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Abstract

We analyze the extent to which internal rep-
resentations of language models (LMs) iden-
tify and distinguish mentions of named en-
tities, focusing on the many-to-many corre-
spondence between entities and their men-
tions. We first formulate two problems of en-
tity mentions — ambiguity and variability —
and propose a framework analogous to clus-
tering quality metrics. Specifically, we quan-
tify through cluster analysis of LM internal
representations the extent to which mentions
of the same entity cluster together and men-
tions of different entities remain separated. Our
experiments examine five Transformer-based
autoregressive models, showing that they ef-
fectively identify and distinguish entities with
metrics analogous to precision and recall rang-
ing from 0.66 to 0.9. Further analysis reveals
that entity-related information is compactly
represented in a low-dimensional linear sub-
space at early LM layers. Additionally, we
clarify how the characteristics of entity rep-
resentations influence word prediction perfor-
mance. These findings are interpreted through
the lens of isomorphism between LM repre-
sentations and entity-centric knowledge struc-
tures in the real world, providing insights into
how LMs internally organize and use entity
information. §: https://github.com/masaki-
sakata/entity-identification

1 Introduction

Transformer-based language models (LMs) have
been demonstrated to be able to recall fac-
tual knowledge composed of entities and rela-
tions (Petroni et al., 2019; Jiang et al., 2020; Heinz-
erling and Inui, 2021; Cohen et al., 2023). For ex-
ample, when given the query “Barack Obama was
born in __”, LMs can predict appropriate words
like ‘Hawaii”. To understand how LM predicts
such entities (e.g. “Hawaii”), extensive internal
analyzes have been performed from an informa-
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Figure 1: Illustration of entity identification. If “Barack
Obama” or “Joe Biden” are represented in various men-
tions and contexts but still form a cluster as a single
entity in the representation space, then we observe suc-
cessful entity identification. Such entity identification
in the representation space suggests that the LM’s rep-
resentations reflect certain aspects of the structure of
real-world, entity-centric knowledge.

tion flow perspective (Dai et al., 2022; Meng et al.,
2022; Geva et al., 2023).

However, while previous work has shed light
on the internal mechanisms of LMs (Dai et al.,
2022; Meng et al., 2022; Geva et al., 2023), our
understanding remains limited in scope. For in-
stance, when processing mentions like “Obama” or
“Barack Obama”, it remains unclear whether LMs
encode them as the same individual based on con-
text (Figure 1). Although encoding mentions as dis-
tinct entities may appear straightforward, there are
two major real-world challenges (Figure 2). One is
mention ambiguity: a single mention could poten-
tially refer to multiple different entities. The other
is mention variability: multiple mentions with
different surface forms exist for a single entity. No-
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tably, previous studies have not addressed queries
containing mention ambiguity or mention variabil-
ity, leaving a gap in our understanding of how LMs
handle these fundamental challenges. Properly re-
solving mention ambiguity and variability is crucial
to language understanding.

We assume that encoding where mentions are
distinguished by their corresponding entities, as
shown in Figure 1 (left), is an appropriate repre-
sentation and investigate to what extent LMs dis-
tinguish entities in their internal representations.
We call the process of distinguishing entities in
internal representations “entity identification”. To
evaluate entity identification, we used Purity (Zhao
and Karypis, 2001) and Inverse Purity (IP). This
approach allows us to directly measure whether the
model’s representations for the same entity form
compact clusters that differ from other entities.

Our experiments with five autoregressive LMs
demonstrated that they achieve an AUC of approxi-
mately 0.8–0.9 for mention ambiguity (§4.1) and
0.66–0.8 even in the presence of mention vari-
ability (§4.2). LM scores outperformed the base-
lines, demonstrating their ability to identify entities.
We also find that entity information forms low-
dimensional subspaces in early layers (§5.1), with
better entity representation separation improving
word prediction (§5.2). Finally, we discuss these
findings through the lens of isomorphism between
LM representations and real-world entity-centric
knowledge structures (§6). This provides evidence
that LMs encode discrete structural knowledge
through text-only training, extending previous ob-
servations (Abdou et al., 2021; Chen et al., 2023;
Gurnee and Tegmark, 2024; Park et al., 2024b)
toward a systematic understanding of how LM rep-
resentation spaces correspond to structural knowl-
edge.

2 Entity Identification

Simply put, our goal is to find out if LMs “know”1

that different mentions of the same real-world en-
tity refer to the same entity and, conversely, that
mentions of different entities refer to different en-
tities. For example, in discussions about “Barack
Obama” or “President Obama”, a LM with world
knowledge should be able to recognize that both
mentions refer to the same person.

1This loose, anthropomorphizing use of the word “know”
will be made more precise in the following section.

Mention Ambiguity Mention Variability

Do mention embeddings 
separate by entity based on 
contextual information?

Do mention embeddings 
cluster by entity based on 
contextual information?

EntityMention EntityMention

…“Māori All Blacks” …

…“New Zealand 
Maori Rugby” …

…“NZ Maori” …

…“Obama”…

Figure 2: Two major factors that can make entity identi-
fication difficult are ambiguity and variability of entity
mentions.

2.1 Why is Entity Identification Difficult?

What makes entity identification difficult can be
attributed to the ambiguity and variability of a men-
tion (Figure 2). From the perspective of mention
ambiguity, “Obama” could refer to “Barack Obama”
or “Michelle Obama” depending on the context.
From the perspective of mention variability, for
example, “Māori All Blacks” and “New Zealand
Maori Rugby” refer to the same rugby team in New
Zealand despite using different words. Resolving
mention ambiguity and variability requires effec-
tive use of surface and contextual information.

2.2 Purity and Inverse Purity

When a mention with context is input, we aim to
quantify the degree to which the LM distinguishes
between the entities corresponding to that men-
tion in its representations. Intuitively, if the LM
effectively distinguishes between entities, the em-
beddings representing these entities are expected to
be clearly separated based on conceptual similarity
(as illustrated in the example of “Barack Obama”
in Figure 1). To measure how well the embeddings
of mentions are separated and encoded on an en-
tity basis, we use an F1 score composed of (local)
Purity (Zhao and Karypis, 2001) and (local) In-
verse Purity (IP).2 In other words, we assess the
geometric locality of a set of embeddings by ex-
amining how much they are mixed with other sets
of embeddings. In Figure 3, we illustrate several
embeddings, showing both the class division cor-

2As an alternative to Purity and IP, the Adjusted Rand In-
dex (ARI) (Hubert and Arabie, 1985) can also be employed.
ARI was implemented in this study, and the results are re-
ported in Appendix D; they show the same overall trend as the
Purity/IP scores. Although ARI corrects for chance agreement,
it is less suitable for fine-grained, entity-level analysis and is
therefore omitted from the main text.

16718



responding to the Biden entity (Biden Class) and
the cluster division formed based on the centroid
of the Biden embeddings (Biden Cluster). The F1
score using (local) Purity and (local) IP indicates
how well the Biden Cluster matches the true Biden
Class. An F1 score of 1.0 indicates that the Biden
embeddings are completely separated from other
clusters. As the score decreases, it indicates that
the embeddings are increasingly mixed with other
clusters The detailed computational procedure for
Purity, IP and F1 score can be found in the Ap-
pendix A. Note that since this evaluation method
relies on distances between representations, it may
be affected by the curse of dimensionality, which
we examine in § 3.4.

The F1 score based on urity and IP can be con-
sidered as one of the methodological approaches
to measure how well LMs capture the structure
of the world (see Table 1 in Appendix). There is
widespread interest in understanding how well LMs
capture the structure of the world. Typically, the de-
gree of correspondence between the world’s inher-
ent structure (such as the similarity between colors
in color space) and their representation within LMs
(such as the similarity between color names in the
LM’s latent space) is evaluated through methods
like representational similarity analysis (RSA) (Ab-
dou et al., 2021; Patel and Pavlick, 2022; Chen
et al., 2023; Gurnee and Tegmark, 2024; Hernan-
dez et al., 2024; Park et al., 2024b). For entities,
however, the crucial aspect is whether pairs of men-
tions refer to the same entity or different ones. Our
proposed clustering-based method measures the
degree of alignment between this binary structure
(“same or different”) in the world and in LMs. This
approach enables a more natural evaluation of word
pairs that, while semantically very similar, would
compromise factuality if substituted for one another
(such as mentions of entities).

