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Abstract
This paper presents CHARPEVAL, a chal-

lenging benchmark specifically designed to
evaluate the ability of Large Language Mod-
els (LLMs) to perform contextualized reason-
ing in knowledge-grounded dialogue scenarios.
The task involves selecting the correct response
from 6 options, including 5 manually crafted
distractors, given the conversation history. Ex-
tensive benchmarking experiments with a di-
verse set of state-of-the-art open-weight LLMs
show poor performance on CHARPEVAL due
to their inability to effectively reason over dis-
continuous chunks of text across the input. Our
analysis reveals systematic error patterns across
models with different properties, highlighting
the need to improve LLMs beyond simply
scaling-up data and compute. CHARPEVAL is
publicly available at https://huggingface.
co/datasets/huawei-noah/CHARP.1

1 Introduction

There have been ongoing efforts to develop new
benchmarks that challenge the rapid advancements
of LLMs (Hurst et al., 2024; Liu et al., 2024a;
Dubey et al., 2024), by introducing more com-
plex (Fan et al., 2023), reasoning-intensive (Wang
et al., 2024), and domain-specific (Jain et al., 2024;
Chen et al., 2023b) tasks. Knowledge-grounded
dialogue (Ghazvininejad et al., 2018; Lewis et al.,
2020; Dziri et al., 2022b) is a task that requires
responding to user queries while staying faithful to
the provided knowledge.

In this paper, we propose CHARPEVAL, a chal-
lenging benchmark that evaluates LLMs ability
to identify discontinuous spans of relevant infor-
mation and perform complex reasoning on them.
CHARPEVAL is build on top of CHARP (Ghad-
dar et al., 2024), which is a testbed designed

♠Corresponding author.
1Instructions on how to conduct the evaluation using the

lm-evaluation-harness library (Gao et al., 2024) are pro-
vided in the dataset’s README file.

for probing the conversation history awareness
of knowledge-grounded dialog systems. Specif-
ically, we expand CHARP annotations with 5
hand-crafted challenging distractor responses, each
designed to test a specific potential limitation in
LLMs contextual reasoning. As shown in Figure 1,
CHARPEVAL not only presents a serious challenge
to modern LLMs, but also enables a self-contained
and reproducible evaluation process by eliminating
the need for external evaluation tools.

Therefore, CHARPEVAL is more tailored to
LLM evaluation compared to existing dialog bench-
marks —including CHARP itself— by addressing
issues such as misalignment with true human per-
formance (Sinha et al., 2020), reproducibility chal-
lenges with API deprecated (Chen et al., 2023a),
outdated Judge LLMs (Szymanski et al., 2024), and
costly human expertise. These issues are common
in approaches relying on lexical overlap/semantic
similarity scorers (Lin, 2004; Zhang et al., 2019),
closed-source LLM APIs (Ahmed et al., 2024),
LLM-as-Judge (Zhu et al., 2023), or human expert
as evaluation methods, respectively. In contrast to
our CHARPEVAL, which is a human-generated
benchmark emphasizing contextual reasoning in
dialog, the recently proposed DialogBench (Ou
et al., 2024) is automatically generated by GPT-
4 (OpenAI, 2023) and focuses on evaluating LLM
instruction-following in dialog tasks.

A comprehensive evaluation using a diverse set
of recent open-weight LLMs (Yang et al., 2024;
Dubey et al., 2024) reveals that these models per-
form poorly on CHARPEVAL, with the best mod-
els scoring around 50%. Our extensive analysis
reveals systematic error patterns, regardless of the
model size, tuning process, or organization behind
the model. It also highlights an inherent bias that
favors irrelevant responses, with highly frequent
text segments encountered during pretraining being
favored over task-relevant ones.
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I like to bake bread in my spare time. Do you?

Bots cannot bake, but did you know that this
method of cooking can use hot ashes or hot
stones?

I didn't know that. I also like cooking different
things like cake, stews, and broths.

Have you ever tried baking at a community
center activity? They are well-equipped.
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Sugar and flour are among the essential
ingredients used to make cake while bread is
baked with flour, water, yeast and salt.

Conversation History:

I've never tried it. What ingredients do I need to
get started baking in my spare time?

I've never tried it. What ingredients do I need to
get started baking bread?

Last User Utterance:

Knowledge:

Well, you need flour, water, yeast
and salt to make bread.

