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Abstract

Retrieval-augmented generation (RAG) in
Knowledge Graph Question Answering
(KGQA) enhances the context of Large
Language Models (LLMs) by incorporating
information retrieved from the Knowledge
Graph (KG). Most recent approaches rely
on costly LLM calls to generate executable
relation paths or traverse the KG, which is
inefficient in complex KGQA tasks, such
as those involving multi-hop or multi-entity
questions. We introduce the GNN-RAG
framework, which utilizes lightweight Graph
Neural Networks (GNNs) for effective and
efficient graph retrieval. The GNN learns to
assign importance weights to nodes based
on their relevance to the question, as well
as the relevance of their neighboring nodes.
This enables the framework to effectively
handle context from distant nodes in the graph,
improving retrieval performance. GNN-RAG
retrieves the shortest paths connecting question
entities to GNN answer candidates, providing
this information as context for the LLM.
Experimental results show that GNN-RAG
achieves effective retrieval on two widely
used KGQA benchmarks (WebQSP and
CWQ), outperforming or matching GPT-4
performance with a 7B tuned LLM. Ad-
ditionally, GNN-RAG excels on multi-hop
and multi-entity questions outperforming
LLM-based retrieval approaches by 8.9–15.5%
points at answer F1. Furthermore, it surpasses
long-context inference while using 9×
fewer KG tokens. The code is provided in
https://github.com/cmavro/GNN-RAG.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Bommasani et al., 2021; Chowdhery et al.,
2023) are the state-of-the-art models in many NLP
tasks due to their remarkable ability to understand
natural language. The power of LLM comes from
pretraining in a large corpus of textual data to ob-
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Figure 1: Retrieval effect on multi-hop/entity KGQA.
Our GNN-RAG outperforms existing KG-RAG meth-
ods by 8.9–15.5% points at F1 (ref: Table 2).

tain general human knowledge (Kaplan et al., 2020;
Hoffmann et al., 2022). However, because pre-
training is costly and time-consuming (Gururangan
et al., 2020), LLMs cannot easily adapt to new or
in-domain knowledge and are prone to hallucina-
tions (Zhang et al., 2023b).

Knowledge Graphs (KGs) (Vrandečić and
Krötzsch, 2014) store information in structured
form that can be easily updated. KGs represent
human-crafted factual knowledge in the form of
triplets (head, relation, tail), e.g., <Jamaica →
language_spoken → English>, which collec-
tively form a graph. In the case of KGs, the stored
knowledge is updated by fact addition or removal.
As KGs capture complex interactions between
stored entities, e.g. multi-hop relations, they are
widely used for knowledge-intensive tasks, such as
Question Answering (QA) (Pan et al., 2024) with
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020).

RAG performance is highly dependent on the
KG facts that are retrieved (Wu et al., 2023). The
challenge in KGQA is that KGs store complex
graph information, usually consisting of millions
of facts, and retrieving the right information re-
quires effective graph processing (Mavromatis and
Karypis, 2022). Retrieval methods that rely on
off-the-shelf NLP retrievers (Baek et al., 2023) or
classical graph algorithms (He et al., 2024) are lim-
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ited as retrieval is not tailored for KGQA. Most
recent methods rely on LLMs for semantic pars-
ing (Luo et al., 2024a) or for traversing the KG (Sun
et al., 2024). However, LLMs can be ineffiecient
in complex KGQA tasks, such as those involving
multi-hop or multi-entity questions. In such cases,
leveraging context from distant nodes in the graph
is crucial, and LLMs may struggle to process the
context of the graph which expands exponentially
at deeper levels (Liu et al., 2024a).

To address retrieval efficiency in complex
KGQA, we present GNN-RAG, a graph neural
framework which utilizes context from deeper parts
of the graph, such as information from distant
nodes, during retrieval. GNN-RAG relies on Graph
Neural Networks (GNNs) (He et al., 2021; Mavro-
matis and Karypis, 2022), which are powerful
graph representation learners, able to handle the
complex graph information stored in the KG. GNN-
RAG consists of a graph neural phase, where the
GNN learns to embed KG-specific semantics and
to identify relevant nodes, given a question. In
GNN-RAG, we implement deep (multi-layer) GNN
models to leverage graph context. The GNN learns
to assign importance weights to nodes based on
their relevance to the question, as well as the rel-
evance of their neighboring nodes. This enables
the framework to effectively handle context from
deeper parts of the graph, improving retrieval per-
formance. At retrieval, the GNN scores answer
candidates for the given question, and the short-
est paths that connect question entities and an-
swer candidates are retrieved, which are verbalized
and given as context to the LLM. Experimental re-
sults show GNN-RAG’s superiority over competing
RAG-based systems for KGQA by outperforming
them by up to 15.5% points at complex KGQA
performance (Figure 1). Furthermore, we show
the effectiveness of GNN-RAG in retrieval augmen-
tation, while outperforming long-context retrieval
using 9× fewer KG tokens. Our contributions are
summarized below:

• Framework: GNN-RAG utilizes GNN mod-
els to leverage context from distant nodes in
the graph, while the LLM leverages its natu-
ral language processing ability for ultimate
KGQA. Additionally, we propose retrieval
augmentation and routing techniques that uti-
lize GNN-RAG to enhance overall end-to-end
efficiency.

• Effectiveness: GNN-RAG achieves effec-

tive performance on two widely used KGQA
benchmarks (WebQSP and CWQ), improving
complex question answering by 8.9–15.5%
points at F1 (Figure 1).

• Efficiency: GNN-RAG improves vanilla
LLMs on KGQA performance without incur-
ring additional LLM calls as previous state-of-
the-art RAG systems for KGQA require. In
addition, GNN-RAG outperforms or matches
GPT-4 performance with a 7B tuned LLM,
while outperforming long-context retrieval us-
ing 9× fewer KG tokens.

2 Related Work

KGQA Methods. KGQA methods fall into two
categories (Lan et al., 2022): (i) semantic parsing
(SP) methods and (ii) information retrieval (IR)
methods. SP methods (Sun et al., 2020; Lan and
Jiang, 2020; Ye et al., 2022) learn to transform
the given question into a query of logical form,
e.g., SPARQL query. The transformed query is
then executed over the KG to obtain the answers.
However, SP methods require ground-truth logical
queries for training, which are time-consuming to
annotate in practice, and may lead non-executable
queries due to syntactical or semantic errors (Das
et al., 2021; Yu et al., 2022). IR methods (Sun
et al., 2018, 2019; Zhang et al., 2022b) focus on
the weakly-supervised KGQA setting, where only
question-answer pairs are given for training. IR
methods retrieve KG information, e.g., a KG sub-
graph (Zhang et al., 2022a), which is used as input
during KGQA reasoning. GNN-RAG falls in the IR
category.

GNNs & LMs. Combining GNNs with LMs has
been the subject of a substantial body of existing lit-
erature (Jin et al., 2023), with various applications
ranging from QA (Yasunaga et al., 2021; Wang
et al., 2021; Zhang et al., 2022c; Christmann et al.,
2023; Tian et al., 2024; He et al., 2024; Zhang
et al., 2024a) to training LMs on graphs (Zhao
et al., 2022; Yasunaga et al., 2022; Huang et al.,
2024). Such approaches seek to combine the nat-
ural language and graph reasoning into a single
model by fusing latent GNN information with the
LM. However, due to the modality mismatch of
GNNs and LMs, fusing graph and natural language
information is challenging for many knowledge-
intensive tasks, even in supervised settings (Mavro-
matis et al., 2024). To alleviate this challenge,
GNN-RAG divides KGQA in two stages. The GNN
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first retrieves useful information from the graph
modality, which is then converted into natural lan-
guage for effective LLM reasoning.