3 Experimental Setup

3.1 Models

We used five variants of LMs, including GPT-
2 (Radford et al., 2019), Llama-2 (7B, 13B) (Tou-
vron et al., 2023), Llama-3 (8B) (Dubey et al.,
2024), and Mistral (7B) (Jiang et al., 2023). The
details are shown in Appendix B.1, Table 3.

We use the following three baselines: (1) Ran-
dom embeddings: Individual embeddings ran-
domly sampled from a normal distribution for each
mention occurrence. Different embeddings are as-

local	Purity Biden =
						2				

	 		2 + 	 3		
= 40%

local	Inverse	Purity Biden =
						2				

	 		2 + 	 2		
= 50%

embedding

Biden Class
Biden Cluster

embedding

Biden Cluster

Biden Class

Figure 3: Overview of local Purity and local IP based on
Equation 4 and Equation 6. As in Equation 8, a high F1
score (purity and IP) indicates not only that embeddings
of the same class are contained within a cluster, but
also that embeddings of each class are appropriately
separated into distinct cluster. The circles represent the
embeddings corresponding to each mention.

signed even for identical mentions. (2) Unique
mention embeddings: Fixed embeddings randomly
sampled from a normal distribution for each unique
mention. The same embedding is always assigned
to identical mentions (e.g., the mention “Obama”
consistently uses the same embedding). (3) Fast-
Text embeddings3 (Mikolov et al., 2018): Pre-
trained static word embeddings. When a mention
consists of multiple tokens, we use the average em-
bedding of those tokens. Unlike LMs, unique men-
tion embeddings and FastText embeddings only
capture surface-level information of mentions.

3.2 Entity Representations

Following the configurations of Abdou et al.
(2021); Bommasani et al. (2020); Vulić et al.
(2020), we use the hidden states of LMs as rep-
resentations of a given word. The term “Entity
Representations” refers to the representations that
correspond to the mention of an entity. In the
case of autoregressive LMs, several works have
indicated that information related to an entity is
concentrated in the last token of a mention (Meng
et al., 2022; Geva et al., 2023; Heinzerling and Inui,
2024). Thus, we report the results using embed-
dings of the last token.4 Since autoregressive LMs
cannot read the context that appears after analyzing

3We use embeddings trained on Wikipedia 2017, the
UMBC webbase corpus (Han et al., 2013), and the statmt.org
news dataset.

4The results using average embeddings of subwords are
reported in Appendix C.2.2 and C.3.2.
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Figure 4: Comparison of F1 scores across different
dimensions for LMs, FastText, and random embeddings.
The vertical dashed line indicates dimension=20. For
each model, the layer with the highest AUC score is
visualized.

the mention, we repeat the input sentence following
Springer et al. (2024). Specifically, the autoregres-
sive LM reads the entire sentence once and then
uses the embedding of the mention appearing the
second time as the entity representation.5

3.3 Data
We used the ZELDA-TRAIN dataset (Milich and
Akbik, 2023), employed for the entity disambigua-
tion task. We filter out entities with fewer than
five instances, as sparse instances could lead to
biased centroid positions when computing the aver-
age semantic representation of each entity. Addi-
tionally, instances where the length of the tokenized
sentences exceeded 500 tokens were excluded to
ensure compatibility with a wide range of LMs,
setting a conservative input length limit. Table 5 in
Appendix B.3 shows the statistical information of
the dataset.

3.4 Preliminary Study: Dimensional Impact
We first investigate the effect of dimensionality on
entity identification. This is crucial because our
evaluation method focuses on the distance between
representations, making it potentially susceptible
to the curse of dimensionality. Using the filtered
ZELDA-TRAIN dataset, we compared three kinds
of representations: (i) LMs, (ii) FastText, and (iii)
random embeddings. We reduced the LM and
FastText representations with linear discriminant
analysis (LDA). Random embeddings, in contrast,
were generated directly at each target dimension-
ality. Figure 4 summarizes the results and reveals
two main observations. First, random embeddings
score almost zero in low dimensions but nearly
saturate in high dimensions. This indicates that

5Given a sentence, “Alice went to Paris,” we input “Alice
went to Paris. Alice went to Paris” to the LM and used the
embedding of the second “Alice” as the entity representation.

our metric is affected by the curse of dimension-
ality. Second, LMs remain strong even in low di-
mensions; for example, Llama-2-7B attains an F1
of 0.90 in 20 dimensions, only 3% lower than its
score in 4,096 dimensions. To determine the op-
timal dimension, we analyze the rate of perfor-
mance change (∆F1/∆d) in different dimension
windows. The slope of the F1 score of LMs rapidly
decreases to approximately 20 dimensions, after
which it approaches zero (|∆F1/∆d| < ϵ where
ϵ = 0.005 for d > 20). Therefore, we conduct sub-
sequent analyses in 20-dimensional space where
the curse of dimensionality has minimal impact.
This efficient encoding of entity information in
low-dimensional subspaces aligns with the mani-
fold hypothesis of LM representations (Cai et al.,
2021; Cheng et al., 2023; Valeriani et al., 2023).

3.5 Definition of Difficulty
3.5.1 Mention Ambiguity
Mention ambiguity quantifies how ambiguously a
mention is assigned to different candidate entities
based on its frequency distribution between entities.
For example, the mention “Oxford” can refer to dif-
ferent entities depending on the context, such as
Oxford University or Oxford as a place name, and
these entities are referenced with similar frequency.
When a mention refers to multiple entities with sim-
ilar probabilities, the ambiguity becomes high in
such cases. We use the entropy H of the candidate
mappings from mention to entity as the mention
ambiguity: H = −∑N

i=1 pi log pi. Here, pi repre-
sents the proportion of times a mention refers to the
candidate entity i.6 A higher entropy H indicates
greater uncertainty in the candidate entity corre-
sponding to a mention, suggesting more ambiguity
(see Table 2 in Appendix). In our experiments, we
used a subset of ambiguous mentions, excluding
cases where H = 0.

3.5.2 Mention Variability
The variability of the mention refers to the degree
to which different surface forms can vary when
referring to the same entity. For example, the men-
tions “Māori All Blacks” and “New Zealand Maori
Rugby” refer to the same entity, but their surface
forms are significantly different. In such cases, we
want to assign a high score to mention the variabil-
ity. We use surface-form dissimilarity, which indi-
cates the surface-level variation of multiple men-

6The detailed definition of mention ambiguity is provided
in Appendix B.4.
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tions for the same entity, as mention variability.
This dissimilarity D is formulated as:

D =
2

|Me|(|Me| − 1)

|Me|−1∑

i=1

|Me|∑

j=i+1

L(mi,mj)

max(|mi|, |mj |)

L(mi,mj) is the Levenshtein distance7 between
mentions mi and mj , and |Me| is the total number
of mentions for the same entity.8 A higher dissimi-
larity D indicates greater surface-level differences
between mentions for the same entity (see Table 2
in Appendix).

4 Results

4.1 Mention Ambiguity
In the upper-left region of Figure 5 shows the AUC
scores of the baseline model and the highest AUC
scores achieved across all layers of each LM when
controlling for mention ambiguity. Higher scores
on the X-axis indicate more ambiguous mentions,
while higher scores on the Y-axis indicate more
successful entity identification (entity separated).

LMs achieved AUC scores of 0.8–0.9. This score
is markedly higher than the AUC of baselines.9

These results demonstrate that LMs distinguish the
identity of entities even for ambiguous mentions,
compared to baselines.

We found that LMs achieve effective entity iden-
tification by stacking layers and contextualizing
embeddings. As shown in the bottom left of Fig-
ure 5, Llama-2 7B’s AUC substantially improved
from 0.38 at layer 0 to 0.87 at layer 8. This trans-
formation can also be qualitatively observed in Ap-
pendix Figure 10. At layer 0, embeddings of the
country name “Georgia” and the U.S. state name
“Georgia” are mixed, but by layer 8, they are clearly
separated. Thus, contextual information is essential
for entity identification in cases with mention ambi-
guity, and LMs can address this challenge through
embedding contextualization by stacking layers.