Ground Truth Response:

Distractor Responses (    )

 Well, the ingredients needed for
making cake are sugar and flour.

Well, bread and water can make a
simple meal in difficult times.

Bread is a staple food prepared
from a dough of flour and water,
usually by baking.

Cake is often served as a
celebratory dish on ceremonial
occasions, such as weddings,
anniversaries, and birthdays.

The best thing since sliced bread.
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Figure 1: An illustrative example showing a sample
from CHARPEVAL along with an LLM benchmark
evaluation performed on it. Pink and green boxes show
the original CHARP annotations and our CHARPE-
VAL augmented distractor responses, respectively. The
yellow box contains the log-likelihood scores and the
responses rank (in parentheses) of the Qwen2.5-70B-
Instruct LLM when using hCHARP last user utterance
(dotted box).

2 Methodology

2.1 Task Formulation

We adopt the knowledge-grounded dialogue task
formulation as defined in previous works (Dinan

et al., 2018; Dziri et al., 2022a,b). Formally, let
H = {(ui, bi)}ni=1 represent the user-bot conver-
sational history, where ui and bi denote the user’s
utterance and the bot’s response at the i-th turn,
respectively. Given a new user utterance un+1 and
a piece of knowledge kn+1, the task is to generate
the bot’s response bn+1, such that it both answers
the un+1 and faithfully incorporates the provided
knowledge. The latter is provided as given, and no
retrieval step is performed.

2.2 CHARP

CHARP (Ghaddar et al., 2024) is designed to di-
agnose knowledge-grounded dialogue systems that
generate responses solely based on the provided
knowledge, while ignoring content from the conver-
sation history. CHARP was built by post-editing
annotations from the FaithDial (Dziri et al., 2022a)
dataset, ensuring that the response requires reason-
ing over the conversation history, the last user utter-
ance, and the provided knowledge. CHARP con-
sists of two subsets, differing only in the last user
utterance (un+1): eCHARP (easy), which requires
reasoning only over the knowledge, and hCHARP
(hard), which requires reasoning over the conver-
sation history, the provided knowledge, and the
last user utterance. Overall, CHARP contains
2, 160 samples, split equally between hCHARP
and eCHARP.

2.3 CHARPEVAL

CHARPEVAL is an extended version of CHARP
that aims to create a standard and reproducible
evaluation benchmark to test the ability of modern
LLMs to perform contextual reasoning in the con-
text of knowledge-grounded dialogue. To this end,
we hire professional annotators to augment sam-
ples in CHARP with 5 distractor responses (b′n+1),
each requiring discerning reasoning from an LLM
to avoid being selected as the correct answer.

2.3.1 Knowledge Irrelevant (KGIR)

In this case, b′n+1 is a distracting response that
contains irrelevant factual information that exists
in the provided knowledge kn+1.

2.3.2 Knowledge Ungrounded (KGUG)

The distractor response b′n+1 contains valid factual
information, but it is not mentioned (ungrounded)
in kn+1, while still containing words from b′n+1.
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2.3.3 Relevant Entity Common Fact (RECF)
We asked our annotators to identify the main en-
tity in the ground truth response bn+1 and create a
distractor response b′n+1 that contains a common
fact (e.g., an extract from the first passage of a
Wikipedia article) about that entity, but not men-
tioned in kn+1. Intuitively, a common factual seg-
ment will have a higher log-likelihood if the model
does not consider the task and the provided context.

2.3.4 Irrelevant Entity Common Fact (IECF)
Similar to the distractor in § 2.3.3, but this time us-
ing a common fact about an entity that is mentioned
in kn+1 but not in bn+1.

2.3.5 Common Expression (COEX)
We prompt our annotators to use a common ex-
pression (e.g. idioms, catchphrases, proverbs, and
clichés) as a distractor response, provided it aligns
with the conversation flow. Since these phrases
commonly occur in conversations and are highly
frequent, a model that does not reason about the
task and its underlying knowledge is likely to as-
sign a high likelihood to this particular distractor.