GraphRAG. GraphRAG usually refers to the
general approach of inserting verbalized graph in-
formation at the context of LLMs (Peng et al., 2024;
Wei et al., 2024) or leveraging additional graph in-
formation when retrieving context for RAG (Edge
et al., 2024; Gutiérrez et al., 2024). For instance,
verbalizing graph information obtained by KGs has
been widely applied in GraphRAG (Xie et al., 2022;
Baek et al., 2023; Jiang et al., 2023a; Jin et al.,
2024; Liu et al., 2024b; Zhao et al., 2024; Li et al.,
2024a; Luo et al., 2024b). However, GraphRAG
performance downgrades when the graph informa-
tion retrieved is noisy and irrelevant to the ques-
tion (Wu et al., 2023; He et al., 2024). To improve
retrieval in KGQA, GNN-RAG employs a graph
neural framework, which tailors graph retrieval for
the KG at hand. By optimizing GNNs to iden-
tify the right graph information for answering the
questions, GNN-RAG achieves superior retrieval
performance compared to existing approaches in
KGQA.

3 Problem Statement & Background

KGQA. We are given a KG G that contains facts
represented as (v, r, v′), where v denotes the head
entity, v′ denotes the tail entity, and r is the corre-
sponding relation between the two entities. Given
G and a natural language question q, the task of
KGQA is to extract a set of entities {aq} ∈ G that
correctly answer q. Following previous works (Lan
et al., 2022), question-answer pairs are given for
training, but not the ground-truth paths that lead to
the answers.

As KGs usually contain millions of facts and
nodes, a smaller question-specific subgraph Gq is
retrieved for a question q. Entity linking identi-
fies question entities {eq} and subgraph Gq is ex-
tracted by following connections that start from
these question entities (Yih et al., 2015). Ideally,
all correct answers for the question are contained in
the retrieved subgraph, {aq} ∈ Gq. The retrieved
subgraph Gq along with the question q are used as
input to a KGQA model, which outputs the correct
answer(s). The prevailing KGQA methods studied
are GNNs and LLMs.

GNNs. KGQA can be regarded as a node classi-
fication problem, where KG entities are classified
as answers vs. non-answers for a given question.

GNNs (Kipf and Welling, 2016; Veličković et al.,
2017; Schlichtkrull et al., 2018) are powerful graph
representation learners suited for tasks such as node
classification. GNNs update the representation h

(l)
v

of node v at layer l by aggregating messages m(l)
vv′

from each neighbor v′. During KGQA, the message
passing is also conditioned to the given question
q (He et al., 2021). For readability purposes, we
present the following GNN update for KGQA,

h(l)
v = ψ

(
h(l−1)
v ,

∑

(v,r,v′)∈Nv

ω(q, r) ·m(l)
vv′

)
, (1)

where function ω(·) is typically a LM that mea-
sures how relevant relation r of fact (v, r, v′) is
to question q. Nv denotes the set of neighboring
triplets of node v. Neighbor messages m

(l)
vv′ are

aggregated by a sum-operator
∑

and function ψ(·)
combines representations from consecutive GNN
layers.

Previous GNN approaches perform query-to-KG
similarity using pretrained encoders (function ω in
Equation 1). However, such encoder models are
not as accurate as LLMs. GNN-RAG addresses this
limitation by employing an LLM as a post-retrieval
step to accurately select the relevant KG evidence.
The importance of GNN-RAG’s framework is ex-
tensively validated in Section 6.

LLM RAG. Retrieval-Augment Generation
(RAG) is a method aiming to reduce LLM halluci-
nations (Lewis et al., 2020). Given a query q, RAG
retrieves relevant information (e.g, documents from
the given corpus), which is inserted as additional
context c to the LLM’s input. In KGs, the context c
consists of graph information relevant to the ques-
tion, such KG triplets, paths, or subgraphs. The
retrieved graph information is first converted into
natural language so that it can be processed by the
LLM. The input given to the LLM contains the
KG factual information along with the question
and a prompt. For instance, the input becomes
“Knowledge: Jamaica → language_spoken →
English \n Question: Which language do
Jamaican people speak?”, where the LLM has
access to KG information for answering the ques-
tion.

Landscape of KGQA methods. Figure 2
presents the landscape of existing KGQA meth-
ods with respect to KG retrieval and reasoning.
GNN-based methods, such as GraftNet (Sun et al.,
2018), NSM (He et al., 2021), and ReaRev (Mavro-
matis and Karypis, 2022), reason over a dense KG
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Figure 2: The landscape of existing KGQA methods. GNN-based methods reason on dense subgraphs as they can
handle complex and multi-hop graph information. LLM-based methods employ the same LLM for both retrieval
and reasoning due to its ability to understand natural language.

subgraph leveraging the GNN’s ability to handle
complex graph information. Recent LLM-based
methods leverage the LLM’s power for both re-
trieval and reasoning (Gu et al., 2023). For instance,
ToG (Sun et al., 2024) uses the LLM to retrieve rel-
evant facts hop-by-hop. RoG (Luo et al., 2024a)
uses the LLM to generate plausible relation paths
which are then queried on the KG to retrieve the
relevant information, similar to semantic parsing.
ToG utilizes an LLM to selectively expand and then
prune the graph context. Meanwhile, RoG does not
rely on any graph context. As a result, LLM-based
approaches may overlook or incorrectly prune im-
portant graph information for KGQA tasks.

4 GNN-RAG

We present GNN-RAG, a new graph neural retrieval
method for KGQA that leverages GNNs to improve
retrieval performance when questions require com-
plex graph information. GNN-RAG’s primary con-
tribution lies in its use of GNNs for efficient graph
retrieval, distinguishing it from previous methods
that rely on long-context retrieval based on text
similarity or retrieval via LLMs. We provide the
overall framework at inference time in Figure 3.
First, the GNN processes a dense subgraph to uti-
lize deep graph context and identify relevant an-
swer nodes for a given question. Second, the short-
est paths in the KG that connect question entities
and GNN-based answers are extracted to represent
useful KG reasoning paths. The extracted paths are
verbalized and given as context for LLM reasoning
via RAG. In our GNN-RAG framework, the GNN
acts as a dense subgraph processor, while the LLM
leverages its natural language processing ability for

downstream KGQA.

4.1 GNN

In order to retrieve high-quality reasoning paths,
we prefer deep GNNs over other shallow KGQA
methods, e.g., embedding-based methods (Saxena
et al., 2020), due to their ability to handle deep
graph interactions. GNNs mark themselves as good
candidates for retrieval due to their architectural
benefit of exploring diverse reasoning paths (Choi
et al., 2024) that result in high answer recall.

GNNs consist of L updates via Equation 1 (L is
hyperparameter), where the node embbeddings in
the subgraph Gq are updated to h

(L)
v ∈ Rd, where d

is the embedding dimension. In our framework, at
each layer, the GNN assigns importance to nodes
based on their likelihood of forming a path to the
answer. We use their KG relations to assess their
relevance to the question. Unlike LLM-based KG
traversal, the GNN learns to aggregate informa-
tion relevant to the question within the embedding
space.