7Levenshtein distance is calculated at the character level.
8The detailed definition of mention variability is provided

in Appendix B.5.
9Random Embeddings generate distinct embeddings for

each instance of the same mention, potentially leading to spu-
riously inflated scores in mention ambiguity. For instance,
when the mention “Obama” occurs multiple times in the text,
each occurrence is assigned a different embedding. While
this might result in an embedding space that appears to dif-
ferentiate between Barack Obama and Michelle Obama, such
discrimination is purely coincidental.

4.2 Mention Variability
In the upper-right region of Figure 5 shows the
AUC scores of the baseline model and the highest
AUC scores achieved across all layers of each LM
when controlling for mention variability. Higher
scores on the X-axis indicate more variable men-
tions, while higher scores on the Y-axis indicate
more successful entity identification. The results
showed similar trends to mention ambiguity.10

Overall, LMs achieved AUC scores of 0.66–0.8.
This score stands in stark contrast to the AUC of
random embeddings, unique mention embeddings,
and FastText. These results demonstrate that LMs
distinguish entity identities even with variable men-
tions, in contrast to the baselines. However, all
LMs showed a notable decrease in F1 scores when
mention variability exceeded 0.8. For example,
the basketball team Saski Baskonia, also known as
“Taugrés,” is a case with a variability exceeding 0.8.
In such cases, Llama-2 7B recorded an F1 score of
0.5.

We found that LMs achieve effective entity iden-
tification by stacking layers and contextualizing
embeddings. As shown in the bottom right of Fig-
ure 5, Llama-2 7B’s AUC substantially improved
from 0.3 at layer 0 to 0.81 at layer 8. Thus, con-
textual information is essential for entity identi-
fication in cases with mention variability, and it
was confirmed that LMs can effectively address
this challenge through embedding contextualiza-
tion by stacking layers. However, it’s notable that
AUC scores decrease in the later layers (16 and 32)
compared to layer 8. One possible explanation is
that the influence of next-word prediction hinders
the process of distinguishing entities in the input
representations.

5 Additional Experiments

We conduct additional experiments to analyze two
points: (1) the properties of entity representations
(e.g., linear separability) and (2) their impact on
word prediction.

5.1 Properties of Entity Representations
Entity Representations are Linearly Separable
in Early Layers To determine whether entity rep-
resentations are encoded in a linearly separable

10F1 scores cannot be directly compared between mention
ambiguity and mention variability due to different evaluation
data units. Mention ambiguity is evaluated on data aggregated
by identical mentions, while mention variability is evaluated
on an entity basis.

16721



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 Random Embeddings
Unique Mention 
Embeddings
FastText
GPT-2 layer6
Llama-2 7B layer8
Llama-2 13B layer9
Llama-3 8B layer8

Mention Variability
(Surface form dissimilarity)

F1
 s

co
re

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 Random Embeddings
Unique Mention
Embeddings
FastText
GPT-2 layer6
Llama-2 7B layer8
Llama-2 13B layer9
Llama-3 8B layer8
Mistral 7B layer8

Mention Ambiguity

F1
 s

co
re

0.0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1
layer32
layer16
layer8
layer4
layer2
layer1
layer0

Mention Ambiguity
(entropy of candidate distribution)

Ad
ju

st
ed

 R
an

d 
In

de
x

0.0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1 Random Embeddings
Unique Mention 
Embeddings
FastText
GPT-2 layer6
Llama-2 7B layer8
Llama-2 13B layer9
Llama-3 8B layer8

Mention Ambiguity
(entropy of candidate distribution)

Ad
ju

st
ed

 R
an

d 
In

de
x

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1 Random Embeddings
Unique Mention
Embeddings
FastText
GPT-2 layer6
Llama-2 7B layer8
Llama 2 13B layer9

Mention Ambiguity

F1
 s

co
re

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1 layer0 (AUC=0.29)
layer1 (AUC=0.47)
layer2 (AUC=0.69)
layer4 (AUC=0.8)
layer8 (AUC=0.82)
layer16 (AUC=0.76)

Mention Variability
(Surface form dissimilarity)

F1
 s

co
re

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1 Random Embeddings
Unique Mention 
Embeddings
FastText
GPT-2 layer6
Llama-2 7B layer8

Mention Variability
(Surface form dissimilarity)

F1
 s

co
re

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1
layer0 (AUC=0.38)
layer1 (AUC=0.81)
layer2 (AUC=0.82)
layer4 (AUC=0.85)
layer8 (AUC=0.87)
l 16 (AUC 0 84)

Mention Ambiguity
(entropy of candidate distribution)

F1
 s

co
re

0.0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1 Random Embeddings
Unique Mention 
Embeddings
FastText
GPT-2 layer6
Llama-2 7B layer8
Llama-2 13B layer9
Llama-3 8B layer8

Mention Ambiguity
(entropy of candidate distribution)

Ad
ju

st
ed

 R
an

d 
In

de
x

Figure 5: Separability (F1 scores) of entity representations for each difficulty (left: mention ambiguity, right:
mention variability). F1 scores are averaged within each bin on the x-axis. Top: Results across all models, using the
layer with highest AUC for LM scores. Bottom: Layer-wise analysis for Llama-2 7B. Complete results and AUC
scores for all models are provided in Appendix C.2.1 and C.3.1.

Figure 6: F1 scores based on Purity, IP, and Linear Prob-
ing. The x-axis represents the relative position of the
layers. All embeddings are reduced to 20 dimensions.

manner, we conduct linear probing. Linear prob-
ing serves as an alternative method to Purity and
IP, involving training a linear classifier to predict
entity labels from representations. The detailed
settings for linear probing are described in Ap-
pendix B.2. To investigate which layers contain
information necessary for entity identification and
whether there are differences in trends among Pu-
rity, IP, and Linear Probing results, we calculate F1
scores for each layer. As in §4, the embedding di-
mensions are reduced to 20 dimensions using LDA.
The results of these analyses are shown in Figure 6.

Our analysis revealed two main findings. First,
Linear Probing achieved F1 scores of around 0.9.
This suggests that entity representations are en-
coded in an (almost) linearly separable form. Previ-

ous studies (Olah et al., 2020; Elhage et al., 2022;
Gurnee and Tegmark, 2024) have been accumulat-
ing evidence supporting the linear representation
hypothesis, which suggests that features within neu-
ral networks are represented linearly. Our results is
further evidence to support this hypothesis.

Second, we found that the maximum F1 score
peaks for both Purity, IP, and Linear Probing oc-
cur around normalized layer 0.2 (e.g., layers 6-8 in
Llama-2 7B). This indicates that the information
necessary for entity identification is present in the
early layers. These layer-wise linear probing re-
sults align with the findings of Gurnee and Tegmark
(2024), who reported that probing scores for geo-
graphical and temporal features peak in early layers.
While they focused specifically on geographical
and temporal features, our analysis extends to a
broader range of entities. Our results also show
similarities with Meng et al. (2022), who found
that entity information is encoded in early layers
when processing the last token of entity mentions.
They showed this using activation patching, while
we confirmed the same trend through a different
approach that examines geometric properties in em-
bedding space. Considering that our experiments
were conducted in a 20-dimensional space, these re-
sults suggest that the information necessary for en-
tity identification is encoded in a low-dimensional
linear subspace of the early layers in LMs.
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Figure 7: Results of RSA experiments. Each value rep-
resents Spearman’s rank correlation coefficient. LM
representations are taken from the layer with the highest
F1 score. Dimensionality is fixed at 20 for all represen-
tations.

Structural Similarity of Entity Representations
Examining the upper portion of Figure 5, we
observe similar F1 score patterns across differ-
ent LMs, particularly among Llama-2, Llama-
3, and Mistral. This pattern suggests that these
models develop comparable structural represen-
tations for entities. To quantify this observation,
we conducted Representation Similarity Analysis
(RSA) (Kriegeskorte et al., 2008) to measure the
structural similarity between representations (see
Appendix B.7 for experimental details).

Figure 7 presents our results. First, we observe
that pairs of LM representations exhibit higher sim-
ilarity than the static embedding baseline. Inter-
estingly, Llama-2, Llama-3, and Mistral exhibit
stronger inter-model similarity than comparisons
involving GPT-2. This finding suggests that larger,
more capable LMs converge toward similar entity
representation structures. While our results echo
the findings of Huh et al. (2024), we extend their
work by focusing specifically on entity representa-
tions. This structural similarity allows us to inter-
pret LMs through the lens of isomorphism, which
we discuss in detail in § 6.

