word order disruption. However,
these studies focus on masked language models
and do not extend to generative LLMs or character-
level perturbations. Zhu et al. (2024) and Hu et al.
(2024) found that pretrained models underperform
fine-tuned models in complex reasoning and exhibit
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overconfidence in long-range dependencies, partic-
ularly benefiting from content words and N-grams.
Additionally, Hackmann et al. (2024) and Eisensch-
los et al. (2023) showed that LLMs primarily rely
on statistical correlations rather than explicit syntax
and face limitations when acquiring new words be-
yond their training data. Recent benchmarks have
also evaluated LLM robustness across multilingual,
structural, and social reasoning settings (Xu et al.,
2025a,c,b), reinforcing the importance of deeper
internal analysis. However, these studies do not
address how LLMs process and reconstruct text
under character-level perturbations. Building on
this work, we systematically analyze the ability of
generative LLMs to reconstruct semantics under
typoglycemia-style character perturbations, investi-
gating their reliance on word forms and contextual
cues while revealing structured attention allocation
patterns.

3 Problem Formulation

To systematically investigate how LLMs deal with
Typoglycemia, we define word semantic recon-
struction in LLMs as the internal process through
which a model gradually recovers the original
meaning of a word from an input with a scrambled
character order. We further break down this prob-
lem into two key influencing factors: (1) Scramble
Ratio. Definition: The extent of character per-
turbation within a word, ranging from slight re-
ordering of internal characters (excluding the first
and last letters) to extreme scrambling. Research
Question: Does increasing scrambling gradually
degrade semantic reconstruction across LLM lay-
ers? (2) Context Integrity. Definition: The com-
pleteness of contextual information available to the
LLM for semantic reconstruction, ranging from a
full sentence to no context at all. Research Ques-
tion: Does LLM semantic reconstruction primarily
rely on word shape or context? If context integrity
decreases, is the model’s semantic recovery ability
significantly affected?

To explore LLMs’ processing of scrambled
words, we apply the following methods to analyze
semantic reconstruction.

(1) Attention Distribution Analysis. Objective:
To study how LLMs distribute attention between
word shape information and contextual information
across different layers, and whether there are hier-
archical shifts. Research Questions: Does LLM
adjust its attention patterns based on the degree

of word scrambling? Is there a dynamic weight-
ing shift from word shape reliance to contextual
reliance as scrambling increases? (2) Role of Spe-
cialized Attention Heads. Objective: To identify
whether specific attention heads are specialized
for processing word shape or context and analyze
their behavioral patterns across different layers.
Research Questions: Under different scrambling
degrees, which attention heads remain highly fo-
cused on word shape information? Which attention
heads continue to function effectively under ex-
treme scrambling conditions?

Model Selection. Our primary analyses are con-
ducted on three models from the LLaMA fam-
ily: LLaMA-3.2-Instruct (1B, 3B) and LLaMA-
3.3-Instruct (70B) (Dubey et al., 2024), selected
for their strong open-source performance and ac-
cessibility of intermediate activations. We addi-
tionally evaluate models from other families and
scales—including LLaMA-3.1-Instruct (8B) and
Qwen2.5-Instruct(1.5B, 32B) (Bai et al., 2023). As
shown in Appendix C, our conclusions remain ro-
bust across all tested architectures.

4 Dataset

We selected SQuAD (Rajpurkar et al., 2016) as
our base dataset for its extensive use in evaluating
LLMs’ natural language understanding. Its long,
well-structured texts enable analysis across linguis-
tic structures while ensuring clear semantics and
controlled scrambling, enhancing reproducibility
and comparability.

4.1 Variables Definition

In this study, we control two key variables, Scram-
ble Ratio (SR) and Context Integrity (CI), to con-
struct an SR × CI matrix experimental design, en-
abling a systematic investigation of LLMs’ seman-
tic reconstruction ability under different linguistic
structure variations.

Scramble Ratio (SR). SR quantifies the degree
to which the internal characters of a word (exclud-
ing the first and last letters) have been scrambled.
It is defined as:

SR =
Nscrambled

Ncandidate
,

where Nscrambled is the number of scrambled charac-
ters, and Ncandidate is the total number of characters
eligible for scrambling within the word. A higher
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SR indicates a more disrupted word structure. We
define five SR levels: 0, 0.25, 0.5, 0.75, and 1.