2.4 Benchmark Evaluation

We perform benchmark evaluation of a LLM by cal-
culating the accuracy of the model in selecting the
ground truth bn+1 as the most likely response com-
pared to the distractors b′n+1. Specifically, each
sample in CHARPEVAL is expanded into 6 se-
quences, where the input context (task prompt,
conversation history, and knowledge segment) is
concatenated with 6 continuation segments: the
ground-truth response and 5 distractor responses.
The best response is determined by the one with the
highest probability (lowest perplexity), and a model
receives full credit for a sample if the ground-truth
response is ranked top. Evaluation can be con-
ducted on both eCHARP and hCHARP subsets of
CHARPEVAL (1080 each), and under both zero-
shot and few-shot settings. Implementation details
for the task prompt and few-shot examples can be
found in Appendix A, while Appendix B describes
the manual quality validation of CHARPEVAL.

3 Experiments

3.1 Models

We conduct a performance comparison across a
diverse set of open-weight LLMs, encompassing
models with varying providers, parameter counts,

release periods, training paradigms, and architec-
tural designs. Specifically, we experiment with
base and instruction-tuning models ranging in size
from 3B to 72B from Qwen2.5 (Yang et al., 2024),
Llama (Touvron et al., 2023; Dubey et al., 2024),
and Mistral (Jiang et al., 2024) families.

3.2 Main Results
Table 1 shows the benchmark evaluation perfor-
mance in both zero-shot (ZS) and few-shot (FS)
settings for LLMs with diverse properties on the
hCHARP and eCHARP subsets of CHARPEVAL.

Model #P IT hCHARP eCHARP
ZS FS ZS FS

Qwen2.5 72B ✓ 48.7 43.3 49.3 44.0
Qwen2.5 32B ✓ 47.0 49.8 47.2 50.5
Qwen2.5 7B ✓ 46.9 46.6 46.1 48.7
Qwen2.5 7B ✗ 18.8 25.6 20.7 26.8
Qwen2.5 3B ✓ 42.5 41.6 42.9 44.6
Llama3.3 70B ✓ 48.3 48.9 47.1 49.4
Llama3.1 70B ✓ 44.0 45.7 42.5 46.0
Llama3.1 8B ✓ 41.9 39.2 41.3 38.3
Llama2 13B ✓ 27.7 28.0 29.7 29.9
Llama2 7B ✓ 24.1 25.7 24.9 25.4
Llama2 7B ✗ 10.4 20.1 11.4 23.4
Mistralv0.1 52B ✓ 46.1 49.7 46.7 51.7
Mistralv0.2 7B ✓ 43.8 42.8 43.6 43.3

Table 1: CHARPEVAL benchmark accuracy on
hCHARP and eCHARP under both zero-shot (ZS)
and few-shot (FS) settings. We evaluate LLMs with
varying numbers of parameters (#P), IT indicates if it is
an instruction-tuned (✓) or base model (✗).

Overall, we observe that while some models per-
form better than others, their performance remains
poor across both CHARPEVAL subsets and evalu-
ation settings, with the highest scores barely reach-
ing 50%. This observation indicates that CHARPE-
VAL poses challenges and exposes a potential limi-
tation for current state-of-the-art open-weight small
and medium-sized LLMs.

Expectedly, we observe that adding few-shot
examples leads to significant improvements (6%-
12%) in performance only for the base models, as
including a few demonstration examples in the in-
put prompt is crucial for performance when using
a pretrained LLM (Brown et al., 2020). In contrast,
instruction-tuned models show either a moderate
gain (except on Mixtral-52B) or a slight drop in
performance (except on Qwen2.5-72B) of less 2%
in both cases. These small variations in scores indi-
cate that the overall poor performance is not due to
the models’ inability to follow task instructions.
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Interestingly, we observe a small gap of 3-5%
between few-shot and instruction-tuned Llama2-
7B, compared to a significantly larger gap (>20%)
between the base and instruction-tuned versions
of Qwen2.5-7B. This contrasting observation sug-
gests that the supervised fine-tuning and preference
alignment phases are the main drivers of perfor-
mance improvements in recent LLM iterations (e.g.
Qwen2.5), while the performance of earlier iter-
ations (e.g. Llama2) relies more heavily on the
pretraining phase.