5.2 Effect of Entity Representations Structure
on Word Prediction

To understand how the degree of entity representa-
tion separation affects word output, we investigate
from two perspectives: output consistency and en-
tity disambiguation accuracy.

Output Consistency Cao et al. (2022) reported
cases where simply changing “The U.S.” to “Amer-

ica” in the prompt “The U.S. capital of __” led to
different word prediction results. In other words,
they reported that the variation in surface forms
used to refer to the same entity causes inconsis-
tency in LM’s word predictions. In such cases, it
would be desirable for the model to consistently
predict “Washington” for both inputs. We verify
through a simple experiment that this word pre-
diction inconsistency is related to the confusion
in entity representations. In the experiment, we
used prompts such as “[X] was founded in _”. We
compared the consistency of model responses by
substituting mentions of two types of entities with
different mention variability for [X]. As discussed
in § 4.2, entities with low mention variability tend
to have mentions encoded as a clustered represen-
tation, while entities with high mention variability
show confusion between representations. The in-
tuition behind this experimental setup is that dif-
ferences in mention variability cause structural dif-
ferences in representations, which affect variations
in word prediction. We sampled 20 organization
entities each with low (0-0.3) and high (0.7-1.0)
mention variability and predicted [Object] using
the format “[Subject] [Relation]” with mentions be-
longing to these entities as Subject.11 Word predic-
tion consistency was calculated by collecting words
for [Object] (the first word formed by combining
generated tokens) and computing the proportion of
the most frequent prediction within the same entity.
Then, we calculated the average for both low and
high mention variability groups.

The results revealed that while word prediction
consistency averaged 71% for low mention variabil-
ity, it significantly decreased to an average of 39%
for high mention variability. In other words, we
confirmed that higher mention variability leads to
lower model prediction consistency, supporting the
hypothesis that the internal state of entity represen-
tations confusion causes prediction inconsistency.
A more detailed qualitative analysis of cases with
inconsistent word prediction is presented in Ap-
pendix C.4.

Entity Disambiguation Accuracy We investi-
gate how the degree of separation in entity represen-
tations affects entity disambiguation accuracy. Intu-
itively, if entity representations are well-separated,
the model should successfully perform entity dis-

11For Relations, we used “[X] was founded in [Y].” and
“The headquarter of [X] is in [Y].” from LAMA Probe (Petroni
et al., 2019). Llama-2 7B was used as the model.
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ambiguation. To examine the relationship between
representation separation and entity disambigua-
tion accuracy, we conducted in-context learning
experiments as follows. We input the following
prompt to the LM: Does X refer to A or B?
One-word answer only. A: San Diego B:
San Francisco Answer:. We then use Patch-
Scope (Ghandeharioun et al., 2024) to patch con-
textualized mention embeddings of San Diego or
San Francisco into the position marked as X. If
the entity representations of San Diego and San
Francisco are well-separated, the model should cor-
rectly resolve the entity disambiguation task. We
used approximately 7,800 entities, consistent with
the dataset size in § 4. We employed 10-shot learn-
ing and constrained the model to output only “A”
or “B” as answers. We selected Llama-2 13B as it
supports few-shot learning. Detailed experimental
settings are provided in Appendix B.8.

Figure 8 presents our results. Figure 8-(a) shows
the effect of varying the layer used for patch-
ing. When using representations from early lay-
ers, entity disambiguation accuracy reaches ap-
proximately 74%, significantly exceeding the 50%
chance rate. This finding Accuracy aligns with
the trends observed in § 5.1, suggesting that in-
formation from early layers contributes to entity
disambiguation performance. Figure 8-(b) plots
entity disambiguation accuracy against F1 score
using layer 4, which achieved the highest entity
disambiguation accuracy. The Pearson correlation
coefficient is approximately 0.18, with a regression
coefficient β of 0.31. The data shows an upward
trend, indicating that entities with well-separated
representations tend to achieve higher entity disam-
biguation accuracy.

6 Discussion: Insights from Isomorphism

In § 4, we revealed the extent to which LMs can
perform entity identification. Interpreting these
experimental results from the perspective of iso-
morphism described in § 2.2 and Table 1 in the
Appendix, we can conclude that LMs exhibit a
higher degree of isomorphism between the struc-
ture of entity representations and the structure of
entity classes compared to FastText and random
baselines. LMs achieved an AUC of approximately
0.9 in cases with mention ambiguity (§ 4.1) and an
AUC of about 0.8 in cases with mention variabil-
ity (§ 4.2), both scores being significantly higher
than baselines. Furthermore, we observed simi-

1 2 3 4 5 6 7 8 9 10 12 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

w/ PatchScope
w/out PatchScope
Chance Rate

Layer

En
tit

y 
Li

nk
in

g 
Ac

c

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r=0.176, β=0.31

F1 Score

En
tit

y 
lin

ki
ng

 A
cc

(a) Entity Disambiguation Accuracy vs. Layer Index 

(b) Entity Disambiguation Accuracy vs. F1 Score

A
cc
ur
ac
y

A
cc
ur
ac
y

Figure 8: (a) Entity disambiguation accuracy for patch
embeddings extracted from different Llama-2 13B lay-
ers. (b) Entity disambiguation accuracy vs. represen-
tation separation (F1 score) for 4th layer patch embed-
dings from Llama-2 13B. Entity disambiguation accu-
racies are averaged within each bin on the F1 score. r:
Pearson correlation, β: regression coefficient.

larities in the structure of entity representations
across different LMs (§ 5.1). These results ex-
perimentally support The Platonic Representation
Hypothesis (Huh et al., 2024). Specifically, the
similarity in entity representation structures across
different LMs and their high isomorphism suggest
that entity representation structures are “converg-
ing” toward a certain point, which can be inter-
preted as the structure of real-world entities (in
this study, the discrete topology of “mentions be-
longing to the same entity class”). Our findings
reinforce previous empirical observations that LMs
can encode specific knowledge structures existing
in the real-world through text-only learning (Abdou
et al., 2021; Patel and Pavlick, 2022; Chen et al.,
2023; Gurnee and Tegmark, 2024; Hernandez et al.,
2024; Park et al., 2024b). Additionally, in § 5.2, we
demonstrated that the structure of representations
affects both the consistency of word predictions
and entity disambiguation performance. We con-
sider this one of the positive aspects of achieving
high isomorphism.

7 Related Work

We review methods for verifying LMs knowledg
and position our research by organizing existing
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findings on knowledge structures.

7.1 Methods for Analyzing LM Knowledge
While there are numerous studies examining what
knowledge LMs possess, their methodologies can
be broadly categorized into three approaches. (i)
Behavioral analysis (Petroni et al., 2019; Jiang
et al., 2020; Marjieh et al., 2023; Patel and Pavlick,
2022) explores knowledge encoded in LMs using
prompts designed to elicit responses. For example,
evaluating whether the model can predict “Hawaii”
from the prompt “Barack Obama was born in _”.
While this approach is interpretable to humans and
provides intuitive insights, it has been reported that
different phrasings of prompts with the same mean-
ing can yield different prediction results (Jiang
et al., 2020; Heinzerling and Inui, 2021). Addi-
tionally, treating the model as a black box makes
it difficult to understand how specific input words
are encoded within the LM.

(ii) Classifier-based probing (Alain and Bengio,
2017; Hewitt and Manning, 2019; Liétard et al.,
2021; Abdou et al., 2021; Gurnee and Tegmark,
2024) evaluates whether LMs’ representations en-
code specific information by measuring the per-
formance of trained classifiers. These analysis re-
sults depend on classifier performance and can vary
significantly based on optimizer and initialization
settings (Zhou and Srikumar, 2021).

(iii) Representational analysis (Zhou and Sriku-
mar, 2021; Abdou et al., 2021; Park et al., 2024b,a)
analyzes LMs’ internal representations using unsu-
pervised methods. For instance, when measuring
the similarity between two representational struc-
tures, it compares distance matrices between em-
bedding pairs. This approach can evaluate represen-
tations directly without classifiers, making it less
susceptible to optimization effects and enabling a
purer understanding of the model’s internal struc-
ture. The Purity (Zhao and Karypis, 2001) and IP
metrics used in this study belong to this representa-
tional analysis category.