Context Integrity (CI). CI measures the com-
pleteness of contextual information provided for a
given word. It is defined as:

CI =
Ncontext_preserved

Ntotal_context
,

where Ncontext_preserved is the number of preserved
context words, and Ntotal_context is the total number
of words in the original sentence. A higher CI
indicates a more complete contextual environment.
We define five CI levels: 0, 0.25, 0.5, 0.75, and 1.

4.2 Data Standardization and Control

To ensure the reliability of the experimental data,
we performed standardization on the dataset.

Word Scrambling. All target words are at least
10 characters long to avoid short words affecting
results. Based on the SR value, we extract, shuffle,
and reinsert a continuous substring from the can-
didate characters, ensuring the modified sequence
differs from the original. This keeps the word shape
intact at the beginning and end, making it easier
to quantify. To ensure control and reproducibil-
ity, we select only words that remain intact after
tokenization, avoiding subword splitting.

Context Masking. To study LLMs’ semantic re-
construction under context loss, we control CI. Un-
like BERT, LLaMA models lack a mask token and
was not trained with masked language modeling,
making direct word removal problematic as it alters
sentence length and disrupts syntax. To maintain
sentence structure and prevent tokenization issues,
we replace masked words with ‘_’. Masked words
are selected based on CI values, ensuring system-
atic coverage. To reduce noise from masking key
contextual words, we generate multiple masked
datasets using different random seeds. However,
results remain stable across seeds, as large-scale
sampling offsets individual sample noise.

Data Examples. We selected 20,000 samples
from the base dataset and, after standardization,
obtained 7,556 qualified samples. Below is an
example with SR = 0.5: The original word rela-
tionship was scrambled into relatinioshp, while
keeping the first and last letters unchanged. Below
is an example with CI = 0.5:

[Original Sentence] “...During Franco’s regime, however,
the blaugrana team was granted profit due to its good
relatinioshp with the dictator at management level, even
giving two awards to him...”

[Processed Sentence (SR = 0.5, CI = 0.5)] “...During
Franco’s regime, _ the blaugrana _ _ _ profit _ _ _ _
relatinioshp with the _ _ management _ even _ _ _ to
him...”

5 How to Measure the Degree of Semantic
Reconstruction

In this section, we introduce Semantic Reconstruc-
tion Score (SemRecScore) to quantify semantic re-
construction across LLM layers. To validate its ef-
fectiveness, we propose Negative Correlation Rate
(NegCorrRate), which measures how increased
SemRecScore aligns with greater consistency in
completion probability.

We evaluate NegCorrRate across three LLMs
(LLaMA-3.2(1B, 3B)-Instruct, LLaMA-3.3(70B)-
Instruct) and all samples, empirically supporting
SemRecScore’s effectiveness.

5.1 Semantic Reconstruction Score

We define SemRecScore as a metric to quantify the
degree of semantic reconstruction for scrambled
words across different layers of an LLM.

Since scrambled words rarely exist in the tok-
enizer’s vocabulary, they are typically split into
multiple subword tokens, dispersing their represen-
tation across embeddings. The model must inte-
grate these fragments to reconstruct meaning. Prior
studies suggest that in subword tokenization, the
last token in a sequence carries the most integrated
semantic representation (Meng et al., 2022; Geva
et al., 2023; Yang et al., 2024),. Based on this,
we define SemRecScore by comparing the original
word’s token representation with the last token in
the scrambled word’s subword sequence.

Formally, let x(L)o be the representation of the
original word’s token at layer L, and let x(L)s be
the representation of the last subword token in the
scrambled sequence at the same layer. Then, Sem-
RecScore at layer L is defined as:

SemRecScore(L) =
x
(L)
o · x(L)s

∥x(L)o ∥∥x(L)s ∥
,

where x
(L)
o · x(L)s denotes the dot product between

the two vectors, and ∥x(L)o ∥ and ∥x(L)s ∥ represent
their respective Euclidean norms. The resulting
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Figure 1: Relationship between ∆SR and Average Neg-
CorrScore across LLaMA models of different scales.
The increasing trend of NegCorrScore with ∆SR vali-
dates SemRecScore as a reliable measure of semantic
reconstruction.

cosine similarity ranges from -1 to 1, with higher
values indicating stronger semantic alignment.