At layer l + 1, the GNN aggregates relation em-
beddings r, r ∈ Nv, where Nv is the set of neigh-
boring triplets of node v, based on their relevance
to the question as

∑

(v,r,v′)∈Nv

p
(l)
v′ · σ(qk ⊙ r). (2)

In Equation 2, qk is a question embedding, ⊙ is the
pairwise multiplication, σ(·) is a ReLU activation,
and p(l)v′ is the node importance weight. Message
mvv′ = σ(qk⊙r) is activated if the corresponding
relation is relevant to the question, e.g., relation
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Figure 3: GNN-RAG: The GNN reasons over a dense subgraph to retrieve candidate answers, along with the
corresponding reasoning paths (shortest paths from question entities to answers). The retrieved reasoning paths
–optionally combined with retrieval augmentation (RA)– are verbalized and given to the LLM for RAG.

‘language_spoken’ is relevant to question ‘Which
language do Jamaican people speak?’.

As complex questions consist of multiple sub-
questions, we obtain K different question embed-
dings qk, k ∈ K, that capture different question
parts (Qiu et al., 2020). Question embeddings qk

and KG relation embeddings r are encoded via a
shared pretrained LM (Jiang et al., 2023b), such as
SBERT (Reimers and Gurevych, 2019). We obtain

qk = γk
(
LM(q)

)
, r = γc

(
LM(r)

)
, (3)

where γk is an attention-based pooling neural net-
work that attends to question tokens, and γc is the
[CLS] token pooling. We provide the implementa-
tion of these networks in Appendix A.

We implement a multi-head GNN layer which
aggregates neighboring messages based on differ-
ent question parts as

h(l+1)
v = ψ

(
h(l)
v ,

∣∣∣∣K
k=1

∑

(v,r,v′)∈Nv

p
(l)
v′ ·σ(qk⊙r)

)
.

(4)
Operation ||Kk=1 denotes the concatenation of K
heads, and ψ(·) : R(K+1)d −→ Rd is a multilayer
perceptron that combines KG semantics relevant to
the question in the embedding space from consecu-
tive layers.

In Equation 4, the importance of each node is
measured by p(l)v ∈ [0, 1], which is the probability
of visiting a node at layer l. In the first layer, p(0)v =

1 if node v is a question entity v ∈ {eq} and p(0)v =
0, otherwise. At each layer, the probability vector
is updated based on the GNN node embeddings

followed by a softmax(·) operation as

p(l+1) = softmax(H(l)w), (5)

where w ∈ Rd is a learnable vector. The GNN de-
scribed above incorporates deep graph information
up to L hops from the question entities. At each
layer, it assigns importance to nodes based on their
relations relevance to the question, as well as the
probability of visiting their neighbor node in the
previous layer. This approach parallels LLM-based
KG traversal (Sun et al., 2024), where, starting
from the question entities, the LLM iteratively se-
lects relations and neighboring nodes to explore.

Furthermore, to enable iterative KG traversal we
reset the probability vector p(l) by

p(l) =

{
p(0) if l = L

2

p(l) else.
(6)

Here, we impose the constraint that Lmust be even.
As shown in Equation 6, this mechanism allows us
to re-evaluate node importance using deep graph
embeddings H(L

2
), effectively restarting the rea-

soning process from the question entities (Mavro-
matis and Karypis, 2022). By default, we imple-
ment L = 6 GNN layers, so the reasoning process
restarts from the question entities at layer l = 3.
This approach ensures that node embeddings cap-
ture deep graph information, enabling a revisited
and refined KG traversal. Details on node embed-
ding initialization can be found in Appendix A.

4.2 GNN Optimization and RAG
Given training question-answer pairs, the GNN is
trained via node classification, where nodes have
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label yv = 1 if they belong to the answer set v ∈
{aq} and yv = 0, otherwise. The GNN parameters
are optimized via the KL-divergence loss so that
p
(L)
v is close to 1 if v ∈ {aq}, and zero otherwise.
During inference, nodes with the highest proba-

bility scores are identified as candidate answers. To
filter out noisy information, we select nodes whose
cumulative probability exceeds a threshold of 0.95.
Subsequently, the shortest paths connecting the
question entities to the candidate answers (i.e., rea-
soning paths) are extracted. These reasoning paths
are then verbalized using a predefined template and
serve as input for the LLM-based RAG process.

For the downstream LLM, we opt to follow
KGQA prompt tuning (Lin et al., 2023; Zhang et al.,
2024b), where the Llama-7B-Chat model is trained
to generate a list of answers for KGQA (Luo et al.,
2024a), given the input reasoning paths. We pro-
vide the details in Appendix A.

4.3 GNN-RAG Augmentation and Routing
GNN-RAG employs GNNs that are specialized in
retrieving context from deeper parts of the graphs,
such as context from distant nodes in the graph.
However, the effectiveness of GNNs depends on
the training data, and they may not always gener-
alize well to unseen contexts. In contrast, retrieval
based on natural language, such as using text em-
bedding models or LLMs, leverages the pretraining
data of these models, enabling better generalization.
To address the generalization limitation of GNNs,
we propose the following two techniques.

GNN-RAG+RA. First, retrieval augmentation
(RA) combines information retrieved from KGs
using different approaches to enhance diversity
and improve answer recall. GNN-RAG+RA com-
bines GNN-RAG with LLM-based semantic pars-
ing, which specialized in question-relation match-
ing. We use RoG (Luo et al., 2024a) as the semantic
parsing approach, which fine-tunes a 7B LLM to
generate executable relation paths given a ques-
tion. During inference, we take the union of the
reasoning paths retrieved by the two retrievers.

GNN-RAG+Route. Second, text-based ap-
proaches (Baek et al., 2023) retrieve a large number
of KG triplets by using text embedding similarity
to the input question, subsequently utilizing long-
context LLMs for KGQA. With access to a more
extensive graph context, the LLM can provide more
accurate responses. GNN-RAG+Route integrates
GNN-RAG for fetching relevant graph information
that may not be captured through long-context re-

trieval alone. Specifically, the context retrieved by
GNN-RAG is fed into the downstream LLM to gen-
erate answers. If any of the generated responses
are not included in the long-context, e.g., in the top-
k = 100 triplets retrieved by text similarity, this
indicates that GNN-RAG has provided additional
deep graph context that is beneficial for answer-
ing the question. In contrast, when the answers
align with the long-context information, the sys-
tem routes the inference to long-context process-
ing, thereby capitalizing on the increased graph
data. For text embedding retrieval, we employ the
SubgraphRAG method (Li et al., 2024b) which
uses training data to fine-tune the retriever.

5 Experimental Setup

KGQA Datasets. We experiment with widely
used KGQA benchmarks: WebQuestionsSP (We-
bQSP) (Yih et al., 2015), Complex WebQues-
tions 1.1 (CWQ) (Talmor and Berant, 2018), and
MetaQA-3 (Zhang et al., 2018). WebQSP contains
4,737 natural language questions that are answer-
able using a subset Freebase KG (Bollacker et al.,
2008). The questions require up to 2-hop reason-
ing within this KG. CWQ contains 34,699 total
complex questions that require up to 4-hops of rea-
soning over the KG. MetaQA-3 consists of 3-hop
questions in the domain of WikiMovies (Miller
et al., 2016). We provide the detailed dataset statis-
tics in Appendix C.