7.2 Structure in LM Representations
The correspondence between LMs’ representa-
tional spaces and real-world knowledge struc-
tures has been studied from various perspectives.
Mikolov et al. (2013) demonstrated that word em-
beddings can linearly represent semantic relation-
ships in vector space. Subsequently, Petroni et al.
(2019) and Poerner et al. (2020) used behavioral
analysis to prove that pre-trained LMs store factual

knowledge composed of entities and relations. For
instance, they confirmed that LMs could predict
appropriate words like “Hawaii” from inputs such
as “Barack Obama was born in __”. The observa-
tion that LMs could memorize knowledge through
text-only learning and make such predictions led
to various studies exploring LMs’ internal struc-
tures, based on the assumption that their internal
representations must encode some form of real-
world knowledge structure. Abdou et al. (2021)
and Patel and Pavlick (2022) showed that LMs’
representations of color words resemble human
color perception structures. Chen et al. (2023) and
Gurnee and Tegmark (2024) demonstrated that geo-
graphical relationships between countries and cities
are reflected in LMs’ representational spaces. Fur-
thermore, Hernandez et al. (2024) and Park et al.
(2024b) revealed that relationships between en-
tities and hierarchical structures of concepts are
preserved in the representational space. These
studies suggest that LMs’ representations capture
real-world knowledge and relationships, providing
important insights into what structures LMs can
encode through text-only learning and where the
limits of their representational capabilities lie (Ben-
der and Koller, 2020; Bisk et al., 2020; Merrill
et al., 2021; Merullo et al., 2023; Huh et al., 2024).
Our research focuses on a fundamental question:
whether LMs can distinguish mentions as entities.
We analyzed this mention ambiguity and variability.
Our findings further strengthen existing empirical
evidence that LMs can acquire specific real-world
knowledge structures through text-only learning.

8 Conclusion

We investigated how LMs encode entity men-
tions in their internal representations, focusing on
the process of distinguishing entities in the pres-
ence of mention ambiguity and mention variabil-
ity. Through experiments with five autoregressive
LMs, these models achieved higher performance
in entity identification compared to baselines. Our
analysis revealed the degree of isomorphism be-
tween LM representations and real-world entity-
centric knowledge structures, suggesting that LMs
can effectively encode discrete entity relationships
through text-only training. These findings deepen
our understanding of how LMs internally repre-
sent and process entity information, providing new
insights into the relationship between LM represen-
tation spaces and structural knowledge.
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Limitations

There are primarily three limitations in this study.
First, while the structure composed of entities is in-
herently language-independent (“Tokyo”, “東京”,
“东京” refer to the same entity), our experiments
only covered English. Therefore, it remains unclear
whether the structure of entity representations is
truly constructed in a language-independent man-
ner. Important future work includes investigating
whether the structure of entity representations is
constructed in a language-independent way, and
how such representational structures relate to prac-
tical applications (such as the success rate of cross-
lingual transfer, where knowledge learned in one
language is transferred to another).

Second, it is unclear what defines an adequate
sample size for measuring the Purity and IP. In mea-
suring the Purity and IP, the criterion is based on
whether the entity representations are mixed with
“other” entity representations. Consequently, the
degree of mixing is relatively determined by the
prepared data. In other words, even if the LM gen-
uinely confuses “Barack Obama” with “Michelle
Obama,” it can be said that the confusion cannot
be detected if either one is absent from the data. In
the experiments, we used about 160,000 sentences;
however, while this is a substantial dataset, we
cannot conclusively determine whether this sam-
ple size is sufficient to capture all potential entity
confusions that might exist in the model.

Finally, perfect separation of representations
may not be optimal or desirable across all scenarios.
While our study assumes that entity-level represen-
tations should be distinct, there are scenarios where
representation overlap could be beneficial. For ex-
ample, when treating categories like painters, musi-
cians, and novelists as single classes, representation
overlap might be advantageous. Such overlap sug-
gests that representations cluster around broader
categories like “artist,” potentially encoding hierar-
chical categorical knowledge. Furthermore, even
in entity-level representation separation, it is debat-
able whether achieving perfect entity identification
is a desirable property in all cases. Taking entity
identification to the extreme, a model that maps all
mentions of an entity to exactly the same embed-
ding would achieve perfect clustering scores. In
other contexts, the phenomenon where internal rep-
resentations of instances within a class converge
to a single point has been widely observed and
is known as “neural collapse” (Hui et al., 2022).

Research has shown that neural collapse during
training isn’t necessarily beneficial for all types of
generalization and can sometimes be counterpro-
ductive. While it’s unclear whether these findings
directly apply to entity representations, if LMs use
classification (≈ entity identification) as an inter-
mediate step for next-token prediction, we might
expect to see neural collapse patterns emerge in
intermediate layers. This raises the question of
whether perfect entity identification is truly desir-
able. A critical direction for future work would
be to investigate the potential drawbacks of hav-
ing model representations that closely mirror real-
world entity structures.

Ethics Statement

In this study, we perform a novel analysis and in-
vestigate how LMs recognize knowledge about the
world through internal representations. In recent
years, there has been a growing concern about the
risk of socially harmful biases (e.g., racial or gen-
der biases) in the text generated by LMs. This
study has the potential to contribute to a better un-
derstanding of this issue, by analyzing how LMs
internally represent undesirable biases.
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A Details of the Purity and Inverse Purity
Algorithm

The calculation of purity (Zhao and Karypis, 2001)
and inverse purity are as follows. Both metrics
evaluate the quality of clusters with respect to their
class distributions, with purity focusing on how
well each cluster contains a single class, and inverse
purity measuring how well the embeddings of each
class are separated into distinct clusters.12

Local Purity We begin by calculating the pu-
rity for each cluster, referred to as the local pu-
rity. For each cluster Cluster(e), we compute its
local Purity(e) by following these steps:

1. For each entity e ∈ E (e.g., ”Biden”), com-
pute the centroid be ∈ B of its mention em-
beddings Xe = {x1

e,x
2
e, . . . }:

be :=
1

|Xe|
∑

xe∈Xe

xe. (1)

2. For each embedding x, determine the
Cluster(e) it belongs to by assigning it to the
nearest centroid be:

Cluster(e) := {x | be = argmin
b′∈B

d(x, b′)},

(2)

where d(x,y) represents the distance func-
tion. In our experiments, we employed Eu-
clidean distances, which are commonly used
in NLP. This step is equivalent to an interme-
diate stage of k-means clustering.

3. Define the gold class for entity e as:

Class(e) := Xe. (3)
12In Figure 3, the red-shaded area is referred to as the “class,”

and the blue-shaded area is referred to as the “cluster,” which
are used to calculate Equations 4 and 6. We calculate the local
purity and local IP by considering each embedding’s “class”
as the entity it refers to and each embedding’s “cluster” as the
nearest centroid. In other words, the “clusters” refer to those
formed by the Voronoi diagram using each centroid. The F1
score, composed of Purity and IP, can be used to evaluate the
degree to which embeddings of entities belonging to the same
class are grouped into a single cluster.

4. Compute the local purity of the Cluster(e) by
calculating the fraction of embeddings in the
cluster that belong to the most frequent class
ê:

local Purity(e) :=
|Cluster(e) ∩ Class(ê)|

|Cluster(e)| ,

(4)

where Class(ê) is the most frequent class in
the cluster, and |Cluster(e)| is the total num-
ber of embeddings in the Cluster(e).

Purity The overall purity, which measures how
well the clusters contain a single class, is calculated
as the weighted average of the local purities:

Purity(E) := 1

N

∑

e∈E
local Purity(e)|Cluster(e)|,

(5)

where N is the total number of mention embed-
dings across all clusters.

Local Inverse Purity (Local IP) Next, we cal-
culate the inverse purity for each entity, referred to
as the local inverse purity. For each entity e, we
compute local IP(e) by following these steps:

1. We use the definitions of Cluster(e) from
Equation 2 and Class(e) from Equation 3 for
each entity e.

2. Compute the local inverse purity local IP(e)
by calculating the fraction of embeddings
from the gold class Class(e) that are con-
tained within the cluster Cluster(e):

local IP(e) :=
|Cluster(e) ∩ Class(e)|

|Class(e)| ,

(6)

where |Class(e)| is the total number of em-
beddings in the gold class Class(e).