SemRecScore provides insights into how well an
LLM reconstructs the semantics of a word when its
subword structure is disrupted. A higher SemRec-
Score suggests that the model retains the semantic
meaning despite scrambling, while a lower score
indicates a loss of semantic integrity.

5.2 Validating SemRecScore

To evaluate whether SemRecScore effectively cap-
tures semantic reconstruction, we analyze its rela-
tionship with the consistency of the model’s behav-
ior in generating completions. Specifically, we in-
troduce Negative Correlation Rate (NegCorrRate),
a global statistical measure that quantifies whether
an increase in SemRecScore corresponds to greater
consistency in the model’s completion probability
distribution. This section details the formulation of
NegCorrRate and its empirical trends.

Formulation. NegCorrRate is designed to mea-
sure the extent to which a higher SemRecScore is
associated with a lower KL divergence between
the completion probability distributions of prompts
containing scrambled and original words. Formally,
given a word with multiple Scramble Ratio (SR)
levels, we denote the final-layer SemRecScore at
SR level i as SRScore(final)

i , and the KL divergence
between the completion probability distributions
of prompts containing the scrambled word at SR
level i and those containing the original word as
KLdivi. For any two SR levels i and j such that
j = i−∆SR, where ∆SR is a predefined scram-
bling difference, we compute:

Ci,j = (SRScore(final)
i − SRScore(final)

j )× (KLdivi − KLdivj).

Ci,j indicates whether a decrease in final-layer Sem-
RecScore (SRScore(final)

i < SRScore(final)
j ) corre-

sponds to an increase in KL divergence (KLdivi >
KLdivj), supporting the expectation that lower se-
mantic reconstruction leads to greater inconsistency
in completion behavior.

NegCorrRate is then defined as the proportion
of sample pairs where this term is negative:

NegCorrRate =
1

|P|
∑

(i,j)∈P 1(Ci,j < 0),

where P is the set of all valid SR level pairs (i, j)
corresponding to a fixed ∆SR, and 1(·) is the in-
dicator function that returns 1 when the condition
inside holds and 0 otherwise.

Empirical Analysis. To understand how the rela-
tionship between SemRecScore and model consis-
tency evolves with increasing scrambling severity,
we compute the average NegCorrRate across all tar-
get words for different values of ∆SR. The results
for three LLaMA models are shown in Figure 1.

At ∆SR = 0, NegCorrRate is 0, as comparing
a word with itself introduces no behavioral dif-
ference. As ∆SR increases, greater scrambling
differences lead to larger semantic reconstruction
gaps, increasing the number of negatively corre-
lated sample pairs. Consequently, NegCorrRate
rises, reinforcing the negative correlation between
SemRecScore and KL divergence.

Figure 1 shows a sharp increase in NegCorrRate
for small ∆SR, indicating that even mild scram-
bling disrupts semantic reconstruction. As ∆SR
nears 1.0, NegCorrRate approaches 1.0, suggest-
ing a nearly universal negative correlation across
samples. These results provide empirical support
that SemRecScore effectively reflects the degree
of semantic reconstruction, as its correlation with
completion consistency remains robust across dif-
ferent scrambling intensities.

6 How Word Form and Contextual
Information Influence LLMs’ Semantic
Reconstruction

To quantitatively assess the impact of word form
and contextual information on LLMs’ semantic
reconstruction, we conduct experiments on three
instruction-tuned models: LLaMA-3.2(1B, 3B)-
Instruct and LLaMA-3.3(70B)-Instruct. We design
a 5 × 5 experimental matrix with five levels of
Scramble Ratio (SR) and five levels of Context
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(a) 1B Word Scrambling (CI=1) (b) 3B Word Scrambling (CI=1) (c) 70B Word Scrambling (CI=1) (d) 3B Word Scrambling (CI=0)

(e) 1B Context Integrity(SR=0.25) (f) 3B Context Integrity(SR=0.25) (g) 70B Context Integrity(SR=0.25) (h) 3B Context Integrity(SR=1)

Figure 2: Semantic reconstruction performance across different Scramble Ratios (SR) and Context Integrity (CI)
levels. The top row (a-d) presents SemRecScore trends under varying SR values for 1B, 3B, and 70B models. The
bottom row (e-h) illustrates SemRecScore evolution for fixed SR values while varying CI. Across all models, word
form plays a dominant role, with context integrity having minimal impact on reconstruction performance.

