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Abstract

Large language models (LLMs) have demon-
strated impressive performance in reasoning.
However, existing data annotation methods usu-
ally suffer from high annotation cost and the
lack of effective automatic validation. To ad-
dress these issues, we propose a Fine-grained
Multi-Agent Debate framework (FMAD) and
MMATH-Data, a dataset created by FMAD,
which consists of 46K reasoning steps. By
prompting multiple agents to debate, FMAD
assesses the contribution of each reasoning step
to the final solution, with labels based on the
judge’s confidence score and the winner’s po-
sition. To facilitate reasoning in math and
examine FMAD and MMATH-Data, we fur-
ther propose two key components: a Multi-
Agent Debate Reward Model (MRM) trained
on MMATH-Data, which serves as a reward
model to provide robust feedback during the
optimization process, and MMATH-LLM, a
model designed specifically for mathematical
reasoning. MMATH-LLM is fine-tuned using
reinforcement learning with supervised feed-
back from MRM, aiming at improving its math-
ematical reasoning capabilities. Extensive ex-
periments demonstrate that our model achieves
83.4% accuracy on the GSM8K dataset and
45.1% on the MATH dataset, outperforming
the state-of-the-art methods by 1.2% and 3.5%,
respectively. All data and code can be found at
GitHub.1

1 Introduction

Large language models, exemplified by GPT-4
(OpenAI, 2023) and GPT-o1,2 have demonstrated
exceptional performance across a wide range of
tasks. However, even the most advanced LLMs
could generate incorrect reasoning paths when solv-
ing complex multi-step mathematical problems
(Saxton et al., 2019; Zhou et al., 2022; Liu et al.,

* Corresponding author.
1https://github.com/tjunlp-lab/Debate4Math
2https://openai.com/index/learning-to-reason-with-llms/

2024). To improve advanced reasoning, a variety
of methods have been proposed from two perspec-
tives: creating step-wise reasoning data and de-
veloping step-wise reasoning verifiers. However,
these methods usually suffer from two critical chal-
lenges: constructing high-quality training data and
designing reward models capable of guiding policy
refinement and improving data quality. Although
existing approaches, such as automated annotation
techniques and reward methods (Wang et al., 2024;
Xu et al., 2023; Uesato et al., 2022; Lightman et al.,
2023), have made progress, significant gaps persist.

Creating of high-quality data is fundamental for
advancing the reasoning capabilities of LLMs (Shi
et al., 2024; Shen et al., 2023; Zhu et al., 2023),
yet it presents a critical dilemma. On one hand,
human-annotated data remains the gold standard
for complex reasoning tasks requiring specialized
skills (Lightman et al., 2023), but its resource-
intensive nature severely limits scalability. On the
other hand, automated synthesis methods, such as
tree/graph-based expansions (Wang et al., 2024),
offer promising alternatives but introduce new chal-
lenges: they necessitate extensive human validation
to maintain quality, and their reliability degrades
with increasing complexity. This fundamental ten-
sion between quality, scalability, and annotation
cost underscores the need for more efficient data
construction methodologies.

Complementary to data creation, reward mod-
els play a pivotal role in language model training
by providing essential feedback for reinforcement
learning (RL) policies and synthetic data quality
supervision (Shi and Xiong, 2025; Yang et al.,
2025; Li et al., 2024; Zhu et al., 2022; Li et al.,
2025). However, conventional reward models, such
as those in used in Proximal Policy Optimization
(PPO) (Schulman et al., 2017), exhibit significant
limitations. They require additional supervision
to ensure accurate and consistent feedback, while
inconsistent feedback could degrade model per-
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formance or reduce the quality of synthetic data.
These challenges highlight the need for more robust
and scalable reward models.

To alleviate the aforementioned issues with rea-
soning data construction and reasoning-tailored re-
ward models, we propose FMAD, a Fine-grained
Multi-Agent Debate framework that leverages a
multi-round debate process to create high-quality
reasoning data, and MRM, a Multi-Agent Debate
Reward Model, designed to enable effective self-
regulation through agent debates. Specifically, in
FMAD, two debaters engage in a multi-round de-
bate on a given problem, while a judge evaluates
their arguments. FMAD is structured into three
steps. 1) Role Definition: Two debaters and one
judge are defined. The debaters argue the correct-
ness of each reasoning step, while the judge eval-
uates the debate by reviewing their debate history
and assigns a score to the winner. 2) Debate Ini-
tiation: The debate begins with one debater pre-
senting supporting evidence for the correctness of
a reasoning step, followed by multiple rounds of
argumentation. 3) Decision Making: The judge
reviews the debate history, selects a winner, and as-
signs a confidence score (0% to 100%) to indicate
the likelihood of the chosen reasoning step being
correct.