Implementation & Evaluation. For subgraph
retrieval, we use the linked entities and the pager-
ank algorithm to extract dense graph informa-
tion (He et al., 2021). The default GNN imple-
mentation is to use L = 6 layers, K = 3 decom-
posed question embeddings, and iterative reasoning
(Equation 6). For GNN training, we employ stan-
dard training procedure and hyperparameters as in
the literature (Mavromatis and Karypis, 2022). As
the defualt downstream LLM, we use the Llama2-
Chat-7B model finetuned for KGQA (Luo et al.,
2024a). For KGQA evaluation, we adopt Hit and
F1 metrics. Hit measures if any of the true answers
is found in the generated response, which is typ-
ically employed when evaluating LLMs. Hit is
based on exact match (Sun et al., 2024) rather than
fuzzy matching as in Tan et al. (2023). F1 penalizes
incorrect or missing answers. We also report H@1,
which is the accuracy of the first predicted answer.
For retrieval evaluation, we use Hit@k, which eval-
uates whether a correct answer is retrieved in the
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Table 1: Performance comparison of different methods
on the two KGQA benchmarks.

Type Method WebQSP CWQ

Hit F1 Hit F1

Embedding

KV-Mem (Miller et al., 2016) 46.7 38.6 21.1 –
EmbedKGQA (Saxena et al., 2020) 66.6 – – –
TransferNet (Shi et al., 2021) 71.4 – 48.6 –
Rigel (Sen et al., 2021) 73.3 – 48.7 –

GNN

GraftNet (Sun et al., 2018) 66.7 62.4 36.8 32.7
PullNet (Sun et al., 2019) 68.1 – 45.9 –
NSM (He et al., 2021) 68.7 62.8 47.6 42.4
SR+NSM(+E2E) (Zhang et al., 2022a) 69.5 64.1 50.2 47.1
NSM+h (He et al., 2021) 74.3 67.4 48.8 44.0
SQALER (Atzeni et al., 2021) 76.1 – – –
UniKGQA (Jiang et al., 2023b) 77.2 72.2 51.2 49.1
ReaRev (Mavromatis and Karypis, 2022) 76.4 70.9 52.9 47.8
ReaRev + LMSR 77.5 72.8 53.3 49.7

LLM

Flan-T5-xl (Chung et al., 2024) 31.0 – 14.7 –
Alpaca-7B (Taori et al., 2023) 51.8 – 27.4 –
LLaMA2-Chat-7B (Touvron et al., 2023) 64.4 – 34.6 –
ChatGPT 66.8 – 39.9 –
ChatGPT+CoT 75.6 – 48.9 –

KG+LLM

KAPING (Baek et al., 2023) 73.9 – – –
KD-CoT (Wang et al., 2023) 68.6 52.5 55.7 –
StructGPT (Jiang et al., 2023a) 72.6 – – –
KB-BINDER (Li et al., 2023) 74.4 – – –
ToG+Llama2-70B (Sun et al., 2024) 68.9 – 57.6 –
ToG+ChatGPT (Sun et al., 2024) 76.2 – 58.9 –
ToG+GPT-4 (Sun et al., 2024) 82.6 – 69.5 –
RoG-7B (Luo et al., 2024a) 85.7 70.8 62.6 56.2

GNN+LLM
G-Retriever (He et al., 2024) 70.1 – – –
GNN-RAG 85.7 71.3 66.8 59.4
GNN-RAG+RA 90.7 73.5 68.7 60.4

KG-LC
SubgraphRAG (Li et al., 2024b) 89.4 – 68.6 –
GNN-RAG+Route 90.1 – 72.4 –
GNN-RAG+RA+Route 91.0∗ – 73.3∗ –

We denote the best and second-best methods, as well as the best∗ method with
long-context (KG-LC).
GNN-RAG, RoG, KD-CoT, and G-Retriever use 7B fine-tuned Llama2 models. KD-
CoT employs ChatGPT as well. For KG-LC, methods use Llama-3.1-8B.

top-k retrieved nodes. Further experimental setup
details are provided in Appendix C.

Competing Methods. We compare with SOTA
GNN and LLM methods for KGQA (Mavromatis
and Karypis, 2022; Li et al., 2023). We also include
earlier embedding-based methods (Saxena et al.,
2020) as well as zero-shot/few-shot LLMs (Taori
et al., 2023). We do not compare with seman-
tic parsing methods (Yu et al., 2022; Gu et al.,
2023) that use ground-truth SPARQL annotations
for training, which are difficult to obtain in practice.
Furthermore, we compare GNN-RAG with LLM-
based retrieval (Luo et al., 2024a; Sun et al., 2024)
and long-context (Li et al., 2024b) approaches in
terms of efficiency and effectiveness.

6 Results

Main Results. Table 1 presents performance re-
sults of different KGQA methods. The results show
that equipping LLMs with GNN-based retrieval en-
hances KGQA performance compared to previous
approaches (GNN+LLM vs. KG+LLM). Specif-
ically, GNN-RAG+RA outperforms RoG by 5.0–
6.1% points at Hit, while it outperforms or matches

Table 2: Performance analysis on multi-hop (hops≥ 2)
and multi-entity (entities≥ 2) questions.

Method
WebQSP (F1) CWQ (F1) MetaQA-3 (H@1)

multi-hop multi-entity multi-hop multi-entity multi-hop

LLM (No RAG) 48.4 61.5 33.7 32.3 29.7
GNN 58.8 70.4 57.7 54.2 98.6

RoG 63.3 65.1 59.3 58.3 84.8
SubgraphRAG 65.8 54.9 55.8 52.3 –

GNN-RAG 69.8 82.3 68.2 64.8 98.6
GNN-RAG+RA 71.1 88.8 69.3 65.6 98.6

Absolute Improv. +5.3 +23.7 +10.0 +7.3 +13.8

Table 3: Comparison of different retrieval methods on
CWQ. ‘#KG Tokens’ denotes the median number of KG
tokens retrieved as context for the LLM.

Retrieval Metrics KGQA
#KG Tokens Hit@1 (%) Hit@10 (%) F1 (%)

RoG 201 25.9 54.5 56.2
SubgraphRAG 1,442 26.8 58.7 47.2

GNN-RAG 114 52.9 64.1 59.4
GNN-RAG+RA 362 52.9 71.1 60.4

GNN – 52.9 63.8 47.8

ToG+GPT-4 performance, using an LLM with only
7B parameters and much fewer LLM calls, while
GNN-RAG can be deployed on a single 24GB
GPU. GNN-RAG+RA outperforms ToG+ChatGPT
by up to 14.5% points at Hit and the best per-
forming GNN by 5.3–9.5% points at Hits@1 and
by 0.7–10.7% points at F1. In long-context re-
trieval (KG-LC), GNN-RAG+Route outperforms
SubgraphRAG by 3.5% points at Hit on CWQ,
while being more efficient when queries are routed
to GNN-RAG inference.