Integrity (CI), yielding 25 distinct settings. Analyz-
ing semantic reconstruction across all layers, we
find that word form plays a dominant role, while
contextual information, though initially expected to
be key, has a surprisingly limited effect on LLMs’
typoglycemia capabilities (Figure 2). The follow-
ing sections explore the influence of word form
first, then contextual information.

6.1 Impact of Word Form on Semantic
Reconstruction

To assess word form’s impact, we analyze Fig-
ures 2(a)-(c) for 1B, 3B, and 70B models with
CI=1. Across all models, when SR = 0, no re-
construction is needed, and SemRecScore remains
near 1 across layers, confirming token embeddings
align with original words. When SR > 0, Layer 0
representations are unrelated to the original forms,
regardless of scrambling severity. Reconstruction
improves with depth but depends on SR—lower
SR values recover more effectively. By the final
layer, SR = 0.25 reaches near-perfect reconstruc-
tion, while SR = 1 lags by 30% and only achieves a
final SemRecScore of 0.5, indicating incomplete re-
construction. The widening gap between SR levels
at deeper layers highlights word form’s critical role
in semantic recovery. Figure 2(c) reveals a 70B
model anomaly—unlike 1B and 3B, which show a
monotonic increase, highly scrambled words in the
70B model decline in later layers. This suggests
larger models reinterpret highly perturbed words

as semantically unrelated rather than reconstruct-
ing them, revealing a scale-dependent phenomenon
where extreme perturbations are disregarded rather
than forced into alignment. Figure 2(d) examines
the 3B model with no context (CI=0), showing sim-
ilar SemRecScore trends as CI=1. Despite context
removal, final reconstruction quality aligns with
SR-based expectations, indicating minimal contex-
tual impact—words are reconstructed regardless.

These findings demonstrate that word form domi-
nates LLMs’ typoglycemia capabilities, with lower
SR aiding recovery, while context plays a minimal
role. Additional results for intermediate CI values
are in the Appendix A.1.

6.2 Impact of Contextual Information on
Semantic Reconstruction

To assess the role of contextual information in se-
mantic reconstruction, we analyze Figures 2(e), (f),
and (g), which correspond to the 1B, 3B, and 70B
models under SR=0.25. Notably, we observe that
the curves for different CI levels are almost over-
lapping, indicating that under the same scramble
ratio, the completeness of contextual information
has minimal impact on semantic reconstruction.
The only exception is when CI=0, where a slight
drop in reconstruction performance is visible when
no context is retained.

Further, Figure 2(h) shows the 3B model’s recon-
struction trends at SR=1, where all internal charac-
ters are scrambled except the first and last. Inter-
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estingly, even under this extreme perturbation, the
trends for different CI values remain nearly iden-
tical, indicating that LLMs do not increase their
reliance on contextual information when process-
ing highly scrambled words. This reinforces the
observation that contextual integrity does not sig-
nificantly affect the model’s ability to reconstruct
word meaning. However, when comparing Fig-
ure 2(h) (SR=1) with Figure 2(f) (SR=0.25), we
observe a clear decline in reconstruction perfor-
mance, highlighting that word form, rather than
context, is the primary determinant of semantic
recovery. Additional results for intermediate SR
values are in the Appendix A.2.

7 How LLMs Utilize Word Form
Information

Building on the findings from Section 6, we have
established that word form is the primary factor
influencing LLMs’ reconstruction of a word’s orig-
inal meaning in typoglycemia scenarios. In this
section, we further investigate how LLMs utilize
word form information. We focus our analysis
on attention mechanism, as it is the most critical
component for semantic reconstruction under typo-
glycemia. A detailed comparison with other com-
ponents, such as FFNs and residual pathways, is
provided in Appendix D.

Specifically, in Section 7.1, we analyze the over-
all attention distribution across different scram-
bling levels and how it evolves across model layers.
In Section 7.2, we identify specific attention heads
responsible for processing word form, revealing
the most fine-grained mechanisms through which
LLMs leverage form-based cues.

7.1 Attention Allocation to Word Form

Since context integrity (CI) has minimal impact
on semantic reconstruction, we mainly analyze the
model’s attention patterns under CI=1, where the
surrounding context remains intact, which aligns
with a realistic setting for typoglycemia.