We notice that model version upgrades, which
include scaling up data and compute power, along
with improvements in modeling and training tech-
niques, are much more effective for improving per-
formance than simply scaling up model size within
the same model family. For instance, performance
improves by roughly 6% on both subsets when
scaling Qwen2.5 from 3B to 72B, and by 3% when
scaling Mistral from 7B to 52B. In contrast, we
observe a much larger gain of +12% when com-
paring Llama3.1-8B with Llama2-13B, and +4%
when comparing the same-sized 70B Llama3.1 and
Llama3.3. Still, models from different providers
seem to converge to a performance range of around
50% on CHARPEVAL.

In addition, we observe that models tend to per-
form slightly better, with only a small margin of
1%-3%, on the less reasoning-intensive eCHARP
subset compared to the hCHARP subset, despite
a few exceptional cases (e.g., LLaMA3.1-70B-IT
and Qwen2.5-7B-IT). These findings suggest that a
significant number of challenging dialog-oriented
examples need to be employed in the fine-tuning
and preference alignment phases during future
model upgrades to significantly improve the con-
textual reasoning of LLMs in scenarios like those
exhibited by CHARPEVAL.

3.3 Analysis and Discussion
To better understand the LLMs limitations on
CHARPEVAL, we analyze the distribution of re-
sponse rankings on the hCHARP subset of the
CHARPEVAL for a few selected models in Ta-
ble 2. Other models, as well as on eCHARP sub-
set, mostly exhibit similar result patterns. Detailed
performance data are presented in Table 4 and Ta-
ble 5 in Appendix C. We observe that, regardless
of model family, size, or whether the model has
been instruction-tuned, the distribution of errors
is not uniformly random across the five distractor
types. More precisely, we observe that selecting

the wrong fact from kn+1 (KGIR) is the most dom-
inant error type across all models, while selecting
an ungrounded response (KGUG) is the least com-
mon error (near 0%). This suggests that the LLMs
followed the prompt’s instructions and attempted
to reason to some extent in order to solve the task.

Model GTRS KGIR KGUG RECF IECF COEX
Zero-Shot

Q-72B-IT 48% 33% 1% 8% 6% 4%
L3.1-70B-IT 47% 33% 0% 11% 7% 2%
L3.1-8B-IT 41% 48% 0% 6% 3% 2%
Q-7B-IT 46% 36% 1% 6% 5% 6%
Q-7B 18% 55% 0% 7% 4% 16%
L2-7B 10% 61% 0% 9% 7% 13%

Few-Shot
L3.1-8B-IT 39% 56% 0% 3% 1% 1%
Q-7B-IT 46% 39% 0% 7% 3% 5%
Q-7B 25% 58% 0% 7% 4% 5%
L2-7B 20% 59% 0% 8% 9% 4%

Table 2: Models responses ranking distribution on the
hCHARP subset of the CHARPEVAL benchmark un-
der zero-shot and few-shot (3) settings. GTRS shows
accuracy on the ground truth response, while the other
columns indicate the distractor types described in § 2.3.

Although less significant (≈ 10% across mod-
els) than KGUG, the errors on RECF and IECF
highlight that, while the model can identify that the
last user utterance relates to entities mentioned in
the knowledge, it often gets distracted by common
facts about these entities rather than focusing on the
one mentioned in kn+1. This pattern is consistent
across instruction-tuned models, regardless of their
size (e.g., Q-72B-IT and Q-7B-IT) or family (e.g.,
Q-72B-IT and L-70B-IT). This is further supported
by the analysis conducted in Appendix C.1 on the
distribution of models’ attention scores.

Surprisingly, we found that the second most com-
mon error for base models in the zero-shot setting
is their tendency to identify common expressions
(COEX), such as idioms and chat phrases, as the
most likely valid responses. COEX responses in-
tuitively receive higher probabilities due to their
high frequency in the pretraining corpus compared
to other distractor types. Interestingly, we notice
that few-shot examples in the prompt lead both the
Qwen and Llama2 7B base models to reduce the
error on COEX from 16% and 13% to 5% and
4%, respectively. These findings suggest that, de-
spite the progress made in LLMs’ reasoning, these
models (especially pretrained ones) can still get
partially distracted from the task and exhibit a bias
toward favoring high-frequency textual segments.
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4 Conclusion

We introduce CHARPEVAL, a benchmark that is
both challenging and has a reproducible evaluation
method to test modern LLMs’ contextual reason-
ing abilities in knowledge-grounded dialogue tasks.
We hope that our CHARPEVAL can guide the de-
velopment of future LLM upgrades to address the
limitations identified in this paper.