For the reward model, MRM employs two de-
baters to evaluate the validity of reasoning steps
through structured debates, with a judge gener-
ating reward signals based on the debate out-
comes. It enhances the training process by pro-
viding multi-faceted feedback for both reasoning
assessment and policy optimization. With MRM-
generated rewards, we are able to mitigate annota-
tion bias and improve feedback reliability, thereby
advancing model performance. In order to validate
MRM, we further propose MMATH-LLM, a lan-
guage model specialized in mathematical reason-
ing, where MRM delivers per-step feedback during
policy training to refine reasoning capabilities.

In a nutshell, our contributions are as follows:

• We present FMAD, a framework designed
for automatic math reasoning data annotation
via multi-agent debate, and MMATH-Data, a
dataset created via FMAD.

• We propose MRM, a reward model trained
on MMATH-Data, which utilizes multi-agent
debate to provide feedback for reinforcement
learning, and MMATH-LLM that incorporates

MRM to effectively enhance the mathematic
reasoning capability of LLMs.

• Extensive experiments on two widely used
mathematical benchmarks, GSM8K and
MATH, validate the effectiveness of our mod-
els and data.

2 Related Work

Improving Reasoning Ability of LLMs with
High-Quality Data. Mathematical reasoning re-
mains a significant challenge for large language
models, where high-quality data is crucial for pre-
training and fine-tuning. Existing data construc-
tion approaches fall into three categories: human-
annotated supervision, rule-based synthetic genera-
tion, and stochastic search-based methods. Human-
annotated datasets like PRM800K (Lightman et al.,
2023) provide precise feedback but are costly and
short of scalability. Rule-based methods, such as
BackMATH (Zhang and Xiong, 2025), automate
data generation using predefined rules (e.g., back-
ward reasoning chain) but suffer from producing bi-
ased outputs due to insufficient validation. Stochas-
tic search-based techniques, such as Monte Carlo
Tree Search (MCTS) (Kocsis and Szepesvári, 2006;
Wang et al., 2024), explore reasoning paths prob-
abilistically but require high sampling density for
accurate probability estimation, leading to com-
putational inefficiency and biased results. These
methods collectively face trade-offs between cost,
scalability, and reliability. To address these limita-
tions, we propose an automated data construction
framework that integrates cost-effective data gen-
eration with self-verification, eliminating human
intervention while ensuring data quality.
Reasoning Verification for LLMs. Beyond en-
hancing reasoning through data or prompting, ver-
ifying training processes or outputs has emerged
as a key approach to improving LLMs’ reasoning
capabilities. Existing verification methods can be
categorized into three paradigms: outcome-based,
process-based, and hybrid supervision. Outcome-
based supervision evaluates final outcomes, as seen
in the Outcome Reward Model (ORM) (Ouyang
et al., 2022). While simple, ORM lacks granularity
for intermediate steps, resulting in reward sparsity.
Process-based supervision addresses this by pro-
viding step-by-step feedback. Process-supervision
Reward Models (PRMs) (Lightman et al., 2023;
Uesato et al., 2022) evaluates each reasoning step,
enabling precise error correction. However, PRMs
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Problem: The equation 𝑥𝑥
𝑥𝑥+1

+ 𝑥𝑥
𝑥𝑥+2

= 𝑘𝑘𝑘𝑘 has exactly two 
complex roots. Find all possible complex values for 𝑘𝑘. Enter all 
the possible values, separated by commas.

Ground-truth Answer:

0,
3
2

,−2𝑖𝑖,2𝑖𝑖

𝑺𝑺𝟏𝟏, … ,𝑺𝑺𝒌𝒌−𝟏𝟏: Multiplying both sides by (𝑘𝑘 + 1)(𝑘𝑘 + 2), we get [𝑘𝑘(𝑘𝑘 + 2) +  𝑘𝑘(𝑘𝑘 +
1)  =  𝑘𝑘𝑘𝑘(𝑘𝑘 + 1)(𝑘𝑘 + 2)]. This rearranges to the equation [0 =  𝑘𝑘𝑘𝑘^3 + (3𝑘𝑘 −
2)𝑘𝑘^2 + (2𝑘𝑘 − 3)𝑘𝑘, ]or [0 =  𝑘𝑘(𝑘𝑘𝑘𝑘^2 + (3𝑘𝑘 − 2)𝑘𝑘 +  (2𝑘𝑘 − 3)). ] Clearly 𝑘𝑘 =  0 is 
a root of this equation.

𝑺𝑺𝒌𝒌 : All the other roots must satisfy the equation 0 = 𝑘𝑘𝑘𝑘2 + 3𝑘𝑘 − 2 𝑘𝑘 + 2𝑘𝑘 − 3 ,If 𝑘𝑘 =
0 then the equation becomes −2𝑘𝑘 − 3 = 0, so 𝑘𝑘 = −3

2
.  Thus, 𝑘𝑘 = 0 works.