Definition of AttentionSelf. To quantify how
LLMs allocate attention to word form, we define
AttentionSelf, which measures the total attention
assigned to all tokens in a subword sequence by its
final token, aggregated across all attention heads.
Formally, we define AttentionSelf as:

AttentionSelf =
∑

h∈H
∑

t∈T Ah(tlast, t),

where H represents all attention heads, T is the set
of tokens within the scrambled subword sequence,
and Ah(tlast, t) denotes the attention weight as-
signed by head h from the final token tlast to token
t in the sequence.

We compute the mean AttentionSelf across a set
of samples at each layer, as shown in Figures 3.

Attention Allocation Pattern. Across all mod-
els, we observe a consistent trend in which Atten-
tionSelf increases with SR across all layers, with
the SR=1 curve consistently the highest and SR=0
significantly lower than the rest. This ordering
remains consistent across all three models, with
curves ranked from top to bottom according to SR,
indicating that higher scrambling severity leads to
stronger attention to word form.

Notably, even from Layer 0, LLMs allocate sub-
stantial attention to scrambled words (SR > 0), sug-
gesting that word reconstruction begins at the ear-
liest processing stages. This finding aligns with
Section 6, where semantic reconstruction was ob-
served to start from the lowest layers. In contrast,
when SR=0, the model assigns minimal attention
to word form at the lower layers, with Attention-
Self remaining consistently lower in the initial pro-
cessing stages. This suggests that LLMs do not
explicitly attend to word form in the early layers
unless perturbation occurs.

Across all three models, AttentionSelf exhibits a
clear upward trend in the higher layers, indicating
that LLMs increasingly refocus on word form at
deeper layers. In the 1B and 3B models, we observe
a cyclic pattern in attention allocation, suggesting
that attention to word form fluctuates across layers
rather than following a strictly monotonic trend. In
the 70B model, while a similar cyclic pattern ap-
pears in the first half of the network, the latter half
maintains a prolonged period of low AttentionSelf
before a final sharp increase at the highest layers.

Notably, this final surge in AttentionSelf does
not correspond to a continued rise in SemRecScore,
which instead plateaus before slightly declining
in the last two layers. This behavior is unique to
the 70B model; in contrast, the 1B and 3B models
exhibit a late-stage increase in both AttentionSelf
and SemRecScore, indicating continued refinement
of semantic reconstruction. The prolonged low
AttentionSelf in the second half of the 70B model
aligns with the plateau in SemRecScore observed
in Section 6, suggesting that the model deprioritizes
word form processing for a substantial depth range
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(a) 1B Word Scrambling (CI=1) (b) 3B Word Scrambling (CI=1) (c) 70B Word Scrambling (CI=1) (d) 3B Word Scrambling (CI=0)

Figure 3: Attention allocation to word form under varying Scramble Ratios (SR). Subplots (a-c) show AttentionSelf
trends for 1B, 3B, and 70B models with full context (CI=1), while (d) presents the 3B model without context
(CI=0). Higher SR values consistently elicit stronger attention to word form, and the cyclic attention pattern remains
unchanged even without context, suggesting that LLMs process word form independently of contextual information.

(b) 1B Word Scrambling (SR=0.5) (c) 1B Word Scrambling (SR=1)(a) 1B Word Scrambling (SR=0)

Figure 4: Heatmaps of attention allocation to word form in the LLaMA-1B-Instruct across Scramble Ratios (SR).
The x-axis denotes attention heads, and the y-axis denotes layers. Specific heads consistently focus on word form,
with higher SR activating more form-sensitive heads, indicating a structured and stable processing mechanism.

before ultimately refocusing on it in the final layers.
Rather than continuously refining the reconstructed
semantics, the 70B model appears to reallocate
processing resources toward other representational
objectives, leading to a deviation from the trends
observed in smaller models.

Additionally, we analyze AttentionSelf when
CI=0, where all contextual information is removed
for the 3B model. As shown in Figure 3, even with
no surrounding context, the model’s attention to
word form remains structured and consistent with
the pattern observed in Figure 3(b), where full con-
text is present. This suggests that LLMs’ attention
allocation to word form is a fixed process rather
than an adaptive response to available context.

7.2 Form-Sensitive Attention Heads

To further analyze how LLMs utilize word form
information, we examine the attention allocation of
individual attention heads across all layers and sam-
ples. As shown in Figure 4, the x-axis represents
the Attention Head ID, while the y-axis denotes the
Layer ID. The color intensity of each cell corre-
sponds to AttentionSelfi, which quantifies the at-
tention allocated to word form by the attention head

i. Figure 3 presents the LLaMA-3.2-1B-Instruct
model’s attention distribution under different SR
values, while heatmaps for the 3B and 70B models
can be found in Appendix B.