Limitations

Potential limitations of this work include not ex-
perimenting with other families of open-weight
LLMs, such as the Gemma (Team et al., 2024),
Phi (Abdin et al., 2024), or DeepSeek (Liu et al.,
2024a; Bi et al., 2024), as well as larger mod-
els above 100B scale (e.g. Llama3.1-405B). The
choice of models was primarily based on state-
of-the-art models (within their size category) for
knowledge and reasoning benchmarks (Hendrycks
et al., 2021; Wang et al., 2024) during the submis-
sion period. Additionally, the study did not con-
sider closed-source models such as GPT-4 (Ope-
nAI, 2023) or Claude (AnthropicAI, 2023), as these
powerful models have shown to perform quite well
on CHARP response generation in (Ghaddar et al.,
2024). Since CHARPEVAL is not a privately held
dataset (e.g., in a leaderboard), there is a risk that it
could become invalid for evaluation if it is incorpo-
rated into the training data of future LLM iterations.
Finally, the CHARPEVAL annotation style could
be extended to support a wider range of dialogue
tasks, such as conversational search (Mo et al.,
2024) or citation-based dialogue (Dehghan et al.,
2024), in addition to other task types (Alfonso-
Hermelo et al., 2021; Lu et al., 2021; Zhou et al.,
2024) or languages (Ghaddar and Langlais, 2020;
Ghaddar et al., 2021; Alghamdi et al., 2023).

Ethics Statement

The human annotators involved in this project are
two NLP data labeling experts, each with over two
years of experience in this field. They are hired
as local contractors, working 40 hours per week
for 2 months on this project, and are paid 60%
above the local minimum hourly wage. The an-
notators received prior training and were provided
with guidelines that included instructions and ex-
amples of both standard and extreme cases they
could encounter during the annotation process. Fur-
thermore, domain experts reviewed the annotations

daily and held video meetings with the annotators
as needed.
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A Prompt Design and Implementation
Details

We designed the instruction component through
trial and error, examining the outputs of two base
models—Qwen2.5 and Llama2 7B—along with
instruction-tuned versions, until we confirmed that
all models could follow the instructions and gener-
ate outputs in the required format. It is important to
note that, as mentioned in the main paper, models
are evaluated in perplexity-based response selec-
tion mode, while generative mode is used only for
prompt engineering purposes. Here is the prompt
related to the illustration example in Figure 1:

You are given a conversation history between
a “User” and a “Bot”, along with a piece of
“Knowledge” containing factual information. Your
goal is to produce a response to the User’s last
message, relying only on the provided Knowledge.
Do not introduce any new information that is not
present in the Knowledge. If the User asks about
something that is not covered by the Knowledge,
you may express uncertainty, but do not invent
details.

User: I like to bake bread in my spare time. Do
you?
Bot: Bots cannot bake, but did you know that this
method of cooking can use hot ashes or hot stones?
User: I didn’t know that. I also like cooking
different things like cakes, stews, and broths.
Bot: Have you ever tried baking at a community
center activity? They are well-equipped.
User: I’ve never tried it. What ingredients do I
need to get started baking in my spare time?

Knowledge: Sugar and flour are among the essential
ingredients used to make cake while bread is
baked with flour, water, yeast and salt

Bot:

Model evaluation is performed as follows: both
the ground truth response and the five distractors
are independently scored by concatenating each
with the above prompt, resulting in a total of 6
sequences. Perplexity is then calculated for each
sequence, and the response from the sequence with
the lowest perplexity is selected as the predicted
response. It is worth noting that when a response is
concatenated at the end of the prompt, perplexity
is influenced by the fluency of the entire sequence,
not just the response part. Since we have a con-
trolled setting (each response option has a logic
behind it), we draw conclusions about the model’s
behavior and its utilization of knowledge and con-
textual history based on which response leads to
the lowest sequence perplexity.

For the few-shot setting, we progressively in-

cluded in-context examples until the output of all
models stabilized, showing little to no variation
in the model responses. We set the number of in-
context examples to 3, as adding more examples
did not yield any further improvements. The few-
shot samples were manually designed to ensure
full alignment with the CHARP samples. The new
prompt consists of placing the three few-shot sam-
ples (which are the same as the input example but
with the ground truth response) between the instruc-
tion and the test sample. We carefully integrated
CHARPEVAL as a new task into a local fork of
the lm-evaluation-harness 2 library (Gao et al.,
2024) and used it to perform standard evaluations
of models imported from the Hugging Face Trans-
formers library (Wolf et al., 2020).