Complex KGQA. Table 2 compares complex
KGQA performance results on multi-hop questions,
where answers are more than one hop away from
the question entities, and multi-entity questions,
which have more than one question entities. GNN-
RAG leverages GNNs to handle complex graph
information and outperforms RoG (LLM-based re-
trieval) and SubgraphRAG (long-context retrieval)
by 4.0–17.2% points at F1 on WebQSP, by 8.5–
8.9% points at F1 on CWQ, and by 13.8% points at
H@1 on MetaQA-3. In addition, GNN-RAG+RA
offers an additional improvement by up to 6.5%
points at F1 over RoG. The results show that GNN-
RAG is an effective retrieval method when the ques-
tions involve complex graph information.

Retrieval Results. Table 3 presents an eval-
uation of the retrieval performance across differ-
ent graph retrieval methods, alongside their impact
on downstream KGQA performance. Based on
these results, we make the following observations:
First, GNN-based retrieval is both more efficient
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Table 4: Ablation study on different GNN retrievers
for KGQA in terms of number of layers L, number of
question embeddings K, and iterative reasoning.

Retriever Setting WebQSP CWQ
L K Hit H@1 F1 Hit H@1 F1

Dense Subgraph – – 70.2 68.7 54.3 47.1 45.5 41.9
GNN 2 1 82.8 78.6 69.8 58.2 51.9 49.4
GNN 3 1 85.0 79.6 70.4 58.5 52.5 50.1
GNN 3 3 85.2 80.1 70.6 62.5 57.5 53.3
GNN iterative 6 3 85.7 80.6 71.3 66.8 61.7 59.4

(in terms of the number of KG tokens) and more
effective (in terms of F1 score) than both RoG and
SubgraphRAG, particularly for complex questions
such as those from CWQ. Second, GNN-based
retrieval demonstrates superior performance, sur-
passing RoG and SubgraphRAG by 26.1–27.0%
points in terms of Hit@1. Third, retrieval aug-
mentation (denoted as GNN-RAG+RA) enhances
both Hit@k and KGQA F1 scores, as it enables the
combination of non-overlapping knowledge graph
information from GNN-based and semantic pars-
ing (RoG) retrieval, leading to an increase in the
number of input tokens and thereby improving the
LLM’s contextual understanding. GNN-RAG+RA
is more efficient than long-context alternatives as
SubgraphRAG.

GNN Ablation. In Table 4, we present an ab-
lation study of GNN hyperparameters (number of
layers L and number of question embeddings K)
and techniques (with or without iterative reasoning)
for GNN-RAG. The results indicate that shallow
GNNs with fewer layers exhibit suboptimal perfor-
mance. Additionally, increasing the number K of
question embeddings used leads to improvements,
particularly for complex questions (CWQ), which
consist of multiple subquestions. Furthermore, iter-
ative GNN reasoning, as described in Equation 6,
further enhances performance. This suggests that
the GNN effectively revisits node importance by
incorporating deeper graph context.

Retrieval Effect on LLMs. Table 5 presents
performance results of various LLMs using differ-
ent retrievers. GNN-RAG is the retrieval approach
that achieves the overall best performance. For in-
stance, GNN-RAG improves ChatGPT by up to
5.2% points at Hit over the best competing ap-
proach . Moreover, GNN-RAG substantially im-
proves the KGQA performance of weaker LLMs,
such as Alpaca-7B and Flan-T5-xl. The improve-
ment over RoG is up to 13.2% points at Hit, while
GNN-RAG outperforms Llama-70B approaches us-

Table 5: Retrieval effect on performance (% Hit) using
various LLMs.

Method WebQSP CWQ

ChatGPT 51.8 39.9
+ ToG 76.2 58.9
+ RoG 81.5 52.7
+ SubgraphRAG 83.1 56.2
+ GNN-RAG 85.3 64.1

Alpaca-7B 51.8 27.4
+ RoG 73.6 44.0
+ GNN-RAG 76.2 54.5

Llama2-Chat-7B 64.4 34.6
+ RoG 84.8 56.4
+ GNN-RAG 85.2 62.7

Llama2/3.1-Chat-70B 57.4 39.1
+ ToG 68.9 57.6
+ SubgraphRAG 86.2 57.9

Flan-T5-xl 31.0 14.7
+ RoG 67.9 37.8
+ GNN-RAG 74.5 51.0

Table 6: GNN-RAG routing effect on efficiency and
KGQA performance. We evaluate results on the routed
subset (CWQ-sub). ‘#Routed‘ denotes the number of
routed questions for efficient retrieval with GNN-RAG.

CWQ-sub

#Routed #LLM Calls Hit (%)
RoG 0 4 59.6

w/ GNN-RAG route 2,377 (78%) 1 66.7

#Routed #KG Tokens Hit (%)
SubgraphRAG 0 1,400 41.4

w/ GNN-RAG route 970 (28%) 153 55.1

ing a lightweight Llama-7B model. The results
demonstrate that GNN-RAG can be integrated with
other LLMs to improve their KGQA performance
without retraining.

Routing Efficiency. Table 6 presents results
demonstrating that GNN-RAG routing significantly
reduces inference costs while enhancing the per-
formance of KGQA. For RoG routing, we route to
GNN-RAG if the GNN retrieves a multi-hop rea-
soning path. For SubgraphRAG routing, we route
to GNN-RAG if any of the LLM response is not
present in the long-context. As the results indicate,
GNN-RAG improves the performance of 78% of
questions by 7.1% points in Hit, while requiring
only a single LLM call, in contrast to RoG, which
necessitates 4 LLM calls. Furthermore, GNN-RAG

enhances 28% of questions by 13.7% points rel-
ative to SubgraphRAG, while retrieving approxi-
mately 9× fewer KG tokens, leading to more effi-
cient LLM inference.
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Table 7: Time latency across methods. LLM latency
time is measured on an A10G GPU with fp16 inference.

Retrieval Generation Total
Time (mins) Time (mins) Time (mins)

RoG 11 31 42
SubgraphRAG 0.1 58 58.1
GNN-RAG 0.9 29 30

6.1 Time Latency

We primarily measure #KG Tokens as a metric of
efficiency, as the end-to-end (retrieval+generation)
latency is predominantly determined by the LLM
generation. To provide more context, we present
the modularized latency cost of each method on
WebQSP, using a 7B Llama model for generation
in Table 7. As the results show, GNN-RAG is
the most efficient method in terms of end-to-end
latency.

Appendix. Case studies are provided in Ap-
pendix B and further ablation studies in Ap-
pendix D.

7 Conclusion

We introduce GNN-RAG, a novel graph neural
method for enhancing RAG in KGQA with GNNs.
Our contributions are the following. (1) Frame-
work: GNN-RAG tailors GNNs for KG retrieval
due to their ability to handle complex graph infor-
mation. (2) Effectiveness: GNN-RAG achieves
superior performance when multi-hop information
is needed for KGQA. (3) Efficiency: GNN-RAG

improves vanilla LLMs on KGQA performance
without incurring additional LLM calls as exist-
ing RAG systems for KGQA require. In addition,
GNN-RAG outperforms long-context retrieval us-
ing 9× fewer KG tokens.