In Section7.1, we observed that all models ex-
hibit an increase in overall attention to word form
at the highest layers. Here, Figure 4 reveals that,
across all SR values, attention heads H14, H24, and
H25 in the final layer consistently focus on word
form. This suggests that certain attention heads are
specifically responsible for processing word form
information at the model’s top layers.

When SR=0, the lower layers show minimal at-
tention to word form, which aligns with our previ-
ous observation that LLMs do not explicitly attend
to word form in early layers unless perturbation
occurs. However, when SR>0, even at the lowest
layer, H2 and H3 consistently allocate attention
to word form, indicating that the model begins re-
constructing scrambled words from the very first
processing stages. The cyclic attention pattern ob-
served in Section 7.1 appears to be primarily driven
by H12 and H26 in the middle layers, reinforcing
the idea that certain attention heads exhibit periodic
fluctuations in their focus on word form.
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Additionally, heatmaps for the 3B and 70B mod-
els (see Appendix B) confirm that form-sensitive at-
tention heads are consistently present across model
scales. As SR increases, more such attention heads
are activated, and their distribution remains stable
across different SR levels. LLMs’ utilization of
word form is primarily carried out by these spe-
cific attention heads rather than being distributed
uniformly across the model.

These findings suggest that LLMs possess spe-
cialized attention heads dedicated to processing
word form, which become increasingly engaged
as word scrambling severity increases. These
specialized heads are not manually designed but
rather emerge spontaneously during pretraining.
It has been widely observed that attention heads
tend to specialize naturally during training, taking
on distinct linguistic roles such as syntactic pars-
ing, coreference resolution, and token composi-
tion (Voita et al., 2019; Clark et al., 2019). Among
them, certain heads exhibit strong specialization in
local token composition, which is particularly criti-
cal for integrating fragmented subword units into
coherent word forms. This behavior is widely con-
sidered an emergent property of LLMs. To perform
this task effectively, the model must learn to se-
mantically reconstruct scrambled word structures,
which naturally encourages some attention heads
to focus on subword integration. Importantly, this
specialization is not manually imposed but arises
from the interaction between the training objective
and the underlying data distribution.

8 Conclusion and Future Work

Our findings reveal that LLMs primarily rely on
word form for typoglycemia-style semantic recon-
struction, with contextual information playing a
minimal role. We further demonstrate that atten-
tion allocation to word form follows a structured
pattern across layers, with cyclic fluctuations and
specialized attention heads dedicated to word form
processing. Future work should explore a broader
range of model architectures and languages, as well
as assess the practical impact of LLMs’ word form
utilization on real-world NLP tasks.

9 Limitations

While our study offers valuable insights into how
LLMs utilize word form for semantic reconstruc-
tion, it has several limitations. First, our experi-
ments are confined to the LLaMA model family,

leaving open the question of whether these mech-
anisms generalize to other architectures. Second,
we focus specifically on typoglycemia-style scram-
bling, whereas other perturbations, such as dele-
tions or phonetic errors, may lead to different recon-
struction patterns. Finally, our analysis is limited
to English, and it remains uncertain whether mor-
phologically rich languages exhibit similar depen-
dencies on word form. Future work could explore
broader model architectures, diverse perturbation
types, and cross-linguistic analyses to provide a
more comprehensive understanding of LLMs’ se-
mantic reconstruction mechanisms.
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A Semantic reconstruction performance

A.1 Performance across different CI levels

In the main text, we have presented the layer-wise
Semantic Reconstruction Performance across dif-
ferent LLM scales for various SR values when CI
= 1. In this appendix section, Figure 5 illustrates
the results for CI = 0 and CI = 0.25, while Fig-
ure 6 presents the results for CI = 0.5 and CI =
0.75. The similarity of the curves confirms that
Contextual Information has a minimal impact on
semantic reconstruction.

A.2 Performance across different SR levels

In the main text, we have presented the layer-wise
Semantic Reconstruction Performance across dif-
ferent LLM scales for various CI values when SR =
0.25. In this appendix section, Figure 7 illustrates
the results for SR = 0 and SR = 0.5, while Figure 8
presents the results for SR = 0.75 and SR = 1. The
noticeable decline in the curves as SR increases
confirms that Word Form plays a dominant role in
semantic reconstruction.