Solution: 𝑺𝑺𝟏𝟏,𝑺𝑺𝟐𝟐, … ,𝑺𝑺𝒏𝒏
ROUND 

1

Judge

MATH problem
Whole solution 

One reasoning step in solution

To establish my position effectively, I will demonstrate the correctness of the given reasoning step and its 
necessity in finding the solution….

To counter Debater A's arguments and assert that the reasoning step involving \\( k = 0 \\) does 
not provide valuable information….

In order to rigorously analyze whether the step involving \\( k = 0 \\) provides valuable 
insights or is merely superfluous, we need to delve deeper….

ROUND 
2

Speech 
history

Speech 
history

Debater A

Debater A

Debater A

Debater B

Debater B

Debater B

To refute Debater B’s arguments and reinforce the correctness and necessity of considering \\( k = 0 \\), 
let's revisit the context….

Judge 
Decision

Judge

Winner: Debater A. Confidence: 85%. Justification: Debater A correctly highlighted the importance of 
considering \\( k = 0 \\) as it provides a valid non-zero root \\( x = -\\frac{3}{2} \\).....Label & Confidence of 𝑺𝑺𝒌𝒌 : Correct, 85%; Judge decision; Winner’s debate history

ROUND 
N ⁞

Speech 
history

- This is a Math debate task…
- There are three players:…
- You are given a math problem and 
some solutions of it…
- The Debaters' goal is to win the 

debate 
- There are a fixed number of rounds. 

In each round…

System 
Rules

Figure 1: The annotation process of the proposed FMAD for a given reasoning step.

rely on costly human-annotated data, which lim-
its their scalability. Hybrid supervision integrates
PRM’s step-level quality control with auxiliary
rewards (e.g., Instruction Reward Model (IRM),
which supervises quality of generated instruction.
(Luo et al., 2023)) that supervise data quality from
orthogonal angles (e.g., instruction quality). Al-
though this complementary approach mitigates
single-source limitations, it introduces optimiza-
tion conflicts requiring careful calibration.

3 Reasoning Data Creation

Our key interest is to generate high-quality reason-
ing steps and automatically verify the quality of
labels through a systematic process. We hence pro-
pose FMAD, an automated annotation framework
designed to construct well-established reasoning
steps. As illustrated in Figure 1, our framework
eliminates the need for human annotation while
maintaining the validity of each annotation.

Inspired by Multi-Agent Debate (MAD) (Liang
et al., 2023), we define the MAD process as in-
volving three participants: Debater A, Debater
B, and Judge. Debater A represents the position
where the reasoning step is correct or beneficial to
subsequent steps, while Debater B represents the
position where the reasoning step is incorrect or
unhelpful to the overall reasoning. Based on the
debate history between the two Debaters, the Judge
decides who the winner is. The winner’s position
serves as the label for the debated reasoning step,
and the confidence score provided by the Judge
indicates the probability that the step is considered
correct or incorrect. Unlike Du et al. (2023), whose
goal is to make agents reach a common final an-
swer, our work focuses on each reasoning step, so

Algorithm 1: Debate-based Annotation
Process

Input: Rules R, Problem P , Step sk,
Previous Steps S′, Rounds N

Output: Winner L, Confidence Cscore
1 Initialize

Debater_A,Debater_B, Judge← R
2 Initialize Aprevious, Bprevious ← [ ]
3 for i = 1 to N do
4 Ahistory ←

Debater_A(P, sk, S
′, Bprevious)

5 Append Ahistory to Aprevious
6 Bhistory ←

Debater_B(P, sk, S′, Aprevious)
7 Append Bhistory to Bprevious

8 end
9 L,Cscore ← Judge(Aprevious, Bprevious)

the debate process should have a clear outcome.
During the process of data creation, reasoning

steps are directly extracted from the official solu-
tions provided in the GSM8K and MATH datasets
upon their release. In our FMAD framework, two
debaters engage in a structured debate over the
correctness of reasoning steps, moderated by a
judge. The process consists of three main stages:
(1) role definition, involving two debaters and one
judge; (2) debate initiation, where evidence sup-
porting the current reasoning step is presented and
followed by multiple rounds of argumentation; and
(3) decision-making, in which the judge evaluates
the debate history, selects a winner, and assigns a
confidence score (ranging from 0% to 100%) to
indicate the correctness of the reasoning step.

The Annotation process is shown in Algorithm
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Debater A Debater B

Judge

Justification

⁞

MMATH-Data

Judge

Debater BDebater A

Debate Process

MMATH-Data

𝑪𝑪𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬

FMAD MRM

PPO

MRM

𝑪𝑪𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬

FMAD is employed 
for data annotation to 
generate MMATH-

Data.

MMATH-Data 
trains the 
Debaters and 
Judge in MRM, 
with the Judge 
assigning 
rewards based 
on debate history.

MMATH
-LLM

Base Model

Step 1:
Collect debate data from the FMAD framework.

Step 2:
Training Multi-agent Reward Model (MRM) with MMATH-
Data.