Inverse Purity (IP) The overall inverse purity,
representing the average degree of separation
across all classes, is calculated as:

IP(E) := 1

N

∑

e∈E
local IP(e)|Class(e)|, (7)
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Structure
Requirement: Desired correspondence between
real-world structure and representation space structure Soft Evaluation

Metric Space
(Abdou et al., 2021)

∀x1, x2, x3, x4 ∈ X

dX(x1, x2) < dX(x3, x4)

⇔ dX(h1, h2) < dX(h3, h4)

∀x1, x2, x3, x4 ∈ X

1[dX(x1, x2) < dX(x3, x4)]

= 1[dX(h1, h2) < dX(h3, h4)]

𝑥! 𝑥"

𝑥# 𝑥$
ℎ!

ℎ"

ℎ# ℎ$
Whether distance relationships are preserved

Px1,x2,x3,x4∼X [

1[ dX(x1, x2) < dX(x3, x4) ]

= 1[ dX(h1, h2) < dX(h3, h4) ]
]

This roughly corresponds to Kendall’s τ ,
which in turn approximately corresponds
to RSA (Kriegeskorte et al., 2008).

Discrete Topology
(Ours)

∀x1, x2

x1 = x2

⇔ h1 = h2

∀x1, x2

1[x1 = x2]

= 1[h1 = h2]

𝑥! 𝑥" ℎ! ℎ"

Whether the same entity occupies the same position

Px1,x2∼X [
1[ x1 = x2 ]

= 1[ Cluster(h1) = Cluster(h2) ] ]

This approximately corresponds to
the F1 score composed of Purity and IP.
By introducing clustering, we relax the
requirement of exact position matching
to proximity-based matching.

Table 1: Comparison between existing Isomorphic analysis and our approach.

where N is the total number of mention embed-
dings.

This method provides a simple yet effective way
to measure the embedding space in terms of both
class containment (purity) and class separation (in-
verse purity).

F1 Score with Purity and Inverse Purity To
further evaluate the embedding space, we calculate
an F1 score using both purity and inverse purity.
The F1 score provides a balanced measure that
considers both the ability of the clusters to contain
single classes (purity) and the degree of separation
of classes into distinct clusters (inverse purity). The
F1 score is computed as the harmonic mean of
purity and inverse purity, formulated as follows:

F1 Score(E) := 2 · Purity(E) · IP(E)
Purity(E) + IP(E) . (8)

Here, the F1 score effectively balances the trade-
off between purity and inverse purity. A high F1
score indicates that the clusters not only contain
embeddings from the same class but also that em-
beddings from each class are well-separated into
different clusters.

B Details of the Experimental Setup

B.1 Pre-trained Language Models
In our experiments, we used the models shown in
Table 3. We used the model provided in https:
//github.com/huggingface/transformers.

B.2 Probe Training Hyperparameters
In § 5.1, we performed linear probing using a single
linear layer. The hyperparameters used for the
probe training are shown in Table 4. We split the
data into training and test sets with a ratio of 8:2
using stratified sampling, and performed 3-fold
cross-validation with early stopping monitoring the
training loss.

B.3 Statistical Information of Experimental
Data

The statistical information of the data used in the
experiments is shown in Table 5.

B.4 Detailed Definition of Mention Ambiguity
Mention ambiguity is calculated as the entropy of
the frequency distribution of entity candidates for
a given mention. Specifically, let N be the number
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DIFFICULTY Low-difficulty examples High-difficulty examples

Mention ambiguity:
Entropy of mention to
entity candidate mapping.

Mention: ‘Ohio’

Entity candidate:
{Ohio: 198, Ohio River: 12}

Mention: ‘Oxford’

Entity candidate:
{Oxford: 26, University of Oxford: 13,
Oxford, Mississippi: 6,
Oxford (UK Parliament constituency): 6}

Mention variability:
Average surface form
dissimilarity of pairs of
mention candidate
owned by an entity.

Entity: Emmy Awards

Mention candidate:
(‘Emmy’, ‘Emmy Awards’,
‘Emmy award’, ‘Emmy awards’
‘Emmys’)

Entity: Māori All Blacks

Mention candidate:
(‘New Zealand Maori Rugby’,
‘Māori All Blacks’, ‘NZ Maori’,
‘New Zealand Māori rugby union team’, ...)

Table 2: Difficulty factors considered to potentially influence entity identification, with definitions and examples.
Numbers in the entity candidate lists represent the frequency of occurrence for each entity. Detailed definitions of
these factors are provided in Appendix B.4, B.5.

Models Hidden dim. #Layer #Head

GPT-2 768 12 12
Llama-2-7B 4096 32 32
Llama-2-13B 5120 40 40
Llama-3-8B 4096 32 32
Mistral-7B-v0.3 4096 32 32

Table 3: Hyperparameters of each model’s architecture.

Optimizer Adam (Kingma and Ba, 2015)
Learning rate 1.0× 10−3 (constant)
Batch size 1,024
Epochs 1,000

Table 4: Hyperparameters of the trained probe.

of entity candidates corresponding to a mention,
and Fi be the frequency of occurrence for each can-
didate i. The mention ambiguity is then calculated
through the following steps.

First, the total frequency Ftotal of all entity can-
didates for a given mention is expressed as:

Ftotal =
N∑

i=1

Fi (9)

Next, the relative frequency pi for each entity can-
didate i is defined as the ratio of the candidate’s
frequency Fi to the total frequency Ftotal:

pi =
Fi

Ftotal
, i = 1, 2, . . . , N (10)

Finally, mention ambiguity is represented by the
entropy H , defined by the following equation:

H = −
N∑

i=1

pi log pi (11)

Using this entropy measure allows for quantitative
evaluation of the degree of ambiguity associated
with a given mention. When mention ambiguity
is high, the difficulty of identifying the appropri-
ate entity increases. Conversely, when mention
ambiguity is low, it indicates that the correspond-
ing entity candidates are clear and there is little
ambiguity.

B.5 Detailed Definition of Mention Variability

Mention variability is a metric that quantifies the
surface-level diversity of multiple mentions refer-
ring to the same entity. In this research, we formu-
late this diversity as a dissimilarity measure based
on Levenshtein distance. Given a set of mentions
Me = m1,m2, ...,m|Me| for entity e, the surface
form dissimilarity D is defined as follows:

D = 1− 2

|Me|(|Me| − 1)

|Me|−1∑

i=1

|Me|∑

j=i+1

(
1− L(mi,mj)

max(|mi|, |mj |)

)
(12)

=
2

|Me|(|Me| − 1)

|Me|−1∑

i=1

|Me|∑

j=i+1

L(mi,mj)

max(|mi|, |mj |)
(13)

Here, L(mi,mj) represents the Levenshtein dis-
tance between mentions mi and mj , and |mi| de-
notes the length of mention mi. The derivation
of the Levenshtein distance is described in § B.6.
Using this surface form dissimilarity D, we can
quantitatively evaluate the surface-level diversity
(mention variability) of mentions associated with a
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ZELDA-TRAIN Corpus # Entities # Mentions # Sentences

All data 7,877 24,289 164,516
Ambiguous mention Subset 1,386 602 30,082

Table 5: Statistics of the experiment dataset.

given entity. A higher value of D indicates greater
surface-level diversity of mentions. Conversely, a
lower value of D suggests lower mention diversity
and more similar surface forms.

B.6 Derivation of the Levenshtein Distance
The Levenshtein distance (Levenshtein, 1966) mea-
sures the dissimilarity between two strings, i.e., the
higher the value, the less similar the pair. This
distance is calculated as the minimum number of
single-character edits (comprising insertions, dele-
tions, or substitutions) necessary to change one
string into the other. Given two strings a, b (of
length |a| and |b| respectively), the Levenshtein
distance L(a, b) is derived as follows:

L(a, b) = 1 +min





L(tail(a), b)
L(a, tail(b))
L(tail(a), tail(b))

(14)

Where the tail(s) is the strings composed of the
string following the except for the first character of
the strings s. Note that when |a| = 0, L(a, b)
returns |b|, and when |b| = 0, L(a, b) returns
|a|. Additionally, if s[n] is the nth character of
the string s, and a[0] = b[0], the L(a, b) returns
L(tail(a), tail(b)).

B.7 Entity Representation Structural
Similarity

We conduct Representational Similarity Analysis
(RSA) to examine the structural similarity of entity
representations across different language models
and compare them against baseline embeddings.
This analysis reveals how different models orga-
nize semantic knowledge about entities in their
representational space.