A.1 Evaluation Design Choice
Another way to frame the evaluation is like a
multiple-choice question, where all six options (the
gold response and five distractors) are concatenated
as response options with indexes (e.g., A, B, C, D,
E, F), as in MMLU (Hendrycks et al., 2021) bench-
mark. The model can either be asked to generate
the index of the most likely option as you propose,
or the index of each option can be concatenated
to the end of the prompt, and the perplexity of
the lowest index can be measured. However, this
task formulation has some remarks and limitations
(based on our experiments) in the context of our
work, which led us to decide against using it.

While LLMs are trained on multiple-choice ques-
tion (MCQA) answering data during SFT, response
selection for knowledge-grounded dialogue data is
rare. It is unlikely that models have encountered
such data during SFT. In contrast, multi-turn di-
alogue (including knowledge-grounded dialogue)
chat datasets are common and abundant as training
data for SFT, similar to MCQA. Therefore, the mis-
match between what models have been tuned on
is minimal (and a more natural occurring choice)
with the dialogue task formulation compared to the
response selection task formulation.

Using the option selection task formulation
would require placing all response options in the
same prompt, which may introduce biases for mod-
els under this specific setting. This is because, by
design, our responses are not independent, which
differs from common MCQA tasks. More pre-
cisely, the model may use the interaction between

2https://github.com/EleutherAI/
lm-evaluation-harness
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the response options themselves to eliminate cer-
tain choices, disregarding knowledge and context
history. For instance, in Figure 1, the ground truth,
KGIR, and KGUG response options all start with
the same phrase (Well, . . . ), which the model may
interpret as a hint to disregard the remaining three
options. Alternatively, it may disregard the options
containing cake simply because the other four op-
tions contain bread. In MCQA tasks, like coding
and math, this is not an issue because the options
are typically numbers (e.g., formula answers or
program outputs), which do not have relationships
with each other. Therefore, scoring each option in-
dependently using perplexity with a dialogue task
formulation is less prone to bias compared to the
option selection formulation.

Also, we observed that numerous LLMs are bi-
ased toward selecting a particular option based
on its position (mainly option A), which was also
pointed out in the literature (Zheng et al., 2024).
Randomizing the options leads to results that are
close across runs but not deterministic, which im-
pacts the reproducibility of the results across mod-
els—our main motivation for creating CHARPE-
VAL.

It is worth noting that in common evaluation
practices for LLMs benchmark evaluation on
MCQA tasks, the models are not queried to gen-
erate the option index. Instead, the option indices
are concatenated at the end of the prompt, and the
one with the lowest perplexity is selected. This
approach helps avoid cases where the model gener-
ates text that is either not in the option list or does
not follow the expected format (or requires pars-
ing the answer). In conclusion, both the dialogue
task and response selection formulations lead to the
same outcome (selecting the best answer). How-
ever, we choose the former as it is a more natural
formulation of the task, avoids option bias, and is
more deterministic (no option shuffling).

Finally, we would like to point out that human
evaluation is not required in our scenario. This is
because our evaluation is automatic and determinis-
tic, similar to a multiple-choice question, where
there is a single correct response and multiple
(wrong) distractor responses. Human evaluation in
the context of answer generation—is what CHARP
does. Our contribution, CHARPEVAL, builds on
top of CHARP to enable deterministic and repro-
ducible evaluation while ensuring a challenging
benchmark.

B Inter-annotator Agreement

First, it is important to clarify that in our case, inter-
annotator agreement is tricky because we are not
evaluating the correct or gold response directly
(which is the usual approach in most annotation
tasks). Instead, we annotate incorrect distractor
responses, where the ’gold’ correct answer is al-
ready provided to the annotators. In addition, many
distractors (e.g., IECF, COEX) can have valid
annotations, which limits the ability to measure
similarities between the same distractors annotated
twice by different annotators.

Since there is no ambiguity about the correct
answer, we implemented measures during the an-
notation process to ensure consistency among dif-
ferent annotators in generating plausible wrong
distractors that adhere to our rules. At the early
stage of the annotation process, both annotators
were asked to annotate a subset of 100 samples
(roughly 10% of CHARPEval). We then measured
the performance discrepancy of a model to ensure
consistency in following our annotation rules.