Step 3:
Training MMATH-LLM with MRM using 
PPO. 

Figure 2: Diagram illustrating the three essential steps of our method.

1. We define the quality of a reasoning step as
the confidence score Cscore assigned by the judge
based on the debate history between Debater A
and Debater B. To be specific, given a problem
P , let S = {s1, s2, . . . , sn} be the sequence of
reasoning steps in its solution and A be the final
answer. Before the automatic annotation process
starts, each participant is prompted with a set of
debate rules R and assigned with their respective
role rules. During the annotation process, as shown
in Figure 1, for a reasoning step sk ∈ S, we in-
put the step sk, the problem P and the previous
reasoning steps S′ = {s1, s2, . . . , sk−1} into the
debate framework. In each debate round, Debater A
presents its argument first, followed by Debater B,
who rebuts Debater A’s argument and then presents
its own debate. The winner’s position, L, serves
as the label indicating whether the corresponding
step is correct, while the confidence score Cscore
denotes its probability. Following (Liang et al.,
2023), which demonstrates that pairing strong de-
baters with relatively weaker judges yields better
performance than the converse scenario, we em-
ploy Qwen2.5-14B-Instruct (Team, 2024) as the
debater and LLaMA-3-8B-Instruct as the judge.
The debate process is conducted for N = 2 rounds,
as fewer rounds may limit discussion depth while
more rounds increase computational overhead and
risk of information redundancy. To mitigate poten-
tial architectural bias, we utilize the same model for
both debaters, preventing the judge from favoring
debaters with specific output patterns. The detailed

Datasets Category #Problems #Steps

MATH

Algebra 1,744 5,687
Counting & Probability 771 3,879

Geometry 870 4,624
Intermediate Algebra 1,295 3,823

Number Theory 869 4,202
Prealgebra 1,205 3,879
Precalculus 746 1,671

GSM8K - 7,473 18,525
Total 14,946 46,290

Table 1: Statistical information of MMATH-Data.

debate prompt template is provided in Appendix
A. With the proposed FMAD framework, we cre-
ate a reasoning dataset named MMATH-Data. As
shown in Table 1, the dataset comprises 7.4K prob-
lems and 18K reasoning steps from GSM8K, along
with 7.5K problems and 27K reasoning steps from
MATH.

4 Methodology

With the created dataset, we train the proposed
MRM and MMATH-LLM. The training process
consists of two stages: (1) the MRM training
stage where the Judge and Debaters are trained
using MMATH-Data, and (2) the RL stage where
MMATH-LLM is fine-tuned on the MATH and
GSM8K training datasets under MRM supervision.

4.1 Overall Framework

Our framework, illustrated in Figure 2, consists
of three essential steps. (1) FMAD-based Data
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Construction: we use the FMAD framework (Sec-
tion 3) to automatically annotate reasoning steps
through multi-agent debates, generating MMATH-
Data. (2) MRM training: we train MRM on
MMATH-Data. (3) MMATH-LLM fine-tuning: we
fine-tune MMATH-LLM via MRM-supervised re-
inforcement learning. MMATH-LLM iteratively
refines its reasoning policies using MRM’s rewards
via PPO. FMAD and MRM share the same debate
mechanism but serve distinct roles: FMAD focuses
on data annotation, while MRM provides step-wise
supervision during training.

4.2 MRM
MRM addresses two key limitations in conven-
tional reward modeling: (1) the inability to evaluate
ambiguous reasoning steps, and (2) the lack of con-
textual understanding in step-wise assessment. As
illustrated in Figure 2, MRM introduces a debate
mechanism that combines competitive evaluation
with confidence scoring. The MRM process begins
by feeding the debate context that is composed of
a math problem P , current reasoning step si, and
previous steps {s1, s2, · · · , si−1} into the trained
debaters. Through N rounds of structured debate,
MRM establishes a robust evaluation framework
in four phases. First, in the debate initiation phase,
Debater A presents arguments supporting the cor-
rectness of si. Second, during counter argumen-
tation, Debater B challenges Debater A’s position
with alternative reasoning. Third, the evaluation
phase involves the judge analyzing the complete
debate history to select a winner. Finally, the confi-
dence scoring phase assigns a quantitative measure
Cscore (0-100%) based on debate quality and argu-
ment strength. The training objective for MRM
combines cross-entropy losses from all reasoning
steps prior to the k-th step. Formally, the training
loss LMRM is defined as follows:

LMRM = −
K∑

i=1

ysi log rsi +(1−ysi) log(1−rsi),

(1)
where ysi denotes the correct label for si, the i-
th step of the solution S. rsi represents the score
assigned by MRM, and K denotes the total number
of reasoning steps in the debate process, with sk
referring to the k-th reasoning step.