B.7.1 Embedding Extraction Setup
Model Selection: We analyze entity represen-
tations from seven different embedding sources:
Llama-2-7B (layer 8), Llama-2-13B (layer 9),
Llama-3-8B (layer 8), Mistral-7B (layer 8), and
GPT-2 (layer 6). We use FastText wiki-news-300d-
1M-subword and random embeddings as baseline
comparisons.

Layer Selection: For transformer-based mod-
els, we extract representations from the layers that
achieved the highest F1 scores in our main experi-
ments (§4).

Dimensionality Reduction: All embeddings
are projected to a common 20-dimensional space
using Latent Dirichlet Allocation (LDA) to enable
fair comparison across models with different native
dimensionalities.

Data Preprocessing: We use the Zelda dataset.
Due to computational memory constraints, we ran-
domly sample 100,000 instances from the dataset
for the RSA experiments.

B.7.2 RSA Computation Methodology
Representational Similarity Matrix (RSM) Con-
struction: For each model’s entity embeddings
E ∈ Rn×d, where n is the number of entity men-
tions and d = 20 is the embedding dimension, we
compute pairwise similarities based on Euclidean
distances:

RSMij = 1− ||ei − ej ||2
maxk,l ||ek − el||2

(15)

RSA Score Calculation: We compute the rep-
resentational similarity between models by corre-
lating the upper triangular portions of their RSMs
(excluding diagonal elements). We use Spearman
rank correlation to capture monotonic relationships
while being robust to outliers:

RSA(M1,M2) = ρSpearman(flatten(triu(RSM1)),

flatten(triu(RSM2))) (16)

where triu() extracts the upper triangular matrix
and flatten() converts it to a vector.

B.8 Entity Disambiguation with Patchscopes
Model Configuration We conduct our entity dis-
ambiguation experiments using Llama-2-13B.

Data Preparation Our experimental data con-
sists of:

• Input data: Following the main experiments
in § 4, we use approximately 7,800 entities
and 160,000 mention embeddings.
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• Embedding configuration: 20-dimensional
LDA embeddings.

Patchscopes Configuration We employ the
Patchscopes (Ghandeharioun et al., 2024) with the
following specifications:

• Source representation: Final token repre-
sentation from the entity mention in context,
consistent with our main experiments in § 4.

• Target prompt: Binary choice format: 10-
shot examples + “Does X refer to A or B?
One-word answer only. A: {option_a} B: {op-
tion_b} Answer:”

• Intervention layers: We analyze all layers to
understand how entity representations evolve
across model depth.

• Position indices:

– Source position: -1 (last token of the
mention)

– Target position: Automatically detected
X token in the prompt template

Prompt Design We use a standardized prompt
template with 10-shot in-context learning examples.
This prompt design aims to constrain the model’s
output to either “A” or “B”. By showing the model
10 examples, we successfully guide it to output
only “A” or “B” as answers.

Does Michael Jordan refer to A or B?
One-word answer only.
A: Spain
B: Michael Jordan
Answer: B
[... 9 more examples ...]
Does X refer to A or B?
One-word answer only.
A: {option_a}
B: {option_b}
Answer:

The assignment of correct entity vs. distractor to
options A/B is deterministically randomized using
MD5 hashing of the mention-entity pair to ensure
balanced label distribution.

Distractor Selection We select distractors as the
nearest neighbor entities to X’s embedding (contex-
tualized mention embeddings from Llama-2-13B).
An actual example is shown below:

Does X refer to A or B?
One-word answer only.
A: San Diego
B: San Francisco
Answer:

This approach is based on the intuition that if the
representations are mixed with those of neighbor-
ing entities, the entity disambiguation task will
likely fail. Using nearest neighbors as distractors
provides categorically similar alternatives, creating
an appropriately challenging task compared to ran-
dom distractor selection. For instance, the nearest
neighbor to “Tesla, Inc.” is “Nissan”, both being au-
tomobile manufacturers, making the discrimination
task non-trivial yet meaningful.

Baselines The baselines are chance rate and
w/out PatchScope. Since this task is binary choice,
the chance rate is 50%. w/out PatchScope does
not patch entity representations to “X”. That is, it
inputs the example and Does X refer to A or B?
One-word answer only. A: San Diego B: San
Francisco Answer: for in-context learning (ICL).
w/out PatchScope is expected to perform nearly at
chance level, and indeed, Figure 8 (a) confirms that
it performs equivalently to the chance rate.

C Details of the Analysis Results

C.1 Dimensions and F1 Score

The correspondence between the number of dimen-
sions and F1 scores for each model is shown in
Table 6.

C.2 Mention Ambiguity

C.2.1 Model Comparison Results

Table 7 shows the AUC of mention ambiguity and
F1 score for the baseline. Table 8 and Figure 12
show the analysis results from layer 0 to the final
layer for mention ambiguity using GPT-2, Llama-2
7B, Llama-2 13B, Llama-3 8B, and Mistral 7B.

C.2.2 Results with Average Subword Token
Embeddings

Figure 9 shows the results when using average em-
beddings of subword tokens as the target tokens for
analysis. We can observe that the trends are nearly
identical to those in Figure 5 in § 4, which used
last token embeddings.

16734



Dimension Llama-2-7B Llama-2-13B Llama-3-8B Mistral-7B GPT-2 FastText Random
Embeddings

1 0.01 0.01 0.00 0.01 0.00 0.23 0.00
2 0.07 0.07 0.06 0.06 0.05 0.38 0.00
5 0.51 0.51 0.52 0.49 0.46 0.68 0.00

10 0.80 0.80 0.81 0.78 0.77 0.80 0.00
20 0.91 0.91 0.91 0.90 0.85 0.85 0.01
30 0.93 0.93 0.93 0.92 0.87 0.87 0.01
40 0.94 0.94 0.94 0.93 0.87 0.87 0.02
50 0.94 0.94 0.94 0.94 0.88 0.88 0.05
60 0.95 0.95 0.95 0.94 0.88 0.88 0.05
80 0.95 0.95 0.95 0.95 0.88 0.88 0.08

100 0.95 0.95 0.95 0.95 0.88 0.88 0.10
200 0.96 0.96 0.95 0.96 0.88 0.88 0.30
300 0.96 0.96 0.95 0.96 0.88 0.85 0.48
500 0.96 0.96 0.96 0.96 0.90 – 0.69

1000 0.96 0.96 0.96 0.96 – – 0.87
2000 0.96 0.96 0.96 0.96 – – 0.96
3000 0.96 0.96 0.96 0.96 – – 0.98
4096 0.93 0.93 0.93 0.94 – – 0.99

Table 6: F1 scores corresponding to the number of dimensions for each model.

Method Mention
Ambiguity

Mention
Variability

Random Embeddings 0.666 0.003

Unique Mention
Embeddings 0.375 0.413

FastText 0.352 0.611

Table 7: AUC scores for baseline embedding methods.
These static embeddings serve as comparison points
for the contextualized representations from transformer
models shown in Tables 8 and 9. All embeddings are
reduced to 20 dimensions.

C.3 Mention Variability

C.3.1 Model Comparison Results
Table 7 shows the AUC of mention variability and
F1 score for the baseline. Table 9 and Figure 13
show the analysis results from layer 0 to the final
layer for mention variability using GPT-2, Llama-2
7B, Llama-2 13B, Llama-3 8B, and Mistral 7B.

C.3.2 Results with Average Subword Token
Embeddings

Figure 9 shows the results when using average em-
beddings of subword tokens as the target tokens
for analysis. The cross-model trends remain con-
sistent with those observed in Figure 5 (§ 4). No-
tably, however, Llama-2 7B at layer 0 (bottom right
in Figure 9) achieves higher F1 scores compared
to the last token embedding results in Figure 5.
This improvement likely stems from the averaging
process enabling greater reliance on surface-level
character information for entity identification.