Subset GTRS KGIR KGUG RECF IECF COEX
hCHARP

all 24% 63% 0% 6% 4% 3%
100 (A#1) 23% 62% 1% 6% 3% 3%
100 (A#2) 24% 64% 0% 5% 4% 3%

eCHARP
all 25% 61% 0% 6% 5% 3%
100 (A#1) 24% 60% 0% 7% 5% 4%
100 (A#2) 25% 62% 0% 6% 5% 3%

Table 3: Zero-shot performance of the LLaMA2-7B
Instruct (L2-7B-IT) model on all samples (’all’), as well
as on two subsets of 100 samples each, annotated by 2
different annotators (A#1 and A#2), on both hCHARP
and eCHARP splits of the CHARPEVAL benchmark.

Table 3 shows the zero-shot performance of
LLaMA2-7B-Instruct (selected as a representative
example) on the full CHARPEVAL, as well as on
the 100-sample subsets jointly annotated by both
annotators for the hCHARP and eCHARP. The re-
sults indicate consistent annotations between Anno-
tator #1 and Annotator #2, with only minor differ-
ences of at most 1%. This close alignment reflects
our thorough preparatory training and the measures
implemented during the annotation process to en-
sure both annotators adhered closely to the same
guidelines throughout the project.
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Figure 2: For each LLM layer (x-axis), the attention head distribution (y-axis) of response tokens is plotted,
showing how they point to the four chunks of the input sequence: Instruction, History, Knowledge, and Response.
Experiments are conducted on four LLMs using samples from the hCHARP subset of CHARPEVAL.

C Results

C.1 Attention Analysis

We leverage the attention map of LLMs to better
understand which parts of the input are influencing
the predicted response. To this end, we calculate
the distribution of attention heads for each token in
the response across the entire input sequence. More
precisely, we split the sample into 4 chunks: the
instruction, the history (including the last user turn),
the given knowledge segment, and the response
itself. Then, for each token in the response, we
collect the chunk that each attention head points
to, and compute the distribution across the four
categories. Finally, we aggregate the distributions
for all response tokens and normalize them (in the
range of [0-100%]) into a distribution across the
input sequence for each example.

This procedure is applied to each model layer,
and the distribution is averaged across all samples
in a given testbed. As shown in Figure 2, we
conduct this experiment on hCHARP subset of
CHARPEVAL3 with namely 4 models: Qwen2.5-
7B-Instruct, Qwen2.5-7B, Llama2-7B-Instruct, and
Llama2-7B. These models are selected to focus the
comparison between base and instruction-tuned
models, as well as between two families of models
of the same size but with a large performance gap.
Qwen2.5-7B and Llama2-7B have 28 heads and 28

3Similar trends are observed on eCHARP

layers, and 32 heads and 32 layers, respectively.
On one hand, we notice that the response token

attention is influenced by the instruction segment,
with significantly less attention given to the other
three segments. For instance, attention to the in-
struction segment is less than 40% for Qwen2.5-7B-
Instruct and less than 50% for Llama2-7B-Instruct,
respectively. Intuitively, this aligns with the role of
supervised fine-tuning and preference alignment,
which are primarily aimed at adapting the model to
follow the task instructions.

On the other hand, we observe that attention in
both base models is highly concentrated (with more
than 60% in most layers) on the response tokens,
followed by the knowledge to some extent (20%-
30%), with only minimal attention given to the
instruction and history segments (less than 10%).
This is expected behavior for pre-trained models,
where attention is typically more concentrated on
local context, while long-distance dependencies
may play a minor role in predicting the next token
during unsupervised learning (Liu et al., 2024b).
This contrastive observation of attention distribu-
tion between the base and instruction-tuned models
suggests that instruction tuning alters LLM behav-
ior not only by exposing models to task-relevant
data but also by shifting their attention allocation
across the input sequence.