4.3 MMATH-LLM
We train MMATH-LLM using PPO (Schulman
et al., 2017). MMATH-LLM is optimized through

MRM-supervised reinforcement learning, where
the debate-driven reward signals guide policy re-
finement at each reasoning step. During training,
MRM assigns a confidence score to each reason-
ing step, reflecting its correctness likelihood. This
approach ensures MMATH-LLM learns robust rea-
soning strategies by directly aligning with MRM’s
debate-validated supervision.

5 Experiment

We conducted extensive experiments and in-depth
analyses to evaluate the proposed entire framework,
including the automatic reasoning data creation
framework FMAD, the created dataset MMATH-
Data, the reward model MRM and math-reasoning-
oriented MMATH-LLM.

5.1 Datasets

We evaluated our approach on two widely-adopted
mathematical reasoning benchmarks: GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021). For GSM8K, we employed its standard
test set comprising 1,319 problems across both
verification and RL tasks. For MATH, following
(Lightman et al., 2023), we utilized MATH-500,
a curated subset of 500 representative problems
from the original test set. All experiments were
conducted using the LLaMA-3-8B-Instruct model.

5.2 Baselines

We compared our method against two types of mod-
els with 7B-70B parameters.
Pre-trained models. (1) LLaMA-series: We com-
pared with LLaMA-2 (Touvron et al., 2023) and
LLaMA-3 (Dubey et al., 2024). (2) Qwen2-7B-
Instruct (Yang et al., 2024): an instruction-tuned
model with SwiGLU activation, attention QKV
bias, and group query attention. (3) Mistral-7B-
Instruct-v0.3 (Jiang et al., 2023): A widely-used
open-source model known for its efficient perfor-
mance and instruction-following capabilities.
Fine-tuned models. (1) LLEMMA (Azerbayev
et al., 2023): a specialized mathematics language
model initialized with Code LLaMA weights and
trained on the Proof-Pile-2 corpus for 200 billion
tokens. (2) MetaMATH (Yu et al., 2023): a model
built upon the LLaMA-2 architecture, employing
a novel data augmentation strategy that rewrites
mathematical questions from multiple perspectives
without requiring external knowledge, significantly
enhancing its mathematical reasoning capabilities.
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Model Verifier GSM8K (%) MATH (%)

LLaMA-2-7B (Touvron et al., 2023)
- 14.6 2.5

MAD 15.1 (+0.6) 3.4 (+0.9)
MRM (Ours) 16.4 (+1.8) 3.9 (+1.4)

LLaMA-3-8B (Dubey et al., 2024)
- 78.8 24.0

MAD 80.0 (+1.2) 24.9 (+0.9)
MRM (Ours) 81.2 (+2.4) 25.8 (+1.8)

Qwen2-7B (Yang et al., 2024)
- 78.4 42.9

MAD 79.4 (+1.0) 44.9 (+1.8)
MRM (Ours) 79.9 (+1.5) 45.5(+2.6)

Mistral-7B (Jiang et al., 2023)
- 50.6 10.2

MAD 52.5 (+1.9) 13.0 (+2.8)
MRM (Ours) 53.0 (+2.4) 14.6 (+4.4)

Table 2: Results comparing two verifiers MAD and our MRM across different baselines.

(3) WizardMATH (Luo et al., 2023): a reinforce-
ment learning-based model supervised by both
PRM and IRM during training. (4) BackMATH
(Zhang and Xiong, 2025): a model augmented
with backward reasoning data and supervised by
both PRM and Backward reasoning Reward Mod-
els (BackPRM) during reinforcement learning. (5)
DeepSeekMath (Shao et al., 2024): a model that
is initialized from DeepSeek-Coder-v1.5-7B, and
then continuously pretrained on 500 billion tokens
of math-related data from Common Crawl, supple-
mented with natural language and code data.

5.3 Settings

We used LLaMA-3-8B-Instruct to build our
MMATH-LLM and MRM. We trained MMATH-
LLM for 3 epochs on the combined training sets of
GSM8K and MATH, employing a learning rate of
2e-5 with cosine decay scheduling. For the MRM
model, we conducted training for 2 epochs using
the MMATH-Data, with a learning rate of 1e-5 and
cosine decay scheduling.

5.4 Baseline Models with MRM

Table 2 present experiment results of the baselines
with two different verifiers: MAD and our MRM.
The results reveal consistent accuracy improve-
ments across all evaluated models, with MRM
outperforming MAD by an average of +0.8% on
GSM8K and +1.1% on MATH. Notably, MRM
achieves the most significant gains on Mistral-7B
(+4.4% on MATH), demonstrating its effectiveness
in enhancing reasoning capabilities across diverse
model architectures. Compared to MAD, MRM in-
troduces two key advancements: (1) step-level feed-

Model # Parmeters GSM8K (%) MATH(%)

LLaMA-2
7B 14.6 2.5
13B 28.7 3.9
70B 56.8 13.5

LLaMA-3 8B 78.8 24.0
Qwen2 7B 78.4 42.9
Qwen2-math 7B - 38.0
Qwen2.5-math 7B - 42.8
Mistral 7B 50.6 10.2