B Heatmap of attention allocaton

In the main text, we presented how different at-
tention heads in LLaMA-3.2-1B-Instruct allocate
attention to word forms. This section provides
heatmaps of attention distribution for the remain-
ing two models.

Figure 9 presents the attention distribution
heatmap for LLaMA-3.2-3B-Instruct, while Fig-
ure 10 shows the heatmap for LLaMA-3.3-7B-
Instruct. Across different SR levels, a consistent
pattern emerges: certain layers and specific atten-
tion heads consistently allocate more attention to
word forms. This observation suggests that the
models primarily rely on Form-Sensitive Attention
Heads to utilize word form information.

C Extended Model Evaluations

To verify the robustness of our findings, we evalu-
ated three additional models: LLaMA-3.1-Instruct
(8B), Qwen2.5-Instruct (1.5B), and Qwen2.5-
Instruct (32B). As shown in Figures 11, 12, and 13,
all models exhibit consistent semantic reconstruc-
tion patterns under varying Scramble Ratios (SR)
and Context Integrity (CI) levels.

D Component-wise Semantic
Reconstruction Analysis

We extend our analysis beyond attention modules
to examine how different components within each
Transformer block contribute to semantic recon-
struction under typoglycemia, using LLaMA-3.2-
1B-Instruct as the base model. Specifically, we
measure SemRecScore at six internal stages of each
layer: (1) block input, (2) raw attention output, (3)
attention output + residual, (4) raw FFN output, (5)
FFN output + residual, and (6) final output after
LayerNorm. Our key findings are as follows:

• Attention modules provide strong early-stage
gains in semantic reconstruction, even with-
out residuals, because they can integrate frag-
mented subword tokens into a cohesive word
form, which we have identified as the pri-
mary driver of semantic recovery under ty-
poglycemia.

• In contrast, raw FFN outputs often slightly re-
duce SemRecScore. This is because FFNs
operate in a token-wise manner, applying
nonlinear transformations independently to
each token without aggregating information
from neighboring subwords. As a result,
FFNs lack the compositional ability needed to
merge fragmented subword tokens into coher-
ent word forms, which is crucial for semantic
reconstruction under typoglycemia.

• Residual connections consistently restore and
stabilize semantic information, acting as a con-
sistent memory flow that retains earlier recon-
struction gains.

• LayerNorm has limited direct contribution to
reconstruction.

To further illustrate how semantic information
propagates through these components, Figure 14
presents layer-wise SemRecScore curves across all
six stages under SR = 0.25, with CI set to 0, 0.5,
and 1.0. These results reinforce that attention mech-
anisms consistently play a central role in enabling
semantic reconstruction.
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LLaMA-3.2-1B-Instruct LLaMA-3.2-3B-Instruct LLaMA-3.3-70B-Instruct

Context Integrity (CI) = 0

Context Integrity (CI) = 0.25

LLaMA-3.2-1B-Instruct LLaMA-3.2-3B-Instruct LLaMA-3.3-70B-Instruct

Figure 5: Semantic Reconstruction Performance across Different LLM Scales and Context Integrity Levels. The
plots illustrate the layer-wise Semantic Reconstruction Score (SemRecScore) for various SR values across different
LLaMA models (1B, 3B, and 70B). The top row represents CI = 0, while the bottom row represents CI = 0.25.
The legend indicates different SR conditions, including the “Completely Scrambled” setting. The similarity of the
curves across different CI values suggests that Context Integrity (CI) has minimal impact on semantic reconstruction
performance.

LLaMA-3.2-1B-Instruct LLaMA-3.2-3B-Instruct LLaMA-3.3-70B-Instruct

Context Integrity (CI) = 0.5

Context Integrity (CI) = 0.75

LLaMA-3.2-1B-Instruct LLaMA-3.2-3B-Instruct LLaMA-3.3-70B-Instruct

Figure 6: Semantic Reconstruction Performance across Different LLM Scales and Context Integrity Levels. The
plots illustrate the layer-wise Semantic Reconstruction Score (SemRecScore) for various SR values across different
LLaMA models (1B, 3B, and 70B). The top row represents CI = 0.25, while the bottom row represents CI = 0.75.
The legend indicates different SR conditions, including the “Completely Scrambled” setting. The similarity of the
curves across different CI values suggests that Context Integrity (CI) has minimal impact on semantic reconstruction
performance.
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LLaMA-3.2-1B-Instruct LLaMA-3.2-3B-Instruct LLaMA-3.3-70B-Instruct