C.4 Qualitative Analysis of Output
Inconsistency

We conducted a qualitative analysis to investigate
the impact of mention variability on model outputs.
Interestingly, even when outputs were inconsistent
across different surface forms, the predicted years
in patterns like “[X] was founded in [Y]” remained
temporally proximate. For example:

• “Red Crescent Society was founded in 1934”
vs. “Red Crescent was founded in 1919” (15-
year difference)

• “Holy Cross Brothers was founded in 1847”
vs. “Brothers of Holy Cross was founded in
1845” (2-year difference)

This suggests that while models struggle with ex-
act consistency across mention variants, they main-
tain approximate temporal coherence, capturing the
general historical period rather than memorizing
exact dates.

D Supplementary Experiment: Adjusted
Rand Index for Entity Identification

In addition to the Purity and Inverse Purity (IP) met-
rics presented in the main body of this paper, we
conducted a supplementary experiment using the
Adjusted Rand Index (ARI) (Hubert and Arabie,
1985) to evaluate the extent to which our models’
internal representations facilitate entity identifica-
tion. The Adjusted Rand Index is a measure of the
similarity between two data clusterings, accounting
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Results using average embeddings of subwords

Figure 9: Separability (F1 scores) of entity representations using average embeddings of subword tokens for each
difficulty (left: mention ambiguity, right: mention variability). F1 scores are averaged within each bin on the x-axis.
Top: Results across all models, using the layer with highest AUC for LM scores. Bottom: Layer-wise analysis for
Llama-2 7B.

for chance. In this context, it serves as an alter-
native approach to assessing the quality of entity
identification, complementing our primary metrics.

D.1 Experimental Setup

The experiment was designed to quantify how well
mentions of the same entity cluster together in the
embedding space. We used the same dataset and
entity representation definitions as described in
Section 3. Cluster formation followed the same
methodology as detailed in Section 2.2, primarily
forming clusters based on the entity of the near-
est centroid to a given mention embedding. The
Adjusted Rand Index was then computed between
these generated clusters and the gold-standard en-
tity labels. The Adjusted Rand Index (ARI) is cal-
culated as:

ARI =
RI − E[RI]

max(RI)− E[RI]
(17)

where RI is the Rand Index, E[RI] is the ex-
pected Rand Index under random partitioning, and
max(RI) is the maximum possible Rand Index
(which is 1). The Rand Index (RI) itself measures
the agreement between two clusterings by consider-
ing all pairs of samples and counting pairs that are
assigned in the same or different clusters in both
the predicted and true clusterings. ARI corrects for
chance agreement, ensuring that random labelings

have an ARI close to 0.0, and perfect agreement
results in an ARI of 1.0.

D.2 Results
The results of this supplementary experiment are
presented in Figure 11. Consistent with the trends
observed using Purity and IP, the Adjusted Rand
Index scores reveal a largely similar relative rank-
ing among the models. Specifically, models that
performed well on Purity and IP generally also
achieved higher Adjusted Rand Index scores. This
consistency further validates our findings regarding
the models’ ability to distinguish between different
entities based on their contextual embeddings.

E Computational Resources

For this experiment, we utilized four NVIDIA RTX
6000 Ada graphics cards.

F Usage of AI assistants

We used an AI Assistant (Claude) for writing this
paper and developing source code for the experi-
ments. However, its use was limited to code com-
pletion, translation, text refinement, and table cre-
ation, while the content and ideas are solely those
of the authors.
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Figure 10: UMAP visualization of the ambiguous mention “Georgia.” In layer 0 of Llama-2 7B, the embeddings are
mixed, but in layer 8, the embeddings are grouped by entity.
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Figure 11: ARI (Adjusted Rand Index) of entity representations for each difficulty (left: mention ambiguity, right:
mention variability). ARI scores are averaged within each bin on the x-axis. Top: Results across all models, using
the layer with highest AUC for LM scores. Bottom: Layer-wise analysis for Llama-2 7B.
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Mention Ambiguity (dim=20)

Layer GPT-2 Llama-2 7B Llama-2 13B Llama-3 8B Mistral 7B

0 0.535 0.381 0.385 0.384 0.381
1 0.767 0.808 0.819 0.828 0.826
2 0.769 0.817 0.816 0.836 0.821
3 0.793 0.819 0.843 0.844 0.832
4 0.792 0.849 0.864 0.869 0.836
5 0.796 0.848 0.870 0.870 0.841
6 0.797 0.855 0.873 0.875 0.873
7 0.798 0.859 0.867 0.875 0.867
8 0.793 0.868 0.881 0.878 0.879
9 0.795 0.869 0.882 0.874 0.883
10 0.795 0.868 0.888 0.876 0.884
11 0.795 0.870 0.887 0.873 0.880
12 0.801 0.866 0.881 0.876 0.880
13 – 0.867 0.870 0.869 0.886
14 – 0.854 0.869 0.866 0.876
15 – 0.850 0.871 0.866 0.869
16 – 0.844 0.873 0.851 0.862
17 – 0.841 0.865 0.850 0.857
18 – 0.844 0.865 0.848 0.851
19 – 0.846 0.865 0.848 0.848
20 – 0.844 0.859 0.840 0.851
21 – 0.850 0.859 0.839 0.850
22 – 0.852 0.867 0.846 0.854
23 – 0.850 0.871 0.841 0.855
24 – 0.860 0.870 0.839 0.855
25 – 0.857 0.872 0.840 0.853
26 – 0.862 0.874 0.840 0.858
27 – 0.866 0.875 0.846 0.863
28 – 0.871 0.874 0.849 0.860
29 – 0.868 0.874 0.850 0.861
30 – 0.871 0.872 0.855 0.868
31 – 0.873 0.871 0.860 0.866
32 – 0.877 0.871 0.878 0.877
33 – – 0.869 – –
34 – – 0.876 – –
35 – – 0.876 – –
36 – – 0.877 – –
37 – – 0.881 – –
38 – – 0.881 – –
39 – – 0.881 – –
40 – – 0.877 – –

Table 8: AUC scores measuring the area under the curve where the x-axis represents mention ambiguity and the
y-axis represents F1 scores derived from Purity and IP metrics across different model layers. All embeddings are
reduced to 20 dimensions.
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Mention Variability (dim=20)

Layer GPT-2 Llama-2 7B Llama-2 13B Llama-3 8B Mistral 7B

0 0.377 0.290 0.290 0.441 0.305
1 0.574 0.473 0.506 0.737 0.693
2 0.589 0.695 0.748 0.805 0.780
3 0.630 0.779 0.806 0.817 0.803
4 0.644 0.795 0.825 0.822 0.826
5 0.654 0.812 0.825 0.833 0.819
6 0.663 0.815 0.839 0.825 0.826
7 0.650 0.818 0.832 0.824 0.821
8 0.658 0.817 0.831 0.831 0.816
9 0.648 0.797 0.822 0.823 0.810
10 0.646 0.794 0.810 0.824 0.802
11 0.648 0.797 0.803 0.824 0.804
12 0.645 0.791 0.794 0.822 0.802
13 – 0.784 0.782 0.811 0.795
14 – 0.781 0.771 0.811 0.788
15 – 0.766 0.764 0.799 0.783
16 – 0.761 0.773 0.787 0.764
17 – 0.748 0.758 0.776 0.754
18 – 0.729 0.753 0.768 0.751
19 – 0.723 0.743 0.756 0.737
20 – 0.711 0.722 0.742 0.725
21 – 0.701 0.721 0.725 0.715
22 – 0.692 0.710 0.730 0.704
23 – 0.693 0.701 0.718 0.692
24 – 0.686 0.693 0.717 0.690
25 – 0.682 0.691 0.723 0.689
26 – 0.673 0.688 0.722 0.680
27 – 0.670 0.681 0.727 0.678
28 – 0.665 0.680 0.724 0.682
29 – 0.657 0.675 0.726 0.681
30 – 0.649 0.674 0.737 0.685
31 – 0.647 0.672 0.738 0.678
32 – 0.635 0.668 0.665 0.662
33 – – 0.663 – –
34 – – 0.657 – –
35 – – 0.655 – –
36 – – 0.651 – –
37 – – 0.648 – –
38 – – 0.653 – –
39 – – 0.660 – –
40 – – 0.655 – –

Table 9: AUC scores measuring the area under the curve where the x-axis represents mention variability and the
y-axis represents F1 scores derived from Purity and IP metrics across different model layers. All embeddings are
reduced to 20 dimensions.
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Figure 12: Results for all models: mention ambiguity and the separability of entity representations (F1 score).
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Figure 13: Results for all models: mention variability and the separability of entity representations (F1 score)
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