LLEMMA
7B 36.4 18.0
34B 51.5 25.0

MetaMATH 7B 66.5 19.8

WizardMATH
7B-v1.0 54.9 10.7
7B-v1.1 82.1 31.9

BackMATH 7B 68.1 21.9
DeepSeekMath 7B 79.9 41.0
Ours 8B 83.4 45.1

Table 3: Comparison results of our model against a wide
range of baselines.

back granularity that improves error localization
precision, and (2) debate history integration that
increases correction success rates. These enhance-
ments show varying effectiveness across models.
While advanced models like Qwen2-7B achieve
substantial improvements (42.9% → 45.5%),
LLaMA-2-7B exhibits modest gains (2.5% →
3.9%). This performance disparity suggests that
MRM’s effectiveness is positively correlated with
base model capacity.

5.5 Main Results

Table 3 presents a comprehensive comparison of
our proposed model against baselines on both the
GSM8K and MATH datasets. Our evaluations in-
volve various model scales, ranging from 7B to
70B parameters. Our model achieves 83.4% on
GSM8K and 45.1% on MATH, outperforming all
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Figure 3: Experiment results on the MATH dataset.

base models and fine-tuned variants.
Comparison with Base Models: Compared to
the strongest base model, Qwen2-7B (78.4% on
GSM8K, 42.9% on MATH), our approach im-
proves performance by +5.0% and +2.2%, respec-
tively. In comparison to LLaMA-3-8B (76.9% on
GSM8K, 24.0% on MATH), our model achieves
+6.5% and +21.1% gains, demonstrating the effec-
tiveness of our training methodology.
Comparison with Fine-Tuned Models: Our
model surpasses WizardMath-7B-v1.1 (82.1% on
GSM8K, 31.9% on MATH) by +1.3% and +13.2%,
respectively, despite using a similar parameter
scale. Our model also outperforms WizardMath-
7B-v1.1 (82.1%→ 83.4% on GSM8K, 31.9%→
45.1% on MATH) due to MRM’s unified reward
mechanism, which resolves the conflicting opti-
mization objectives between PRM and IRM in
WizardMath. Specifically, WizardMath’s reward
approach (PRM+IRM) creates inconsistent super-
vision signals, PRM focuses on step correctness
while IRM emphasizes instruction quality, leading
to suboptimal policy. Compared to DeepSeekMath-
7B (79.9% on GSM8K, 41.0% on MATH), we
achieve +3.5% and +4.1% improvements.

Compared to conventional fine-tuning ap-
proaches, our framework introduces two key in-
novations that significantly enhance mathematical
reasoning capabilities: (1) FMAD, which enriches
the reasoning process by annotating each step with
comprehensive debate history and judge decisions,
thereby improving the quality and diversity of rea-

soning data through multi-perspective analysis, and
(2) MRM, which provides more precise and reli-
able supervision through fine-grained, step-level
scoring, enabling better guidance of the RL pro-
cess. Instead of fine-tuning the model to output
LaTeX directly, we use a prompt-based approach
(Appendix B) to guide the model, preserving its
generalization ability while ensuring output format
consistency.

5.6 Detailed Analysis on the MATH Dataset

We conducted in-depth analysis on performance
of compared models for each math category on
the MATH dataset. We compared four models
(LLaMA-3, BackMATH, WizardMATH and our
model) across several MATH categories, using ac-
curacy as the evaluation metric. Results are shown
in Figure 3. As illustrated, our model shows no-
table improvements in these categories, achieving
42.2% accuracy in Algebra, 36.1% in Geometry,
and 65.9% in Prealgebra, demonstrating its ability
to handle diverse mathematical tasks. These gains
are primarily due to the MRM, which identifies and
corrects computational errors through structured
debate. While the improvement in Geometry is
less pronounced, this is likely due to the challenges
in integrating geometric intuition with algebraic
reasoning. Overall, our model exhibits consistent
and significant performance gains across all cat-
egories, highlighting its effectiveness in complex
mathematical reasoning.

These results support our core hypothesis: the
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Figure 4: Token costs and accuracy of MRM on MATH
and GSM8K.

debate-driven paradigm MRM enhances perfor-
mance in (1) computation-intensive tasks by local-
izing errors, and (2) pattern-driven tasks through
structured reasoning supervision. In conclusion,
our model outperforms existing methods across
most categories, demonstrating superior reasoning
ability and making it a better choice for addressing
challenging mathematical tasks.