Scramble Ratio (SR) = 0

Scramble Ratio (SR) = 0.5

LLaMA-3.2-1B-Instruct LLaMA-3.2-3B-Instruct LLaMA-3.3-70B-Instruct

Figure 7: Semantic Reconstruction Performance across Different LLM Scales and Scramble Ratio Levels. The
plots illustrate the layer-wise Semantic Reconstruction Score (SemRecScore) for various CI values across different
LLaMA models (1B, 3B, and 70B). The top row represents SR = 0, while the bottom row represents CI = 0.5.
The legend indicates different CI conditions.The close alignment of curves across different CI values suggests that
Context Integrity has a limited impact on semantic reconstruction.

LLaMA-3.2-1B-Instruct LLaMA-3.2-3B-Instruct LLaMA-3.3-70B-Instruct

Scramble Ratio (SR) = 0.75

Scramble Ratio (SR) = 1

LLaMA-3.2-1B-Instruct LLaMA-3.2-3B-Instruct LLaMA-3.3-70B-Instruct

Figure 8: Semantic Reconstruction Performance across Different LLM Scales and Scramble Ratio Levels. The
plots illustrate the layer-wise Semantic Reconstruction Score (SemRecScore) for various CI values across different
LLaMA models (1B, 3B, and 70B). The top row represents SR = 0.75, while the bottom row represents CI = 1.
The legend indicates different CI conditions.The close alignment of curves across different CI values suggests
that Context Integrity has a limited impact on semantic reconstruction. In the rows with higher SR, all curves are
noticeably lower, confirming that Word Form plays a crucial role in semantic reconstruction.
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(b) 3B Word Scrambling (SR=0.5) (c) 3B Word Scrambling (SR=1)(a) 3B Word Scrambling (SR=0)

Figure 9: Heatmaps of attention allocation to word form in the LLaMA-3.2-3B-Instruct across Scramble Ratios
(SR). The x-axis denotes attention heads, and the y-axis denotes layers. Specific heads consistently focus on word
form, with higher SR activating more form-sensitive heads, indicating a structured and stable processing mechanism.

(b) 70B Word Scrambling (SR=0.5) (c) 70B Word Scrambling (SR=1)(a) 70B Word Scrambling (SR=0)

Figure 10: Heatmaps of attention allocation to word form in the LLaMA-3.3-70B-Instruct across Scramble Ratios
(SR). The x-axis denotes attention heads, and the y-axis denotes layers. Specific heads consistently focus on word
form, with higher SR activating more form-sensitive heads, indicating a structured and stable processing mechanism.

(a) CI = 1 (b) CI = 0.75 (c) CI = 0.5 (d) CI = 0.25 (d) CI = 0

(e) SR = 0 (f) SR= 0.25 (g) SR = 0.5 (h) SR = 0.75 (h) SR = 1

Figure 11: Semantic reconstruction performance across different Scramble Ratios (SR) and Context Integrity (CI)
levels on LLaMA-3.1-8B-Instruct.
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(a) CI = 1 (b) CI = 0.75 (c) CI = 0.5 (d) CI = 0.25 (d) CI = 0

(e) SR = 0 (f) SR= 0.25 (g) SR = 0.5 (h) SR = 0.75 (h) SR = 1

Figure 12: Semantic reconstruction performance across different Scramble Ratios (SR) and Context Integrity (CI)
levels on Qwen2.5-1.5B-Instruct.

(a) CI = 1 (b) CI = 0.75 (c) CI = 0.5 (d) CI = 0.25 (d) CI = 0

(e) SR = 0 (f) SR= 0.25 (g) SR = 0.5 (h) SR = 0.75 (h) SR = 1

Figure 13: Semantic reconstruction performance across different Scramble Ratios (SR) and Context Integrity (CI)
levels on Qwen2.5-32B-Instruct.

LLaMA-3.2-1B-Instruct

CI = 0.5 CI = 1

SR = 0.25

CI = 0

Figure 14: Layer-wise SemRecScore measured at six component stages under Scramble Ratio (SR) = 0.25 and
varying Context Integrity (CI) levels.
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