8 Limitations

GNN-RAG assumes that the KG subgraph, on
which the GNN reasons, contains answer nodes.
However, this may not be true for all questions
or when errors in entity linking happen. In addi-
tion, GNN-RAG employs simple prompting with
the shortest paths from question entities to candi-
date answers as context. As an extension, GNN-
RAG can be combined with prompt optimiza-
tion (Wen et al., 2023; Zhang et al., 2023a) so
that the LLM understands the graph better. More-
over, the scope of our GNN-RAG contributions is

to improve the retrieval results over the KG with-
out specialized GNN-LLM interactions. However,
the GNN and the LLM could be coupled via itera-
tive retrieval (Asai et al., 2023) to further improve
KGQA.
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Appendix

A GNN-RAG Implementation

Classification layer: After L GNN layers, we ob-
tain node representation matrix H(L) ∈ R|V|×d.
To perform classification, we obtain the node prob-
ability matrix P = softmax(H(L)W ), where
W ∈ Rd×1 is a learnable projection layer followed
by softmax normalization. Answer nodes should
have larger probability pv ∈ [0, 1] than non-answer
nodes.

Node and relation embeddings: We use pre-
trained models, such as SBERT or other LMs,
to encode relation embeddings. We obtain node
embeddings by aggregating the adjacent relation
embeddings of nodes, which has been shown
to generalize better to new entities (He et al.,
2021; Choi et al., 2024). The formula is h

(0)
v =

ReLU(
∑

r∈Nr(v)
Wrr), where r is the relation

embedding and W is learnable. During training,
we optimize the GNN parameters, but not the rela-
tion embeddings obtained via the pretrained mod-
els.

Question Embeddings: As complex questions
might consist of multiple subquestions, we obtain
K question embeddings to better capture different
question parts (Qiu et al., 2020), as shown in Equa-
tion 3. To capture multiple question’s contexts,
each question representation qk ∈ Rd, k ∈ K, is
initialized by dynamically attending to different
question’s tokens. First, we derive a representa-
tion qj ∈ Rd for each token j of the question and
a question representation, e.g., via CLS pooling,
qc ∈ Rd with pre-trained language models, such as
SBERT. Equation 3 becomes

qk = γk(LM(q)) =
∑

j

ak,jqj , (7)

where j denotes is the j-th token position and
ak,j ∈ [0, 1] is an attention weight. At each it-
eration k, weight ak,j is dynamically adjusted by
encouraging attention to new question parts via:

ak,j = softmaxj(Wa(q̃k ⊙ qj) (8)

q̃k = Wk(qk−1||qc||qk−1 ⊙ qc||qc − qk−1),
(9)

where Wa ∈ Rd×d and Wk ∈ Rd×4d are learnable
parameters.

Downstream LLM: For the downstream LLM,
we opt to follow prompt tuning (Lin et al., 2023;
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Zhang et al., 2024b), where the Llama-7B-Chat
model is trained to generate to generate a list of
answers for KGQA. We follow RoG (Luo et al.,
2024a) fine-tuning approach. The LLM is fine-
tuned based on the training question-answer pairs
to generate a list of correct answers, given the
prompt:
“Based on the reasoning paths, please
answer the given question.\n Reasoning
Paths: {Reasoning Paths} \n Question:
{Question}”.
The reasoning paths are verbalized as “{question
entity} → {relation} → {entity} → · · ·
→ {relation} → {answer entity} \n” (see
Figure 3).
During training, the reasoning paths are the short-
est paths from question entities to answer entities.
During inference, the reasoning paths are obtained
by GNN-RAG.

B Case Studies

Figure 4 illustrates two case studies from the CWQ
dataset, showing how GNN-RAG improves LLM’s
faithfulness, i.e., how well the LLM follows the
question’s instructions and uses the right informa-
tion from the KG.

In both cases, GNN-RAG retrieves multi-hop
information, which is necessary for answer-
ing the questions correctly. In the first case,
GNN-RAG retrieves both crucial facts <Gilfoyle
→ characters_that_have_lived_here →
Toronto> and <Toronto → province.capital
→ Ontario> that are required to answer the ques-
tion, unlike the KG-RAG baseline (RoG) that
fetches only the first fact. In the second case, the
KG-RAG baseline incorrectly retrieves informa-
tion about <Erin Brockovich → person> and
not <Erin Brockovich → film_character>
that the question refers to. GNN-RAG uses
GNNs to explore how <Erin Brockovich> and
<Michael Renault Mageau> entities are re-
lated in the KG, resulting into retrieving facts
about <Erin Brockovich → film_character>.
The retrieved facts include important information
<films_with_this_crew_job → Consultant>.

Figure 5 illustrates one case study from the
WebQSP dataset, showing how RA (Section 4.3)
improves GNN-RAG. Initially, the GNN does
not retrieve helpful information due to its limi-
tation to understand natural language, i.e., that
<jurisdiction.bodies> usually “make the

Table 8: Datasets statistics. “avg.|Vq|” denotes average
number of entities in subgraph, and “coverage” denotes
the ratio of at least one answer in subgraph.

Datasets Train Dev Test avg. |Vq| coverage (%)

WebQSP 2,848 250 1,639 1,429.8 94.9
CWQ 27,639 3,519 3,531 1,305.8 79.3
MetaQA-3 114,196 14,274 14,274 497.9 99.0

laws”. GNN-RAG+RA retrieves the right infor-
mation, helping the LLM answer the question cor-
rectly.

C Experimental Setup

KGQA Datasets. We experiment with two widely
used KGQA benchmarks: WebQuestionsSP (We-
bQSP) (Yih et al., 2015), Complex WebQuestions
1.1 (CWQ) (Talmor and Berant, 2018). We also
experiment with MetaQA-3 (Zhang et al., 2018)
dataset. We provide the dataset statistics Table 8.
WebQSP contains 4,737 natural language ques-
tions that are answerable using a subset Freebase
KG (Bollacker et al., 2008). This KG contains
164.6 million facts and 24.9 million entities. The
questions require up to 2-hop reasoning within this
KG. Specifically, the model needs to aggregate over
two KG facts for 30% of the questions, to reason
over constraints for 7% of the questions, and to
use a single KG fact for the rest of the questions.
CWQ is generated from WebQSP by extending the
question entities or adding constraints to answers,
in order to construct more complex multi-hop ques-
tions (34,689 in total). There are four types of
questions: composition (45%), conjunction (45%),
comparative (5%), and superlative (5%). The ques-
tions require up to 4-hops of reasoning over the KG,
which is the same KG as in WebQSP. MetaQA-3
consists of more than 100k 3-hop questions in the
domain of movies. The questions were constructed
using the KG provided by the WikiMovies (Miller
et al., 2016) dataset, with about 43k entities and
135k triples. For MetaQA-3, we use 1,000 (1%) of
the training questions.

Implementation. For subgraph retrieval, we use
the linked entities to the KG provided by (Yih et al.,
2015) for WebQSP, by (Talmor and Berant, 2018)
for CWQ. We obtain dense subgraphs by (He et al.,
2021). It runs the PageRank Nibble (Andersen
et al., 2006) (PRN) method starting from the linked
entities to select the top-m (m = 2, 000) entities
to be included in the subgraph.