5.7 Token Cost
Figure 4 analyzes the impact of debate rounds
(N = 1, 2, 3) on computational cost and accuracy
for mathematical reasoning. The results demon-
strate a clear trade-off between performance gains
and resource consumption as N increases. Specif-
ically: A single-round debate (N = 1) achieves
baseline improvements (MATH: 24.0%→ 25.1%,
+1.1; GSM8K: 78.8% → 79.0%, +0.2) with
minimal token cost, but may limit debaters’ the
depth of reasoning due to insufficient argument
exchange. A two-round debate (N = 2) yields
substantial gains (MATH: 25.1%→ 25.8%, +0.7;
GSM8K: 79.0% → 80.1%, +1.1) with moder-
ate computational overhead, striking an optimal
balance between depth and efficiency. A three-
round debate (N = 3) shows diminishing re-
turns (MATH: 25.8% → 26.0%, +0.2; GSM8K:
80.1% → 80.4%, +0.3), despite incurring higher

Model Verifier MATH-500(%)

LLaMA-3-8B

- 24.0
ORM 27.4
PRM 30.6

Math-Shepherd 31.9
MRM (Ours) 25.8

LLaMA-3-8B+RL

ORM 28.0
PRM 35.4

Math-Shepherd 42.9
MRM (ours) 45.1

Table 4: Comparison of reward models with accuracy
on the MATH dataset.

token costs than N = 2, suggesting potential in-
formation redundancy in extended debates. These
results suggest that while N = 1 may constrain
reasoning depth, additional rounds beyond N = 2
provide limited accuracy benefits relative to their
computational expense. The marginal utility de-
crease beyond N = 2 suggests that it represents
the optimal cost-performance configuration for our
framework.

5.8 Comparison of Reward Models

In this section, we provide a comprehensive com-
parison of reward models including ORM, PRM,
Math-Shepherd and our MRM. As shown in Table
4, we evaluate the models based on their perfor-
mance on the MATH-500 dataset. The results indi-
cate that, among the different reward models, the
MRM consistently outperforms others, especially
after reinforcement learning training. Specifically,
MRM achieves the highest accuracy of 45.1%, sur-
passing both Math-Shepherd (42.9%) and PRM
(35.4%) by a significant margin. This improvement
is attributed to MRM’s step-wise feedback mecha-
nism, which effectively guides the model through
complex reasoning processes. In contrast, ORM
(28.0%) struggles with multi-step reasoning prob-
lems due to its inability to assess intermediate rea-
soning quality, while PRM (35.4%) improves over
ORM but fails to resolve ambiguous steps without
contextual reasoning. Math-Shepherd, which uses
a Monte Carlo method for data annotation, per-
forms well with an accuracy of 31.9%. However,
the Monte Carlo method requires a high sampling
density for accurate probability estimation, which
can lead to less reliable annotations, potentially
impacting the quality of the data used for training.

In summary, our MRM demonstrates superior
performance across all categories by providing
more precise and effective feedback throughout
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the reasoning process.

6 Conclusion

In this paper, we have presented FMAD, MRM,
MMATH-Data, and MMATH-LLM. FMAD eval-
uates the contribution of each reasoning step in
a problem using the Multi-Agent Debate frame-
work, while MRM, trained with MMATH-Data,
supervises the RL process by providing step-wise
feedback. MMATH-Data, constructed by FMAD,
supports MRM in guiding MMATH-LLM, a model
designed specifically for mathematical reasoning,
during the RL process. Through extensive experi-
ments on the GSM8K and MATH benchmarks, we
demonstrate that MRM significantly enhances the
RL process. MMATH-LLM, supervised by MRM,
outperforms existing methods, achieving an accu-
racy of 83.4% on GSM8K and 45.1% on MATH.

Limitations

First, the multi-round debate mechanism in FMAD
and MRM incurs significant token consumption,
especially when evaluating performance or anno-
tating data using LLM APIs. This scalability chal-
lenge may limit practical applications in resource-
constrained scenarios. Second, as shown in Figure
3, the model exhibits relatively lower performance
in Geometry compared to other categories (e.g.,
Algebra or Number Theory). This limitation stems
from its inability to integrate textual reasoning with
spatial or visual information, such as interpreting
geometric diagrams or coordinate systems from
text descriptions. Enhancing the model’s multi-
modal reasoning capabilities remains an important
direction for our future work.
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A Prompts of Debate

We provide detailed prompt examples for the Fine-grained Multi-Agent Debate framework:

• Appendix A.1 presents the debate rules and guidelines.

• Appendix A.2 contains the specific prompt template for Debater A.

• Appendix A.3 shows the corresponding prompt template for Debater B.

• Appendix A.4 details the prompt structure for the Judge role.

These comprehensive prompt examples demonstrate the implementation details of our debate framework.

A.1 Debate Rules
Table 5 provides debate rules in debate process, which are incorporated into prompts fed into the two
debaters.