Interestingly, we observe that Qwen2.5-7B-
Instruct exhibits a similar attention distribution
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range for both historical knowledge and responses,
showing a distinct pattern compared to its base
model. In contrast, Llama2-7B-Instruct allocates
near zero attention to knowledge and history, but
significantly higher attention to the response, show-
ing a similar pattern (except on instruction) of its
base model. This difference may help explain the
20% and 22% performance gaps between the two
models on hCHARP and eCHARP, respectively.
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Model #P IT hCHARP eCHARP
GTRS KGIR KGUG RECF IECF COEX GTRS KGIR KGUG RECF IECF COEX

Qwen2.5 72B ✓ 48% 33% 1% 8% 6% 4% 48% 32% 1% 9% 6% 4%
Qwen2.5 32B ✓ 47% 38% 0% 8% 3% 4% 47% 36% 0% 9% 3% 5%
Qwen2.5 7B ✓ 46% 36% 1% 6% 5% 6% 46% 37% 0% 6% 5% 6%
Qwen2.5 7B ✗ 18% 55% 0% 7% 4% 16% 20% 53% 0% 7% 4% 16%
Qwen2.5 3B ✓ 42% 46% 0% 5% 3% 4% 42% 44% 0% 7% 3% 4%
Llama3.3 70B ✓ 47% 33% 0% 11% 7% 2% 47% 33% 0% 11% 7% 2%
Llama3.1 70B ✓ 44% 38% 1% 7% 5% 5% 42% 40% 1% 7% 5% 5%
Llama3.1 8B ✓ 41% 48% 0% 6% 3% 2% 41% 48% 0% 6% 3% 2%
Llama2 13B ✓ 28% 66% 0% 3% 2% 1% 30% 64% 0% 3% 2% 1%
Llama2 7B ✓ 24% 63% 0% 6% 4% 3% 25% 61% 0% 6% 5% 3%
Llama2 7B ✗ 10% 61% 0% 9% 7% 13% 11% 57% 0% 10% 7% 15%
Mistralv0.1 52B ✓ 46% 33% 0% 11% 4% 6% 46% 32% 0% 11% 5% 6%
Mistralv0.2 7B ✓ 43% 33% 1% 12% 6% 5% 43% 33% 1% 13% 6% 4%

Table 4: Models responses ranking distribution on the hCHARP and CHARPEVAL subsets of the CHARPEVAL
benchmark under zero-shot setting. GTRS shows accuracy on the ground truth response, while the other columns
indicate the distractor types described in § 2.3.

Model #P IT hCHARP eCHARP
GTRS KGIR KGUG RECF IECF COEX GTRS KGIR KGUG RECF IECF COEX

Qwen2.5 72B ✓ 43% 43% 0% 7% 4% 3% 44% 41% 0% 8% 4% 3%
Qwen2.5 32B ✓ 50% 38% 0% 6% 2% 4% 50% 37% 0% 6% 3% 4%
Qwen2.5 7B ✓ 46% 39% 0% 7% 3% 5% 48% 35% 1% 7% 4% 5%
Qwen2.5 7B ✗ 25% 58% 0% 7% 4% 5% 27% 60% 0% 7% 5% 1%
Qwen2.5 3B ✓ 41% 51% 0% 3% 2% 3% 44% 47% 0% 4% 2% 3%
Llama3.3 70B ✓ 48% 39% 0% 9% 4% 2% 49% 36% 0% 9% 4% 2%
Llama3.1 70B ✓ 45% 42% 1% 6% 3% 3% 46% 41% 1% 6% 3% 3%
Llama3.1 8B ✓ 39% 56% 0% 3% 1% 1% 37% 57% 0% 3% 2% 1%
Llama2 13B ✓ 28% 66% 0% 3% 2% 1% 30% 64% 0% 3% 2% 1%
Llama2 7B ✓ 26% 62% 0% 5% 5% 2% 25% 63% 0% 5% 5% 2%
Llama2 7B ✗ 20% 59% 0% 8% 9% 4% 20% 57% 0% 9% 9% 5%
Mistralv0.1 52B ✓ 49% 33% 0% 9% 4% 5% 52% 27% 1% 10% 5% 5%
Mistralv0.2 7B ✓ 43% 34% 1% 12% 6% 4% 43% 36% 1% 12% 5% 3%

Table 5: Few Models responses ranking distribution on the hCHARP and CHARPEVAL subsets of the CHARPEVAL
benchmark under zero-shot setting. GTRS shows accuracy on the ground truth response, while the other columns
indicate the distractor types described in § 2.3.
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