For GNN training, we employ standard train-
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Q: "In which state did fictional character Gilfoyle live?"
A: Ontario

KG-RAG Gilfoyle -> fictional_universe.fictional_setting.characters_that_have_lived_here -> Toronto

GNN-RAG
Gilfoyle -> fictional_universe.fictional_setting.characters_that_have_lived_here -> Toronto
Gilfoyle -> fictional_universe.fictional_character.place_of_birth -> Canada -
> location.country.first_level_divisions -> Ontario
Gilfoyle -> fictional_universe.fictional_setting.characters_that_have_lived_here -> Toronto -
> location.province.capital -> Ontario

LLM A: Toronto

LLM A: Ontario

Q: "Who was the real Erin Brockovich featured in Michael Renault Mageau movie ?"
A: Consultant

KG-RAG Erin Brockovich -> people.person.profession -> Environmentalist
Erin Brockovich -> people.person.profession -> Actor
Erin Brockovich -> people.person.profession -> Consultant

GNN-RAG

LLM A: Actor

LLM A: Consultant

Erin Brockovich -> film.film.starring -> Julia Roberts ->
film.film_character.portrayed_in_films -> Julia, the Waitress
Michael Renault Mageau -> common.topic.notable_types -> Film Actor ->
common.topic.notable_types -> Erin Brockovich
Michael Renault Mageau -> film.film_crew_gig.crewmember -> m.0pxdvpl ->
film.film_job.films_with_this_crew_job -> Consultant

Figure 4: Two case studies that illustrate how GNN-RAG
improves the LLM’s faithfulness. In both cases, GNN-
RAG retrieves multi-hop information that is necessary
for answering the complex questions.

Q: "Who made the laws in Canada?"
A: Parliament of Canada LLM

A:
Parliament
of Canada

GNN-RAG

Canada -> royalty.monarchy.kingdom ->
Elizabeth II
Canada -> people.person.nationality -
> WL Mackenzie King

+ RA

... +
Canada ->
government.jurisdiction.bodies ->
Parliament of Canada

Figure 5: One case study that illustrates the benefit of
retrieval augmentation (RA). RA uses LLMs to fetch
semantically relevant KG information, which may have
been missed by the GNN.

ing procedure and hyperparameters as in the lit-
erature (Mavromatis and Karypis, 2022). As the
defualt downstream LLM, we use the Llama2-Chat-
7B model finetuned for KGQA (Luo et al., 2024a).
For both training and inference, we use suggested
hyperparameters, without performing further hy-
perparameter search. Model selection is performed
based on the validation data. Experiments with
GNNs were performed on a Nvidia Geforce RTX-
3090 GPU over 128GB RAM machine. Exper-
iments with LLMs were performed on 4 A100
GPUs connected via NVLink and 512 GB of mem-
ory. The experiments are implemented with Py-
Torch.

For LLM prompting during KGQA, we use the
following prompt:

Based on the reasoning paths, please
answer the given question. Please keep
the answer as simple as possible and
return all the possible answers as a
list.\n
Reasoning Paths: {Reasoning Paths} \n
Question: {Question}

During GNN inference, each node in the sub-
graph is assigned a probability of being the correct
answer, which is normalized via softmax. To re-
trieve answer candidates, we sort the nodes based
on the their probability scores, and select the top
nodes whose cumulative probability score is be-
low a threshold. We set the threshold to 0.95. To
retrieve the shortest paths between the question en-
tities and answer candidates for RAG, we use the
NetworkX library1.

Competing Approaches.
We evaluate the following categories of methods:

1. Embedding, 2. GNN, 3. LLM, 4. KG+LLM, 5.
GNN+LLM, 6. Long-context (KG-LC).

1https://networkx.org/
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1. KV-Mem (Miller et al., 2016) is a key-
value memory network for KGQA. Embed-
KGQA (Saxena et al., 2020) utilizes KG pre-
trained embeddings (Trouillon et al., 2016)
to improve multi-hop reasoning. Transfer-
Net (Shi et al., 2021) improves multi-hop rea-
soning over the relation set. Rigel (Sen et al.,
2021) improves reasoning with questions of
multiple entities.

2. GraftNet (Sun et al., 2018) uses a convolution-
based GNN (Kipf and Welling, 2016). Pull-
Net (Sun et al., 2019) is built on top of
GraftNet, but learns which nodes to retrieve
via selecting shortest paths to the answers.
NSM (He et al., 2021) is the adaptation
of GNNs for KGQA. NSM+h (He et al.,
2021) improves NSM for multi-hop reasoning.
SQALER (Atzeni et al., 2021) learns which
relations (facts) to retrieve during KGQA for
GNN reasoning. Similarly, SR+NSM (Zhang
et al., 2022a) proposes a relation-path retrieval.
UniKGQA (Jiang et al., 2023b) unifies the
graph retrieval and reasoning process with a
single LM. ReaRev (Mavromatis and Karypis,
2022) explores diverse reasoning paths in a
multi-stage manner.

3. We experiment with instruction-tuned LLMs.
Flan-T5 (Chung et al., 2024) is based on
T5, while Aplaca (Taori et al., 2023) and
LLaMA2-Chat (Touvron et al., 2023) are
based on LLaMA. ChatGPT2 is a powerful
closed-source LLM that excels in many com-
plex tasks. ChatGPT+CoT uses the chain-
of-thought (Wei et al., 2022) prompt to im-
prove the ChatGPT. We access ChatGPT
‘gpt-3.5-turbo’ through its API (as of May
2024).

4. KD-CoT (Wang et al., 2023) enhances CoT
prompting for LLMs with relevant knowledge
from KGs. StructGPT (Jiang et al., 2023a)
retrieves KG facts for RAG. KB-BINDER (Li
et al., 2023) enhances LLM reasoning by
generating logical forms of the questions.
ToG (Sun et al., 2024) uses a powerful LLM
to select relevant facts hop-by-hop. RoG (Luo
et al., 2024a) uses the LLM to generate rela-
tion paths for better planning.

2https://openai.com/blog/chatgpt

Table 9: Performance analysis (F1) based on the num-
ber of maximum hops that connect question entities to
answer entities.

Method
WebQSP CWQ

1 hop 2 hop ≥3 hop 1 hop 2 hop ≥3 hop

RoG 73.4 63.3 – 50.4 60.7 40.0

GNN-RAG 72.0 69.8 – 47.4 69.4 51.8
GNN-RAG +RA 74.6 71.1 – 48.2 70.9 47.7

Table 10: Performance analysis (F1) based on the num-
ber of answers (#Ans).

Method
WebQSP CWQ

#Ans=1 2≤#Ans≤4 5≤#Ans≤9 #Ans≥10 #Ans=1 2≤#Ans≤4 5≤#Ans≤9 #Ans≥10

RoG 67.89 79.39 75.04 58.33 56.90 53.73 58.36 43.62

GNN-RAG 71.24 76.30 74.06 56.28 60.40 55.52 61.49 50.08
GNN-RAG +RA 71.16 82.31 77.78 57.71 62.09 56.47 62.87 50.33

5. G-Retriever (He et al., 2024) augments LLMs
with GNN-based prompt tuning.

6. SubgraphRAG (Li et al., 2024b) uses a text
encoder to encode KG triplets and trains an
MLP classifier to select the topk triplets based
on the question.

D Additional Experimental Results

D.1 Question Analysis

Following the case studies presented in Figure 4
and Figure 5, we provide numerical results on how
GNN-RAG improves multi-hop question answer-
ing and how retrieval augmentation (RA) enhances
simple hop questions. Table 9 summarizes these
results. GNN-RAG improves performance on multi-
hop questions (≥2 hops) by 6.5–11.8% F1 points
over RoG. Furthermore, RA improves performance
on single-hop questions by 0.8–2.6% F1 points
over GNN-RAG.