- The following are the rules for the Mathematical Debate task.
- There are three players: 2 debaters (Debater_A, Debater_B) and a Judge. Each debater is given an answer
to argue.
- You will be sent a math problem and some solutions of it. Debater_A’s position is to prove the given
solution step is correct or beneficial for the reasoning step, while Debater_B’s position is to prove the
given solution step is wrong or not beneficial.
- The Debaters’ goal is to win the debate by persuading the Judge that their answer is correct.
- There are a fixed number of rounds. In each round, the debaters will make arguments for why their
position is correct and the other’s is incorrect.

Table 5: Debate rules.
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A.2 Prompt for Debater A

description
You are Debater_A, an intelligent AI with the goal of winning the debate.
Welcome to the Mathematical Reasoning Debate.
- You are concise and clearly state your arguments.
- Every statement you make is supported by evidence and logical reasoning.
- You will be sent a math problem and some solutions of it.
Your position is to prove the given solution step is correct or beneficial for the reasoning process and can
reach the final answer.
- Here is the Math Problem:
—–<PROBLEM>—–
- Here is the Answer:
—–<ANSWER>—–
- Here are the Reasoning Steps:
—–<RS>—–
- Here is the step you should prove that it is right or has benefit for reasoning:
—–<Single Step>—–
- Debater_B will prove that the <Single Step> is wrong or has no benefit for reasoning.
start debate
Now it is your turn as Debater_A in ROUND <NUMBER>.
Remember to both criticize the arguments made by Debater_B and build up your own arguments.
Remember that it is your job to defend the position that <Single Step> is the correct answer and that
Debater_B’s position is wrong.
You should assemble the math problem as well as the context of the reasoning steps for your response,
and if there are references to a particular step, include them with <quote> <\quote>.
And your response is limited to 200 tokens.
This is what your opponent, debater_B, said during their speech:<OPPONENT>
This is what you, Debater_A, said during your previous speech:<PREVIOUS_SPEECH>
Write out your debate:

Table 6: Prompts for Debater A.
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A.3 Prompt for Debater B

description
You are Debater_B, an intelligent AI with the goal of winning the debate. Welcome to the Mathematical
Reasoning Debate.
- You are concise and clearly state your arguments.
- Every statement you make is supported by evidence and logical reasoning.
- You will be sent a math problem and some solutions of it.
Your position is to prove the given solution step is wrong or has no benefit for the reasoning process.
- Here is the Math Problem:
—–<PROBLEM>—–
- Here are the Reasoning Steps:
—–<RS>—–
- Here is the Answer:
—–<ANSWER>—–
- Here is the step you should prove that it is wrong or has no benefit for reasoning:
—–<Single Step>—–
- Debater_A will prove that the <Single Step> is correct or has benefit for reasoning.
start_debate: Now it is your turn as Debater_B in ROUND <NUMBER>.
- Remember to both criticize the arguments made by Debater_A and build up your own arguments.
Remember that it is your job to defend the position that <Single Step> is wrong and that Debater_A’s
position is incorrect.
You should assemble the math problem as well as the context of the reasoning steps for your response,
and if there are references to a particular step, include them with <quote> <\quote>.
And your response is limited to 200 tokens. This is what your opponent, debater_A, said during their
speech:<OPPONENT>
This is what you, Debater_B, said during your previous speech:<PREVIOUS_SPEECH>
Write out your debate:

Table 7: Prompts for Debater B.
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A.4 Prompt for Judge

Now it is the time for a decision. You are Judge, an intelligent AI with the goal of determining which
position in the debate is correct.
- You must make a decision, as it is important for the successful completion of this mathematical reasoning
task.
- Here is the Math Problem:
—–<PROBLEM>—–
- Here are the Reasoning Steps:
—–<RS>—–
- Here is the Answer:
—–<ANSWER>—–
- Here is the step that Debater_A and Debater_B should prove that whether it has benefit for reasoning:
—–<Single Step>—–
- Debater_A will prove that the <Single Step> is correct or has benefit for reasoning.
- Debater_B will prove that the <Single Step> is wrong or has no benefit for reasoning.
- Here is what Debater_A said during debate:
<Debater_A_round>
- Here is what Debater_B said during debate:
<Debater_B_round>
- Keep your answer short and concise. Your response is limited to 200 tokens.
- There is a true, correct answer.
- Consider the debaters’ correctness of reasoning steps and whether the claims they made support their
position.
- Do not trust any claim made by a debater unless it points out key reasoning steps.
Remember that the Debater_A’s position is to prove the given solution step is correct or beneficial for the
reasoning process and can reach the final answer, and Debater_B’s position is to prove the given solution
step is wrong or has no benefit for the reasoning process.
Please give your answer in this format: [Debater_name] [Confidence_score]
- Example 1 - Debater_X | score%
- Example 2 - Debater_X | score%
- Do not contain any other text at all.
Now give your justification:

Table 8: Prompt for Judge.

B Prompt for Solution Generation

"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request."
"Write your answer with format: ANSWER:\\boxed{your answer here}"
"Instruction: instruction Response: Let’s think step by step."

Table 9: Prompt for Solution Generation.
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