Table 10 presents results with respect to the num-
ber of correct answers. As shown, RA enhances
GNN-RAG in almost all cases as it can fetch correct
answers that might have been missed by the GNN.

D.2 Prompt Ablation

When using RAG, LLM performance depends on
the prompts used. To ablate on the prompt impact,
we experiment with the following prompts:

Prompt A:
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Table 11: Performance comparison (%Hit) based on
different input prompts.

WebQSP CWQ

Prompt A
RoG 84.8 56.4
GNN-RAG 86.8 62.9

Prompt B
RoG 84.3 55.2
GNN-RAG 85.2 61.7

Prompt C
RoG 81.6 51.8
GNN-RAG 84.4 59.4

Based on the reasoning paths,
please answer the given question.
Please keep the answer as simple
as possible and return all the
possible answers as a list.\n
Reasoning Paths: {Reasoning
Paths} \n
Question: {Question}

Prompt B:

Based on the provided knowledge,
please answer the given question.
Please keep the answer as simple
as possible and return all the
possible answers as a list.\n
Knowledge: {Reasoning Paths} \n
Question: {Question}

Prompt C:

Your tasks is to use the
following facts and answer the
question. Make sure that you use the
information from the facts provided.
Please keep the answer as simple as
possible and return all the possible
answers as a list.\n
The facts are the following:
{Reasoning Paths} \n
Question: {Question}

We provide the results based on different input
prompts in Table 11. As the results indicate, GNN-
RAG outperforms RoG in all cases, being robust at
the prompt selection.

D.3 Effect of Training Data
Training Cost. GNN-RAG requires only fine-
tuning the GNN for retrieval. The downstream
LLM can be fine-tuned (our default implementa-
tion) or not (as we experimented with in Table 5).
Fine-tuning the downstream LLM is memory-
intensive. For example, if we use 2 A100-80G

GPUs, 1 epoch of 30k training data requires more
than 12 hours. GNN training is much more effi-
cient: On a GeForce RTX 3090, 1 epoch of 30k
training data needs less than 15 minutes and less
than 8GB of GPU memory.

Data Size Impact. Fine-tuning the downstream
LLM generally improves performance. In Table 14,
we compare LLaMa2-Chat-7B and LLaMa2-Chat-
7B fine-tuned. As shown (Hit metric), GNN-RAG

demonstrates a more stable performance when
switching between the two LLMs. Specifically,
GNN-RAG experiences a relatively small drop of
0.5-5.0 points, whereas RoG suffers from a larger
performance degradation of 0.9-6.2 points under
the same conditions. CWQ has more data (27.6k)
than WebQSP (2.8k) and thus, performance im-
provement when using the tuned LLM is larger.

In Table 15, we provide results when we use 10k
training data of CWQ when training the GNN. As
shown, although GNN-RAG uses approximately 3x
less data, it still outperforms RoG (which uses 30k
data from both CWQ and WebQSP for training).

Table 12 compares performance of different
methods based on the training data used for training
the retriever and the KGQA model. For example,
GNN-RAG trains a GNN model for retrieval and
uses a LLM for KGQA, which can be fine-tuned or
not. As the results show, GNN-RAG outperforms
the competing methods (RoG and UniKGQA) by
either fine-tuning the KGQA model or not, while it
uses the same or less data for training its retriever.

D.4 Graph Effect
GNNs operate on dense subgraphs, which might
include noisy information. A question that arises
is whether removing irrelevant information from
the subgraph would improve GNN retrieval. We
experiment with SR (Zhang et al., 2022a), which
learns to prune question-irrelevant facts from the
KG. As shown in Table 13, although SR can im-
prove the GNN reasoning results – see row (a) vs.
(b) at CWQ –, the retrieval effectiveness deteri-
orates; rows (c) and (d). After examination, we
found that the sparse subgraph may contain dis-
connected KG parts. In this case, GNN-RAG’s ex-
traction of the shortest paths fails, and GNN-RAG

returns empty KG information.

D.5 Threshold Ablation
As an additional ablation study, we set the thresh-
old θ, which controls the number of candidate an-
swer nodes for entity selection, to 0.99 (retrieves
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Table 12: Performance results based on different train-
ing data.

Method
WebQSP CWQ

Training Data (Retriever) Training Data (KGQA Model) Hit Training Data (Retriever) Training Data (KGQA Model) Hit

UniKGQA WebQSP WebQSP 77.2 CWQ CWQ 51.2

RoG
WebQSP WebQSP 81.5 CWQ CWQ 59.1

WebQSP+CWQ None 84.8 WebQSP+CWQ None 56.4
WebQSP+CWQ WebQSP+CWQ 85.7 WebQSP+CWQ WebQSP+CWQ 62.6

GNN-RAG
WebQSP None 86.8 CWQ None 62.9
WebQSP WebQSP+CWQ 87.2 CWQ WebQSP+CWQ 66.8

Table 13: Performance comparison on different sub-
graphs.

Retriever KGQA Model WebQSP CWQ

Hit H@1 F1 Hit H@1 F1

a) Dense Subgraph (A) GNN – 77.5 72.8 – 52.7 49.1
b) Sparse Subgraph (Zhang et al., 2022a) (B) GNN – 74.2 69.8 – 53.3 49.7

c) GNN-RAG: (A)
LLaMA2-Chat-7B (tuned)

85.0 80.3 71.5 66.2 61.3 58.9
d) GNN-RAG: (B) 83.4 78.9 69.8 60.6 55.6 53.3

Table 14: Impact of LLM tuning.

Retrieval LLM WebQSP CWQ

RoG LLaMa2-Chat-7B (untuned) 84.8 56.4
RoG LLaMa2-Chat-7B (tuned) 85.7 62.6
GNN-RAG LLaMa2-Chat-7B (untuned) 85.2 62.7
GNN-RAG LLaMa2-Chat-7B (tuned) 85.7 66.7

Table 15: Number of training data impact on CWQ.

Retrieval # Training Data CWQ Hit (%)

RoG 30k 62.6
GNN-RAG 27.6k 66.7
GNN-RAG 10k 63.7

more candidate answers), to 0.95 (default), and
to 0.75 (retrieves less candidate answers). GNN-
RAG performance is shown in Table 16. Increas-
ing the threshold (0.99) to retrieve more context,
can further increase performance to 85.9%. Lower
threshold (0.75) might miss some answers and the
performance drops to 83.5%.

D.6 Text Retrieval
Table 17 presents retrieval performance against
additional text-based baselines. We conduct
experiments comparing GNN-RAG with triplet
embedding similarity methods, Retrieve-Rewrite-
Answer (), and UniHGKR-base () (KG instruction,
top-50) on WebQSP. As Table 17 demonstrates,
GNN-RAG outperforms these methods in both re-
trieval and downstream QA metrics.

Table 16: Threshold θ impact for answer node selection
(WebQSP Hit %).

θ = 0.99 θ = 0.95 θ = 0.75

GNN-RAG 85.9 85.7 83.8

Table 17: GNN-RAG vs. text-based retrieval methods.

Ret. Hit@1 (%) Ret. Hit@10 (%) QA Hit (%)

UniHGKR 24.5 56.0 76.3
Ret-Rewrite-Ans 50.7 85.9 81.1
GNN-RAG 76.5 92.3 85.7
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